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Motivations

- Boundary: encode all the CFT data.

• Holographic correlators are the most basic observables of AdS/CFT

- Bulk: correspond to on-shell scattering amplitudes in curved backgrounds.

- Important objects for analytically studying strong coupling and allow us 
to perform precision tests of AdS/CFT.

• The study of holographic correlators has a long history and dates back to the beginning of AdS/CFT

- Witten diagrams (’98) [Witten]

- 3pt functions (’98) [Freedman, Mathur, Matusis, 
Rastelli; Lee, Minwalla, Rangamani,Seiberg…]

- First 4pt function for axion-dilatons (’99) [D’Hoker, Freedman, Mathur, Matusis, Rastelli]



Motivations

- Curved backgrounds

• However, going beyond turned out to be very difficult. The diagrammatic calculation of holographic 
correlators is notoriously complicated even at leading order in  and for 4 pts1/N

- Infinitely many particles from KK reduction

- Very complicated vertices (15 pages!)

[Arutyunov, Frolov]

Cubic and quartic vertices 
of IIB SUGRA on  AdS5 × S5

•  What are the principles that determine these vertices? Is there any underlying simplicity in holographic 
correlators?

• Only a handful of explicit results after decades of 
hard work [Arutyunov, Frolov, Dolan, Osborn 
Sokatchev, Berdichevsky Naaijkens, Uruchurtu…]



Motivations

- Inspired by both the conformal bootstrap and the scattering amplitude program in flat space 

• Now we know that a more efficient approach is bootstrap

- The idea: focus not on of-shell vertices but directly on “on-shell” correlators and compute them by 
imposing symmetries and consistency conditions.

- An early version of these ideas appeared in a paper from 2006 [Dolan, Nirschl, Osborn].

- A modern program of analytic bootstrap for holographic correlators was developed more recently. 

In this talk, I will survey some of the progress in studying holographic correlators.



tree

loop

4pt functions

higher-pt functions defect correlators

stringy

higher-  and string 
amplitudes 
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Holographic correlators Techniques used

• Mellin space
• Position space

• Lorentzian inversion formula 

• Flat-space limit

• Unitarity

• Localization

• Worldsheet

• Hidden symmetries

• Factorization

• …

(best understood) (1&2 loops)

(only tree level)

[cf talks by Dorigoni, Ferrero, 
Hansen, Heslop, Nocchi]

(very preliminary)

• Momentum space



Testing ground
• IIB string theory on  dual to 4d  SYMAdS5 × S5 𝒩 = 4

- Corresponds to supergraviton scattering

- Supersymmetric localization & integrability

- Simple solution to superconformal Ward identities The simplest maximally 
superconformal theory- Spectrum leads to simple analytic structure at tree level

⏟

•  SYM on 𝒩 = 1 AdS5 × S3

- A subsector of 4d  SCFTs constructed from D3 branes with probe D7 branes (or probing F-
theory singularities) [Aharony, Fayyazuddin, Maldacena; Karch, Katz]

𝒩 = 2

- Corresponds to supergluon scattering

- The simplest among theories with half maximal susy

- Localization is also possible in some realizations

Although many results for 
many other theories!



Outline
• Four-pt functions (position space)

• Four-pt functions (Mellin space)

• Higher-pt functions

• Hidden symmetries

• Stringy corrections

• Defect correlators

• Outlook



4pt functions (position space)
• Are the 15 pages of SUGRA vertices arbitrary? No, they are fixed by superconformal symmetry!

• The starting point is an ansatz which is the linear combination of all possible Witten diagrams

𝒜 = ∑ λ(s)
𝒳

𝒴
𝒳 λ(t)

𝒴+ 𝒵λ(u)
𝒵+ + λc

- Determined by selection rules from consistency conditions (R-symmetry, ….)

- , ,  are R-symmetry polynomials for exchanged R-symmetry irreps with unfixed overall 

coefficients.

λ(s)
𝒳 λ(t)

𝒴 λ(u)
𝒵

-   includes all R-symmetry structures and at most two derivatives can appear in the contact part. λc

• A concrete way to efficiently implement this is the “position space method” [Rastelli, XZ].



• The next step is to evaluate all the Witten diagrams in the ansatz

- For certain “nice” spectra, exchange Witten diagrams can be written as finite sums of contact Witten 
diagrams [D’Hoker, Freedman, Rastelli]

Δ,0Δ,0
Δ1

Δ2

Δ4

Δ3

= ∑ akx−2k
12

k = 1

Δ1 + Δ2 − Δ
2

Δ1−k

Δ2−k

Δ4

Δ3

Δ1 + Δ2 − Δ ∈ 2ℤ+if

- Different D-functions are related by differential recursion relations

DΔ1…Δi+1…Δj+1…Δn
=

d − Σ
2ΔiΔj

∂
∂x2

ij
DΔ1…Δi…Δj…Δn

Σ = Δ1 + … + Δn

D1111 =
Φ(z, z̄)
x2

13x2
24

∝ Φ(z, z̄) = 1
(z − z̄) (2Li2(z) − 2Li2(z̄) + log(zz̄)log( 1 − z

1 − z̄ ))

4pt functions (position space)

scalar one-loop box diagram

(more generally: 
)Δ1 + Δ2 − Δ + ℓ ∈ 2ℤ+

[Usykina, Davydychev]

(Consistency conditions are related to 
the Yangian symmetry [Rigatos, XZ])

