Integrated correlators in a $\mathcal{N} = 2$ SYM theory

Marco Billò

Dipartimento di Fisica Teorica, Università di Torino and I.N.F.N. Turin

iTHEMS–YITP workshop Bootstrap, Localization and Holography Kyoto, May 22, 2024

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- N = 2 conformal SYM theories in d = 4 (of which N = 4 is a particular case) are at te crossroads of the topics of this workshop: localization, holographic duality, conformal bootstrap
- Localization allows to compute the partition function and the vev of BPS Wilson loops also for theories "deformed" by mass terms and coupling to chiral operators.
- Derivatives w.r.t. these parameter corresponds to integrated correlators
 - 4pt integrated correlators
 - 2 pt integrated correlators in presence of a WL defect

4 pt integrated correlators in $\mathcal{N} = 4$

- We heard (and are going to hear) quite a bit in this workshop about localization (review by Minahan) and about integrated correlators.
 - Holograhic dual to (integrated) scattering processes in AdS. They place constraints on holographic correlators
 - Provide data for a CFT bootstrap approach to the latter (in the WL case, in DCFT)
- 4pt integrated correlators first introduced in $\mathcal{N} = 4$

Binder et al, 2019; Chester, 2019; Chester et al 2020; ...

- Modular properties (talk by Dorigoni) Dorigoni et al, 2021, 2022; Paul et al, 2022, Wen et al, 2022; Alday et al, 2023; ...
- ► Different gauge groups Dorigoni et al, 2022; ...
- Generic or large charge insertions

Brown et al, 2023; Paul et al, 2023; Caetano et al, 2023

 Similar definition and rôle of integrated correlators also in d = 3 ABJM (talk by Nosaka)

Integrated correletors with a Wilson loop

- - ► Measure fixed partially in Billo et al, 2023, finalized in Dempsey et al, 2024; Billo et al, 2024
- The abstract of my talk included this issue; however I will not discuss it, since Yifan Wang will
- However, the matrix model techniques I will illustrate could be useful for computing such observables in N = 2 theories

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

4 pt integrated correlators in $\mathcal{N}=2$

4pt integrated correlators have been considered also in $\mathcal{N}=\text{2}$ contexts

- ► In $\mathcal{N} = 2$ SQCD Fiol et al, 2023
- In a particular theory with Usp(2N) gauge group, dual to type IIB on AdS₅ × S₅/ℤ₂ with D7 branes Behan et al, 2023
 - Inputs for the construction of open string scattering amplitudes in AdS Alday et al, 2024 (talks by Zhou and Hansen)
- In non-lagrangian N = 2 theories, dual to F-theory setups Behan et al, 2024. Cannot rely on localization (talk by Ferrero)
- In the so-called E theory Billo et al,2023 (I will focus on this!) and in a quiver theory Pini et al, 2024

Motivations

and scope of the talk

- Pestun's localization of an observable reduces its path integral to a finite-dimensional matrix integral: it is a huge step forward!
- While for N = 4 the matrix model is gaussian, it is interacting for N = 2 theories.
- Computations might not be straight-forward, since to obtain info on the holographic dual one needs to extrapolate results to strong coupling

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivations

and scope of the talk

- Our group (Turin U. and others) developed an approach which has proven useful in several cases
- My talk will be thus limited in scope, focusing on the matrix model side of the N = 2 integrated correlators

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Based on arXiV:2311.17178 (M.B., Frau, Lerda and Pini)

Content of $\mathcal{N} = 2$ theories

The first slides will be very basic – especially after this morning review. I apologize if too basic!

Vector multiplet in the adjoint of the gauge group – for us it will be SU(N):

 A_{μ}, ϕ + gauginos

► Hypermultiplet in a representation *R* (can be reducible)

 $q, \tilde{q} + hyperinos$

These matter fields can be massive.

Massless theories are conformal iff the one-loop β-function coefficient vanishes:

$$i_{\mathcal{R}} = N$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Classes of conformal $\mathcal{N} = 2$ theories

 For the fundamental and the two-index symmetric and antisymmetric reps one has

$$i_{fun} = 1/2 \;, \;\;\; i_{sym} = (N+2)/2 \;, \;\;\; i_{asym} = (N-2)/2$$

• The following theories are superconformal ($i_R = N$):

theory	representation $\mathcal R$	massive version
$\mathcal{N}=4$	$adj = fun \otimes \overline{fun} - \cdot$	$\mathcal{N}=2^{*}$
А	2N fun	
В	$(N-2)$ fun \oplus sym	
С	$(N+2)$ fun \oplus asym	
D	4fun \oplus 2asym	
E	$\mathit{sym} \oplus \mathit{asym} = \mathit{fun} \otimes \mathit{fun} - \cdot$	E*