D-functions



- The box diagram satisfies

∂zΦ(z, z̄) = − 1
z − z̄ Φ(z, z̄)+ 1

(z − 1)(z − z̄) log U− 1
z(z − z̄) log V

∂z̄Φ(z, z̄) = 1
z − z̄ Φ(z, z̄)− 1

(z̄ − 1)(z − z̄) log U+ 1
z(z − z̄) log V

- Then clearly  form a basis, on which we can decompose the ansatz{Φ, log U, log V,1}

𝒜 = 𝒜ΦΦ(z, z̄) + 𝒜log U log U + 𝒜log V log V + 𝒜1

• Finally, we impose the superconformal Ward identity [Nirschl, Osborn]

(z∂z − α∂α)𝒜(z, z̄; α, ᾱ) |α=1/z = 0

This fixes all the unknown coefficients in the ansatz up to an overall factor.

The coefficients are rational functions.

4pt functions (position space)



• A useful lesson from tree-level bootstrap: holographic correlators in position space can be decomposed 
into a basis of building block functions.

• What are the basis functions at loop level? These are the ladder integrals [Aprile, Drummond, Heslop, Paul]

ϕ(l) =
l

∑
r=0

(−1)r (2l − r)!
r!(l − r)!l! logr(zz̄)(Li2l−r(z) − Li2l−r(z̄))

4pt functions (position space)

Φ(l) = − 1
z − z̄ ϕ(l) ( z

z − 1 , z̄
z̄ − 1 )

Also cf talk by Yuan

• Make an ansatz in terms of the basis functions with rational coefficients. At one loop, the highest 
transcendental weight is 4 [Aprile, Drummond, Heslop, Paul]. 

• This allows us to extend the position space method to higher genus.



• Fix the unknowns in the ansatz by imposing physical conditions (focusing on )⟨2222⟩

4pt functions (position space)

- Leading logarithmic singularities (double-discontinuity [Caron-Huot])

= ∑
p

×
2

2

2

2

2

2

p p

p p

2

2

AdS unitarity method [Aharony, 
Alday, Bissi, Perlmutter]

Tree ( ):log U

gΔ,ℓ = Uτ/2( f0(V) + f1(V)U + …) ⊃ γ
2 log U gΔ,ℓ

ℋ(1) |log U = ∑
n,ℓ

1
2 ⟨a(0)

n,ℓγ(1)
n,ℓ⟩gΔm,ℓ,ℓ

1-loop ( ):log2 U

Disconnected: ℋ(0) |long = ∑
n,ℓ

⟨a(0)
n,ℓ⟩gΔm,ℓ,ℓ

ℋ(2) |log2 U = ∑
n,ℓ

1
8 ⟨a(0)

n,ℓ(γ(1)
n,ℓ)2⟩gΔm,ℓ,ℓ

At one loop, only data from tree level 
and disconnected level are needed.

In the SUGRA limit, all long operators are 
double-particle operators.

: anomalous dimensionγ

(For trace v.s. particle, see [Arutynov, Frolov; Aprile, 
Drummond, Heslop, Pual; Alday, XZ])

Different orders of , maximal powers of :1/c log U



4pt functions (position space)

: 𝒪2 □n ∂ℓ𝒪2 : : 𝒪3 □n−1 ∂ℓ𝒪3 : : 𝒪4 □n−2 ∂ℓ𝒪4 : : 𝒪5 □n−3 ∂ℓ𝒪5 : …

‣ A complication is operator mixing

‣ But we can still unmix the data by considering correlators of different KK modes [Alday, Bissi; Aprile, 
Drummond, Heslop, Paul].

‣ Studying the unmixing problem leads to interesting results

‣ Surprisingly simple rational anomalous dimensions [Aprile, Drummond, Heslop, Paul]

‣ Hidden higher dimensional conformal symmetry [Caron-Huot Trinh] (more about this later).

Δpq = τ + ℓ −
2

N2

2M(4)
t M(4)

t+ℓ+1

(ℓ + 2p − 2 − a − 1 + (−1)a+ℓ

2 )6

M(4)
t = (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2)

‣ So the coefficients do not correspond to a particular operator.



4pt functions (position space)
‣ To compute  unmixing is actually not necessary. We only need to use  and 

. This is easy to see by organizing CFT data into matrices.

⟨2222⟩(2) ⟨22pp⟩(1)

⟨pppp⟩(0)

Disconnected:

Λ(0)(Λ(0))T = N(0) [ ]⟨2222⟩(0)

⟨3333⟩(0)

⟨MMMM⟩(0)
…

=

Λ(0) =[ ]
λ22O1

λ22O2
λ22OM−1

λ33O1
λ33O2 … λ33OM−1

……… …
λMM,O1

λMMO2 … λMMOM−1

operator degeneracy 

different 
correlators

…

Γ(1) = diag(γ(1)
1 , γ(1)

2 , …, γ(1)
M−1)

Λ(0)Γ(1)(Λ(0))T = Ω(1) =[ ]⟨2222⟩(1) …
…
……… …
…

⟨3322⟩(1)

⟨MM22⟩(1)

⟨2233⟩(1) ⟨22MM⟩(1)

⟨MMMM⟩(1)

… …

…

Tree-level:

One-loop:

Λ(0)(Γ(1))2(Λ(0))T = Λ(0)Γ(1)(Λ(0))T(N(0))−1Λ(0)Γ(1)(Λ(0))T

= Ω(1)(N(0))−1Ω(1)

Need only the 11 component.

Define:



4pt functions (position space)
- Crossing symmetry

- Regular as  (putting operators on a line)z → z̄

- No twist-2 operators (no stringy states)

• These conditions completely fix the one-loop correlator up to a contact Witten diagram counter term 
[Aprile, Drummond, Heslop, Paul]. This algorithm also works for correlators of higher KK modes [Aprile, 
Drummond, Heslop, Paul].

• A similar strategy can now be used to compute correlators of supergravitons and supergluons up to two 
loops [Huang, Yuan; Drummond, Paul; Huang, Wang, Yuan, XZ].

• On the other hand, it should be noted that not much has been studied for individual loop-level Witten 
diagrams in position space, apart from very limited special examples [Bertan, Sachs; Heckelbacher, Sachs, 
Skvortsov, Vanhove; Stawinski] 



4pt functions (Mellin space)
• “Momentum space” for AdS: Mellin space makes manifest the scattering amplitude nature of 

holographic correlators [Mack; Penedones; Paulos; Fitzpatrick, Kaplan, Penedones, Raju, van Rees]

⟨𝒪1(x1)…𝒪n(xn)⟩ = ∫ [dδij](∏
i<j

x−2δij
ij Γ(δij))ℳ(δij)

- Conformal symmetry:

δij = δji , δii = − Δi ,
n

∑
j=1

δij = 0

- Solved by  satisfyingδij = pi ⋅ pj

p2
i = − Δi , ∑

i

pi = 0

- The Mellin amplitude of contact diagrams are just constants.

- The Mellin amplitude of exchange diagrams have simple poles with polynomial residues.

 are “Mandelstam variables”δij⇒



• For 4pt there are only two independent Mandelstam variables

⟨𝒪1(x1)…𝒪4(xn)⟩ = (kin . factor)∫
dsdt

(4πi)2
U

s
2V

t
2ℳ(s, t)Γ1234(s, t)

Γ1234(s, t) = Γ( Δ1 + Δ2 − s
2 )Γ(

Δ3 + Δ4 − s
2 )Γ( Δ1 + Δ4 − t

2 )Γ(
Δ2 + Δ3 − t

2 )Γ(
Δ1 + Δ3 − u

2 )Γ( Δ2 + Δ4 − u
2 )

s + t + u = Δ1 + Δ2 + Δ3 + Δ4

- Exchange Witten diagram

Δ, ℓℳ [ ] = ∑
m

Qℓ,m(t)
s − (Δ − ℓ + 2m)

+ Pℓ−1(s, t)

- Truncation in position space is equivalent to truncation of the poles.

4pt functions (Mellin space)

- But we can now also deal with non-truncating cases. E.g., in , 
, 

AdS4

Δi = Δ = 1 ℓ = 0
ℳ1,0 =

Γ( 1 − s
2 )

Γ(1 − s
2 )

The Mack polynomials  are 
known from solving EOM (Casimir 
equation) in Mellin space.

Qℓ,m



• Extremely useful for  IIB SUGRA. Here we illustrate it with tree-level 4pt functions. All 4pt 
functions can be obtained from solving an algebraic bootstrap problem in Mellin space [Rastelli, XZ]

AdS5 × S5

- Superconformal symmetry

(solution to scf Ward id)

ℳ = ̂R ∘ ℳ̃
reduced correlatorfull correlator

G = Gfree + R H
 is a polynomial in , , becomes a difference 

operator in Mellin space
R U V

UmVn ∫ U
s
2V

t
2 f(s, t) = ∫ U

s
2V

t
2 f(s−2m, t−2n)- Analytic structure

- Bose symmetry

 has only simple poles with polynomial residues.ℳ

- Asymptotic growth

These conditions fix the amplitudes 
completely up to overall constants!

4pt functions (Mellin space)

0

Invariant under permuting the particles.

 should grow no faster than linearly at high energy.ℳ



• Mellin space is also useful for other theories. To obtain general results, we need two new ingredients 

- Superconformal Ward identities in Mellin space [XZ]

(z∂z − ϵα∂α)𝒢(z, z̄; α, ᾱ) |z=1/α = 0

(z̄∂z̄ − ϵα∂α)𝒢(z, z̄; α, ᾱ) |z̄=1/α = 0
ϵ = (d − 2)/2

‣ Each equation is asymmetric in   not good for Mellinz ↔ z̄ ⇒

‣ But we can take the sum and the difference to write it in polynomials of , U V

‣ Scf Ward ids become difference equations for Mellin amplitudes. 

zn + z̄n = 21−n∑
k = 0

⌊n /2⌋

( n
2k) ((1 + U + V )2 − 4U)k(1 + U − V )n−2k

zn − z̄n

z − z̄
= 21−n∑

k = 0

⌊n /2⌋

( n
2k + 1) ((1 + U + V )2 − 4U)k(1 + U − V )n−2k−1

4pt functions (Mellin space)

‣ In general dimensions the scf Ward ids are [Dolan, Gallot, Sokatchev]

The solution is quite 
complicated if .ϵ ≠ 1



- “Maximally R-symmetry violating” configuration [Alday, XZ]

‣ Amplitudes drastically simplify when some of the R-symmetry polarizations are aligned t1 = t3

‣ Together with scf symmetry requires the decoupling of certain long operators, manifested as 
the zeroes in the amplitude.