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Localization formulæ

The partition function of a generic N = 2 theory on S₄ of radius r localizes Pestun 2007

 $A_{\mu}(x) \rightarrow \text{instanton solution}, \quad \phi(x) \rightarrow a$

where *a* is constant matrix in su(N). Then

$$\mathcal{Z} = \int da \, \mathrm{e}^{-\frac{8\pi^2 r^2}{g^2} \mathrm{tr} \, a^2} \, \left| Z_{inst} \right|^2 \, \left| Z_{1-loop} \right|^2$$

where we highlighted the saddle point value and the fluctuation determinant about it

▶ In the 't Hoof limit with $N \rightarrow \infty$ and $\lambda = g^2 N$ fixed, instantons are suppressed and $Z_{inst} \rightarrow 1$

The determinant factor

For a theory with i_R = N, also massive, the infinite products in the 1-loop determinant can be expressed in terms of Barnes' G-functions

$$\left|Z_{1-loop}\right|^{2} = \frac{\prod_{\alpha} H(i\alpha \cdot ar)}{\prod_{\mathbf{w}} \left[H(i\mathbf{w} \cdot ar + imr) H(i\mathbf{w} \cdot ar - imr)\right]^{1/2}}$$

α are the roots, w the weights of R and a the vector of eigenvalues of a. Moreover

$$H(x) = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right)^n e^{\frac{x^2}{n}} \equiv e^{(1+\gamma)x^2} G(1+x) G(1-x)$$

We regard the 1-loop determinant as an interaction action for the matrix model

$$\left|Z_{1-loop}\right|^2 = e^{-S_{int}}$$

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

A side remark

Asymptotically free theories with *i*_R < N and a dynamically generated sale Λ must be embedded in a larger theory with *i*_{R*} = N and mass M

Pestun 2007; Russo, Zarembo 2013; M.B., Griguolo, Testa 2023, ...

In the regime

$$\Lambda << 1/r << M ,$$

the matrix model is formally analogous, but the coupling in the Gaussian term becomes the running coupling $g^2(r)$

- ► Does it still provide some information on the theory on ℝ⁴?
- For the WL vev at two loop order M.B., Griguolo, Testa 2023 and three loops (quite hard) it does in preparation

Mass expansion of the interaction action

For the integrated correlators, one is interested in the mass expansion of the model Forward.

$$S_{int} = S_0 + m^2 S_2 + m^4 S_4 + \dots$$

• Since $S_{int} = \log |Z_{1-loop}|^2$ one finds

...

$$S_0 = \log |Z_{1-loop}|^2 = \operatorname{Tr}_{\mathcal{R}} \log H(\operatorname{i} a r) - \operatorname{Tr}_{adj} \log H(\operatorname{i} a r) ,$$

$$S_2 = -\frac{1}{2} \operatorname{Tr}_{\mathcal{R}} \partial^2 \log H(\operatorname{i} a r)$$

For the $\mathcal{N} = 2^*$ theory $S_0 = 0$ since $\mathcal{R} = adj$.

▶ In the N = 4 theory m = 0, thus $S_{int} = 0$. The matrix model is gaussian

The interaction action in terms of traces

Explicit expressions follow from

Expanding

$$\log H(x) = -\sum_{n=1}^{\infty} \frac{\zeta_{2n+1}}{n+1} x^{2n+2}$$

Rewriting traces in the R and the adjoint rep in terms traces in the fundamental. In particular Forward.

$$\operatorname{Tr}_{adj} a^{2k} = \sum_{l=2}^{2k-2} (-1)^{l} \binom{2k}{l} \operatorname{tr} a^{l} \operatorname{tr} a^{2k-l},$$
$$\operatorname{Tr}_{E} a^{2k} = \sum_{l=2}^{2k-2} \binom{2k}{l} \operatorname{tr} a^{l} \operatorname{tr} a^{2k-l}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Interacting matrix model

- Localization allows the computation of vevs of certain BPS operators (Wilson loop, correlators of chiral ops...)
- Such operators are mapped to "gauge invariant" matrix operators f(a) and

$$\langle f(a) \rangle = \frac{1}{\mathcal{Z}} \int da f(a) e^{-\text{tr} a^2} e^{-S_{int}(a)} = \frac{\langle f(a) e^{-S_{int}(a)} \rangle_0}{\langle e^{-S_{int}(a)} \rangle_0}$$

- \blacktriangleright By $\langle \cdots \rangle_0$ we mean the vev in the Gaussian matrix model
- We rescaled the matrix by

$$a
ightarrow \sqrt{rac{g^2}{8\pi^2 r^2}}$$

Typically, as is the case for S_{int}(a), also f(a) can be written in terms of traces of powers of a