ℳ2222(s, t; σ, τ) =
P2222(s, t; σ, τ)

4n3(s − 4)(s − 6)(t − 4)(t − 6)(u − 4)(u − 6)

t1 = t3

MRV2222(s, t) =
(u − 8)(u − 10)

n3 ( 1
s − 4

+
1

4(s − 6)
+

1
t − 4

+
1

4(t − 6) )

4pt functions (Mellin space)

E.g., simplest correlator in AdS7 × S4

‣ The MRV limit allows only a single R-symmetry irrep to propagate in the u-channel.



‣ The MRV zeroes exist for the exchange of each individual scf multiplet. This allows us to fix the 
coefficients within each multiplet  implementing scf symmetry at a more local level.→

‣ Moreover, there is a general prescription to go away from MRV limit and restore the general R-
symmetry dependence.

‣ Remarkably, this prescription leads to no explicit contact diagrams in the final amplitude!

ℳ = ℳs + ℳt + ℳu

ℳs = ∑
i,j

σiτ j ∑
s0

Ri,j
s (t, u)
s − s0

s0 = ϵp + 2m , m ∈ ℕ p − max{ |k1 − k2 | , |k3 − k4 |} = 2,4,…2ℰ − 2

over finitely many multiplets

‣ This method gives all 4pt amplitudes in maximally scf theories , ,  
[Alday, XZ].

AdS5 × S5 AdS7 × S4 AdS4 × S7

‣ It also gives all 4pt amplitudes in half maximally scf theories of the form  corresponding 
to supergluon scattering [Alday, Behan, Ferrero XZ].

AdSd+1 × S3

4pt functions (Mellin space)



• The Mellin formalism is also useful for studying correlators at loop level

- Consider  at one loop for . The correlator has the structure ⟨2222⟩ AdS5 × S5

ℋ(U, V) = f2,2(U, V) log2 Ulog2 V + f2,1(U, V) log2 U log V + f2,0(U, V) log2 U

+f1,2(U, V) log Ulog2 V + f1,1(U, V) log U log V + f1,0(U, V) log U

+f0,2(U, V) log2 V + f0,1(U, V) log V + f0,0(U, V)

f2,2(U, V) =
∞

∑
m,n=0

dnm U2+nVm

 implies the Mellin integrand must 

have triple poles at , 

log2 U log2 V

s = 4 + 2n t = 4 + 2m

ℋ = ∫
dsdt

(4πi)2
U

s
2V

t
2 −2 ℳ̃ (s, t)Γ2( 4 − s

2 )Γ2( 4 − t
2 )Γ2( 4 − ũ

2 )

The reduced Mellin amplitude should have simple poles in  and .s t⇒

4pt functions (Mellin space)

fixed by tree-level data

The task is to complete it into a full correlator.



- Make a minimal assumption: only simultaneous poles with constant numerators [Alday]

ℳ̃ (s, t) =
∞

∑
m,n=0

cmn

(s − 4 − 2n)(t − 4 − 2m)
+ (su) + (tu)

cmn =
p(6)(m, n)

(m + n − 1)5

4pt functions (Mellin space)

⏟crossing symmetry

- The p0les are easy to justify: we only expect long operators from double-particle operators at 1 loop.

- That  are constants is an assumption that must be checked by calculation.cmn

- We first compute the  coefficients. We take residues at , . The result 
contains  with  and we focus on the  coefficient. Comparing it 
with the term  of , we can find  in a closed form

cmn s = 4 + 2n t = 4 + 2m
logi U logj V i, j = 0,1,2 log2 U log2 V

U2+nVm f2,2(U, V) cmn



- We find that not only  is reproduced but also subleading powers of log2 V log V

ℋ(U, V) ⊃ f2,2(U, V) log2 Ulog2 V + f2,1(U, V) log2 U log V + f2,0(U, V) log2 U

- Rules out single poles in  (and ,  by crossing). This fixes all singularities!s t u

4pt functions (Mellin space)
- Then we need to check the ansatz is correct. We insert  into the ansatz and sum over all the poles 

in  and . We take residue w.r.t.  and focus on the  term, but we keep general  dependence.
cmn

t u s log2 U V

∂s∂t ℳ̃ (s, t) ∂s∂tI10d box(s, t)
flat space limit

- The same analytic structure extends to higher KK modes [Alday, XZ], as well as to one-loop 
amplitudes of super gluons [Alday, Bissi, XZ; Huang, Wang, Yuan, XZ].

input check

- Regular terms are ambiguous. But they can be fixed by the flat-space limit and can only be a constant.



4pt functions (Mellin space)

log2 Ulog1 Ulog0 U

log0 V

log1 V

log2 V

- The simplicity of Mellin makes it easier to spot patterns. Interesting higher dimensional structure at 
one loop [Huang, Wang, Yuan, XZ]: for higher KK modes, almost all simultaneous pole coefficients are 
fixed by tree-level hidden conformal symmetry [c.f. E. Yuan’s talk].

Hidden conformal symmetry Hidden conform
al sym

m
etry

analytic 
continuation 

analytic 
continuation 

Hidden conformal 
symmetry

finitely many 
coefficients!

General result for  with .⟨𝒪p1
𝒪p2

𝒪p3
𝒪p4

⟩ ℰ = min{p1,
1
2 (p1 + p2 + p3 − p4)} = 2,3



Higher-pt functions
• Higher-pt holographic correlators is more challenging because of more complicated kinematics.

• For 5pt, it is still feasible to adapt the position space method and results were obtained for supergraviton 
and supergluon in  [Goncalves, Pereira, XZ; Alday, Goncalves, XZ]AdS5

• As in 4pt, we can also reduce all exchange diagrams to contact diagrams. The reduction works when we 
have cubic vertex

• Ultimately boils down to , which is the same as the pentagon integral in flat space and can be 
expressed as box diagrams [Bern, Dixon, Kosower].

D11112

• We can make an ansatz in terms of all possible diagrams and evaluate it in terms of elementary functions.



Higher-pt functions
• Scf Ward ids for more than 4 pts are not known. So far only two weaker conditions are known.

- Chiral algebra [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees]: correlators of operators on a 
plane with special R-symmetry polarizations are meromorphic

⟨S1(z1, z̄1; y1)…Sn(z1, z̄n; yn)⟩ |yi=z̄i
= F(zi)

- Topological twisting (for 4d )  [Drukker, Plea]: identifying R-symmetry polarizations with 
the embedding space vectors make the correlator topological

𝒩 = 4

⟨S1(P1; t1)…Sn(Pn; tn)⟩ |ti=Pi
= const

 parameterizes an  subgroup of R-symmetry (for 4d  or )yi SU(2) ⊂ SO(6) or SO(4) 𝒩 = 4 𝒩 = 2

 are null vectors of ti SO(6)R

ℝ4

ℝ2

• These conditions fix the 5pt functions uniquely [Goncalves, Pereira, XZ; Alday, Goncalves, XZ].

- Topological twisting  chiral algebra for  but not when .⊂ n = 4 n ≥ 5



Elliptic 

• However, this method fails at 6pt because we cannot reduce all exchange diagrams to contact and the 
basic integrals are not known

• The more suitable formalism for higher-pt is Mellin space where the Mellin amplitude is always a rational 
function.

• However, the superconformal constraints in position space are difficult to translate to Mellin space. The 
Mellin version of the Drukker-Plea twisting is known [Boas, Goncalves, Meneghelli, Pereira, XZ] but not 
the chiral algebra twisting. 

• Need an alternative approaches where superconformal symmetry plays a less crucial role.

Higher-pt functions



Higher-pt functions
• One such approach was developed in [Alday, Goncalves, Nocchi, XZ] which makes minimal use of 

superconformal symmetry. Instead, it relies on two different principles.

• Flat-space limit

- The flat-space limit is encoded in the high energy limit of the Mellin amplitude [Penedones]

T(Sij) ≈
Γ( 1

2 ∑i Δi − d
2 )

Rn(1−d)/2+d+1

1
2πi ∫

γ+i∞

γ−i∞
dΛΛ− 1

2 ∑i Δi+ d
2 eΛℳ(sij =

SijR2

2Λ )
- For tree-level amplitudes of massless fields the integral is trivial 

T(sij) ∝ lim
β→∞

βpℳ(βsij)

- But supergravitons and supergluons have polarizations in the flat-space limit. They come from higher 
dimensional gravity field and gauge field pointing in the internal directions. 

R → ∞



Higher-pt functions
- The flat-space polarizations are simply related to the R-symmetry polarizations

ϵ ↔ t

with the important property that they are orthogonal to momenta

ϵi ⋅ pj = 0 for all  and i j

- Therefore, the flat-space condition for tree-level Mellin amplitudes is  

lim
β→∞

βpℳ(βsij; ti) ∝ Flat-space amplitudes of bosonic gluons or gravitons with 
polarizations  satisfying ϵi = ti ϵi ⋅ pj = 0

pϵ

ℝd+1

(and  for )t ∼ σμ
αβvαvβ AdS5 × S3

- Higher KK is proportional to the lowest one with a factor given by Wick contractions. 

- Note the flat-space Feynman rules also simplify in this limit. Odd-pt gluon amplitudes vanish (cannot 
contract all  with ) and odd-pt graviton amplitudes also vanish (by double copy).ϵ ϵ



Higher-pt functions
• Mellin amplitude factorization [Goncalves, Penedones, Trevisani]

⊃

δLR − (Δ − J)

×

2

…

n − 1

1 n

δLR

3 n − 2

…

2

3

1

ML
n + 1

…

n − 2

n

MR
n + 2 n − 1

…
k k + 1

k k + 1

(Δ, J )

ML MR

- Similar analytic structure as in flat space: exchange of single-trace operators of dimension  and spin  
corresponds to poles at  with 

Δ J
Δ − J + 2m m = 0,1,…

- The residues factorize into “products” of lower-point Mellin amplitudes

- The precise form of the “product” depends on spin  and the .J m

- Currently only known for correlators with at most one spinning correlator (a general Mellin formalism 
for multiple spinning operators is not known!).



Higher-pt functions
• A new strategy based on flat-space limit and factorization [Alday, Goncalves, Nocchi, XZ]

Flat-space limit
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AdS factorization
This algorithm led to the first 6pt super gluon amplitude in .AdS5⟨𝒪𝒪𝒪⟩ × ⟨𝒪𝒪𝒪𝒪𝒪⟩

super gluon
spin-1 gluon



Higher-pt functions
• Amplitude constructibility was also recently proven for the lowest KK-level supergluons [Cao, He, Tang] 

by adapting more ideas and technologies from flat space

- Planar variables
1

2

3

45

𝒳13

𝒳35

−2δij = 𝒳i,j + 𝒳i+1,j+1 − 𝒳i,j+1 − 𝒳i+1,j

- A natural  R-symmetry basisSU(2)

1 2

3

45

6

1 2

3

45

6

Vi1i2…ir = ⟨i1i2⟩⟨i2i3⟩…⟨iri1⟩

- “No-gluon” kinematics

𝒳ai − m + 1−
𝒳1a + 𝒳1i + 𝒳ak + 𝒳ik

2 −
(𝒳1a − 𝒳ak)(𝒳1i − 𝒳ik)

4(m + 1) = 0
𝒳1k = − 2m

• But at the moment this proof seems difficult to generalize to SUGRA and higher KK modes.

a k

i1

𝒳1k

2

n

kkk

k − 1
𝒳i,j = 2 + ( ∑

i≤k<j

pk)2 products of traces→

• It would be nice to find recursion relations similar to BCFW in Mellin space (in momentum space [Raju]).



Hidden symmetries
• Holographic correlators also exhibit interesting hidden properties which can be used in their computations.

• Hidden conformal symmetry

- First found in tree-level 4pt functions in  [Caron-Huot, Trinh] with hints from the simple 
form of anomalous dimensions [Aprile, Drummond, Heslop, Paul].

AdS5 × S5

- All correlators can be packaged into a single generating function which comes from lifting the 
lowest weight 4pt function

H(xi, ti) = H2222(x2
ij − tij)

- All correlators of higher KK modes are obtained by Taylor expanding in  and collecting all the 
possible R-symmetry structures.

tij

- The replacement  lifts 4D distances to conformally invariance distances in 10D.x2
ij → x2

ij − tij

- Probably related with conformal flatness of the background but the precise physical origin is not 
known.



Hidden symmetries

‣ Useful for computing certain quantities which depends on only the tree-level data, such as the 
leading logarithmic singularity, to any loop level [Caron-Huot, Trinh; Bissi, Fardelli, Georgoudis].

- Higher-pt?

‣ Although is broken, hidden conformal symmetry was useful for studying higher-derivative 
corrections [Abl, Heslop, Lipstein; Aprile, Drummond, Paul, Santagata].

- Applications

‣ A 6D version was used to compute 4pt functions in  [Rastelli, Roumpedakis, XZ] 
where scf symmetry is not enough to completely fix the higher KK correlators.

AdS3 × S3 × K3

‣ Also useful for integrated correlators [Brown, Heslop, Wen, Xie; cf talk by Heslop].



Hidden symmetries
• Double copy

- In flat space graviton amplitudes can be obtained from gluon amplitudes by squaring the 
numerators [Bern, Carrasco, Johansson]

𝒜gluon =
csns

s
+

ctnt

t
+

cunu

u
𝒜graviton =

n2
s

s
+

n2
t

t
+

n2
u

u
- In AdS, there is an almost identical realization of double copy for 4pt functions at the level of the 

reduced Mellin amplitudes [XZ]. The  supergluon amplitudes can be written as AdS5 × S3

ℳ̃ 𝒩=2 = ∑
i+j+k=ℰ−2

ajikσiτj( csni,j
s

s − sM + 2k
+

ctni,j
t

t − tM + 2j
+

cuni,j
u

ũ − uM + 2k )

cs,t,u → ns,t,u

ni,j
s = 1

t − tM + 2j − 1
ũ − uM + 2i

ni,j
t = 1

ũ − uM + 2i − 1
s − sM + 2k

ni,j
u = 1

s − sM + 2k − 1
t − tM + 2j

ni,j
s + ni,j

t + ni,j
u = 0

AdS color-kinematic duality



Hidden symmetries
- The same operation as in flat space leads to SUGRA 4pt amplitudes in AdS5 × S5

cs,t,u → ni,j
s,t,u : ℳ̃ 𝒩=2 → ℳ̃ 𝒩=4

- We can also consider , this gives all the 4pt functions in a bosonic theory of a 

conformally coupled bi-adjoint scalar in .

ni,j
s,t,u → cs,t,u

AdS5 × S1

- BCJ relation are also satisfied[Drummond, Santagata].

- Do they also hold at loop level? This seems to require us to define an “integrand” for Mellin 
amplitudes.

- Also investigations in momentum space [Farrow, Lipstein, McFadden; Armstrong, Lipstein, Mei; 
Albayrak, Kharel, Meltzer; Mei…] and in position space [Diwakar, Herderschee, Robin, Teng; 
Herderschee, Robin, Teng; Bissi, Fardelli, Manetti, XZ…], cf talk by Lipstein.

- But all properties require reduced amplitudes. How do they generalize to the full amplitudes?

- How to generalize to higher pt?



Hidden symmetries
• Parisi-Sourlas dimensional reduction

- In all the tree-level examples of 4pt functions, we find the contribution of a superconformal 
multiplet in  can be written in terms of a scalar exchange diagram in  (half maximal 
susy) or in  (maximal susy) acted by some difference operator [Behan, Ferrero, XZ; Alday, 
Behan, Ferrero, XZ]. 

AdSd+1 AdSd−1

AdSd−3

ℳAdSd+1
mult. p = ̂D 1 ∘ ℳAdSd−3

ϵp,0

ℳAdSd+1
mult. p = ̂D 2 ∘ ℳAdSd−1

ϵp,0

maximal susy: , , AdS4 × S7 AdS5 × S5 AdS7 × S4

half maximal susy: AdS7 × S4

- This phenomenon has been observed in all maximal and half maximal susy theories for all KK 
modes and is at the level of full Mellin amplitudes (not reduced). 



Hidden symmetries
- Can be traced to the identities satisfied by the underlying Witten diagram, which reflects the Parisi-

Sourlas supersymmetry [XZ]

Δ+2, ℓΔ, ℓ Δ+1, ℓ−1Δ, ℓ Δ, ℓ−2 Δ+2, ℓ−2= + c2,0 + c1,−1 + c0,−2 + c2,−2

(d−2) (d) (d) (d) (d) (d)

g(d−2)
Δ,ℓ = g(d)

Δ,ℓ + c2,0g(d)
Δ+2,ℓ + c1,−1g(d)

Δ+1,ℓ−1 + c0,−2g(d)
Δ,ℓ−2 + c2,−2g(d)

Δ+2,ℓ−2

Take the single-trace part

A kinematic consequence of Parisi-Sourlas 
supersymmetry [Kaviraj, Rychkov, Trevisani]

- If it also persists at higher pt, it might be useful for computing higher KK correlators. 

- Its appearance is quite curious: Parisi-Sourlas supersymmetry is non-unitary! 



String corrections [cf talks by Dorigoni, Ferrero, Hansen, Heslop, Nocchi]

• At low energies, stringy or M-theory corrections appear as higher-derivative contact interactions. In 
Mellin space they are polynomials. The leading term at each order can be fixed by matching with the 
flat-space amplitude [Goncalves; Chester, Pufu, Yin]

ℳ̃ =
1

N2 [ 1
stu

+
α(0)

R4

λ3/2
+

α(1)
D2R4

λ2
+

α(0)
D4R4(s2 + t2 + u2) + α(2)

D4R4

λ5/2

+
α(0)

D6R4stu + α(1)
D6R4(s2 + t2 + u2) + α(3)

D6R4

λ3
+ O(λ−7/2)] + O(N−4)

:AdS5 × S5

gs =
g2

YM

4π

L4

ℓ4
s

= λ = g2
YMN

(s, t, u) → L2(s, t, u) , L/ℓs → ∞

Virasoro-Shapiro in flat space:

A(0)(S, T) = −
Γ(− S

4 )Γ(− T
4 )Γ(− U

4 )

Γ( S
4 + 1)Γ( T

4 + 1)Γ( U
4 + 1) expanded in small S, T, U



String corrections
• To fix the subleading terms, we can use supersymmetric localization [Binder, Chester, Pufu, Wang].  

Taking derivatives of the  partition function of the mass-deformed  SYM, one obtains 
integrated correlators [cf review talk by Minahan and also talk by Billo]

S4 𝒩 = 4

τ2
2∂τ∂τ̄∂2

m log Z
m=0

= ∫
4

∏
i=1

dxiμ({xi})⟨𝒪2(x1)…𝒪2(x4)⟩ τ = τ1 + iτ2 = θ
2π + 4πi

g2
YM

This gives constraints for the unfixed coefficients. A lot of work in this direction both at planar level 
and higher genus [Binder, Chester, Pufu, Wang; Chester; Chester, Pufu…]

• We also consider the “very strong coupling expansion” (  keeping  fixed), revealing interesting 
 invariance properties involving non-holomorphic (generalized) Eisenstein series [Binder, 

Chester, Pufu, Wang; Chester, Green, Pufu, Wang, Wen; Dorigoni, Green, Wen …].

N → ∞ gYM

SL(2,ℤ)

• Many studies of interesting properties of integrated correlators (e.g., differential equations relating 
theories with different ranks [Dorigoni, Green, Wen …]). 



String corrections
• It is also possible to consider AdS Virasoro-Shapiro amplitudes at finite  [Alday, Hansen, Silva]S, T, U

ℳ̃ (s, t) → λ
3
2 ℳ̃ ( λs, λt) expanded in large R/ℓs = λ1/4

The leading order is just Virasoro-Shapiro amplitude. At subleading order, this would require fixing 
infinitely many coefficients  and corresponds to a small curvature expansionα(1)

#

A(S, T) = A(0)(S, T) +
1

λ
A(1)(S, T)+O(1/λ)

• Computed using two constraints

- Dispersion relation relating the correlator to the single-trace massive string operators

- Assuming a worldsheet integral with additional insertions of single-valued multiple polylogarithms

A(k)(S, T) = ∫ d2z |z |−2S−2 |1 − z |−2T−2 G(k)(S, T, z)

• The story was also be extended to open strings [Behan, Chester, Ferrero; Paul, Santagata; Alday, Chester, 
Hansen, Zhong; Alday, Hansen; talks by Hansen and Ferrero].

[cf talks by Hansen and Nocchi]



Defect correlators
• An interesting generalization is correlators in holographic defect CFTs. In the simplest setup, the 

defect is dual to a probe brane inside the bulk

AdSp+1 × Sr ⊂ AdSd+1 × Sn

e.g.,
: WL in  SYM(p, r, d, n) = (1,0,4,5) 𝒩 = 4

: interface in  SYM(p, r, d, n) = (3,2,4,5) 𝒩 = 4

: surface defect 6d (2,0) theory(p, r, d, n) = (2,0,6,4)

• When operators are all inserted on the defect, holographic correlators are kinematically similar to 
defect-free CFTs and the simplest case is 4pt (e.g., WL in  SYM [Giombi, Roiban, Tseytlin; 
Meneghelli, Ferrero], surface defect in 6d (2,0) theory [Drukker, Giombi, Tseytlin, XZ]).

𝒩 = 4

z0

defect brane

• When operators are inserted away from the defect, we get interesting new observables corresponding 
to form factors of AdS particles scattering off an extended object.



Defect correlators
• The first nontrivial case is 2pt function of bulk operators. Such holographic correlators have been 

studied using analytic conformal bootstrap techniques (inversion formula etc) in [Barrat, Gimenez-
Grau, Liendo; Meneghelli, Trepanier]. A more direct and systematic bootstrap analysis using Witten 
diagrams was initiated in [Gimenez-Grau].

• At large central charge (for half-BPS surface defects in 6d (2,0) theory)

+ + + +

+ + + + + …

defect
<latexit sha1_base64="G6Ezx8PiegUdunWRHousQxyIFLQ=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKez6Pkb04DGiecBmCbOzk2TI7Mwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VJoIbcN1vp7C0vLK6VlwvbWxube+Ud/eaRqWasgZVQul2SAwTXLIGcBCsnWhG4lCwVji8mfitJ6YNV/IRRgkLYtKXvMcpASv5WUfH+Dp6GHdPu+WKW3WnwIvEy0kF5ah3y1+dSNE0ZhKoIMb4nptAkBENnAo2LnVSwxJCh6TPfEsliZkJsunJY3xklQj3lLYlAU/V3xMZiY0ZxaHtjAkMzLw3Ef/z/BR6V0HGZZICk3S2qJcKDApP/scR14yCGFlCqOb2VkwHRBMKNqWSDcGbf3mRNE+q3kX1/P6sUrvN4yiiA3SIjpGHLlEN3aE6aiCKFHpGr+jNAefFeXc+Zq0FJ5/ZR3/gfP4AlU6Q0Q==</latexit>

AdS3

bulk propagator

defect propagator

bulk operator

bulk vertex

defect vertex

ci ∼ 1/Nic1

c2 c3

c4

trivial trivial

trivialtree

1 loop



Defect correlators
• At tree-level, we can apply the position space approach [Gimenez-Grau; Chen, Gimenez-Grau, XZ]

+ +⟨Sk1
Sk2

V⟩tree = ∑ μB μd μc

fixed by scf symmetry

• The results are simplest in Mellin space [Rastelli, XZ ’17, Goncalves, Itsios ’18]. For example, for surface 
defects in 6d (2,0) theory [Chen, Gimenez-Grau, XZ]

p1

p2

δ = p1 ⋅ p2

γ = − p2
1,∥ = − p2

2,∥

ℋ = ∫
dδ dγ
(2πi)2

B−δDγ ℳ̃ (δ, γ) Γ̃ k1k2
(δ, γ)

ℳ̃ (δ, γ, σ) =
2km−2

∑
i=1

km

∑
j=2

ℜij(σ)
(δ + i)(γ − 2j)

, : bulk & defect channel cross ratiosB D

km = min{k1, k2}

polynomial 
in σ



Defect correlators
• At 1-loop level, we can compute them by gluing together tree-level correlators following a similar 

strategy as in 4pt functions [Chen, Gimenez-Grau, Paul, XZ]

• The Mellin amplitude are simultaneous poles with constant numerators.

ℳ̃ (δ, γ) =
∞

∑
m,n=0

cmn

(δ + n)(γ − 6 − 2m)

+ + + + + …

×tree tree tree×

2 2

p p

p p 2 p p 2

with  given by cmn 3F2

log B log2 D

log B log D

log B

log2 D

log D

1

defect channel gluing

bulk channel 
gluing



Defect correlators
• Still quite preliminary

- No analogue of position space method at loop level which will be useful for 2-loop and beyond.

- We do not how to rigorously take the flat-space limit.

- A zoo of theories to study: so far only WL in 4d  SYM [Barrat, Gimenez-Grau, Liendo; 
Gimenez-Grau] and surface defect in 6d (2,0) theory [Meneghelli, Trepanier; Chen, Gimenez-Grau, 
XZ; Chen, Gimenez-Grau, Paul, XZ].

𝒩 = 4

- Integrated 2pt functions and scattering from (p,q)-strings [Pufu, Rodriguez, Wang; Billo, Galvagno, 
Frau, Lerda; cf talk by Rodriguez and Billo].

- One can also consider constraints from localization and integrability [de Leeuw, Kristjansen, 
Zarembo; Wang, Komatsu, Wang…]



Outlook

• Higher pts: on-shell recursion relations a la BCFW? 

• More efficient tools at loop level to go to 3 loops and beyond?

Clearly much more to do…

• AdS string amplitudes: all order curvature corrections?

• Systematic generalization of flat-space amplitude properties: what formalism? How to include more 
spinning operators?

• A more direct use of integrability?



Many other interesting topics
• Finite temperature and black holes [Iliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin; Alday, 

Kologlu, Zhiboedov; Dodelson, Ooguri; also talk by Vichi]

• Correlators involving determinant operators [Jiang, Komatsu, Vescovi; Jiang, Wu, Zhang; Brown, 
Galvagno, Wen]

• Scattering equations and AdS CHY formalism [Eberhardt, Komatsu, Mizera; Roehrig, Skinner]

• Bootstrability [Cavaglia, Gromov, Julius, Preti; talk by Gromov]

• Correlators in dS [Sleight, Taronna; Gomez, Jusinskas, Lipstein; talk by Lipstein]



Thank you!