Full Lie algebra approach

The core ingredients are the Gaussian vevs of multitraces:

 $t_{k_1,k_2,\ldots} \equiv \langle \operatorname{tr} a^{k_1} \operatorname{tr} a^{k_2} \ldots \rangle_0$

- A standard approach is to rotate *a* to the Cartan subalgebra and express everything in terms of its eigenvalues, picking up a Vandermonde factor in the measure
- In the so-called "full Lie algebra approach" one expands the matrix a on all generators:

$$a = a_b T^b$$
, tr $T^b T^c = \frac{1}{2} \delta^{bc}$, $\int da = \int \prod_b \frac{da_b}{\sqrt{2\pi}}$

In this way one gets the gaussian "propagator"

$$\langle \pmb{a}_{\pmb{b}} \, \pmb{a}_{\pmb{c}}
angle_{\pmb{0}} = \delta_{\pmb{b}\pmb{c}}$$

(日本本語を本面を本面を入口を)

Recursion relations

From the "fission/fusion" identities

tr
$$T^{b}B_{1}T^{b}B_{2} = \frac{1}{2}$$
tr B_{1} tr $B_{2} - \frac{1}{2N}$ tr $B_{1}B_{2}$,
tr $T^{b}B_{1}$ tr $T^{b}B_{2} = \frac{1}{2}$ tr $B_{1}B_{2} - \frac{1}{2N}$ tr B_{1} tr B_{2}

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

and the gaussian propagator follow powerful recursive relations for the vevs of multitraces $t_{k_1,k_2,...}$ Billo et al. 2017

Such recursive relation simplify in the large-N limit

Correlators of chiral operators

- ► Extremal correlators of protected operators $O_k = \operatorname{tr} \phi^k(x)$, such as $\langle O_{k_1}(x_1) \dots O_{k_n}(x_n) \overline{O}_p(y) \rangle$, have a fixed coordinate dependence and are captured by localization Baggio et al. 2014; Gerkovits et al. 2016; ...
- Since in field theory O_k(x) is normal ordered, at the operator level the map to the matrix model is

 $O_k(x) \to \mathcal{O}_k \equiv : \operatorname{tr} a^k :$

(日本本語を本面を本面を入口を)

The operators O_k, orthogonal to all those of lower dimension, can be determined by a Gram-Schmid procedure

Tree level normal ordering

In the gaussian model, one can write in closed form at the leading order for large N Rodriguez-Gomez et al 2016 a set of normal ordered operators satisfying

$$\langle \mathcal{P}_k \rangle_0 = \mathbf{0} , \quad \langle \mathcal{P}_k \mathcal{P}_l \rangle_0 = \delta_{k,l}$$

The map form the field theory operators is

$$O_k(x) o \mathcal{O}_k = \mathcal{G}_k^{(0)} \mathcal{P}_k , \quad \mathcal{G}_k^{(0)} = k (N/2)^k.$$

The map to the basis of the traces is

$$\operatorname{tr} \boldsymbol{a}^{k} = \left(\frac{N}{2}\right)^{\frac{k}{2}} \sum_{\ell=0}^{\lfloor \frac{k-1}{2} \rfloor} \sqrt{k-2\ell} \binom{k}{\ell} \mathcal{P}_{k-2\ell} + \langle \operatorname{tr} \boldsymbol{a}^{k} \rangle_{0}$$

The P form a convenient basis of operators also when interactions are included but a further coupling-dependent normal ordering is needed.

Large N factorization

- In the planar limit, as a consequence of the recursion relations on the multitrace vevs, the gaussian correlators of many P_k operators are computed à la Wick with the propagator ⟨P_kP_l⟩₀ = δ_{k,l} Beccaria et al, 2020
- They behave as real variables p_k with a Gaussian weight:

$$\langle \mathcal{P}_{k_1} \mathcal{P}_{k_2} \dots \mathcal{P}_{k_n} \rangle_0 = \int \mathcal{D}\mathbf{p} \ \boldsymbol{p}_{k_1} \boldsymbol{p}_{k_2} \dots \boldsymbol{p}_{k_n} e^{-\frac{1}{2}\mathbf{p}^T \mathbf{p}} + O(N^{-1})$$

Correlators of an odd number of \mathcal{P} 's are subleading in 1/N. In particular, the 3-point functions are (for $k + \ell + p$ even)

$$\langle \mathcal{P}_k \, \mathcal{P}_\ell \, \mathcal{P}_n
angle_0 = rac{1}{N} \, \sqrt{k\ell p} \equiv rac{1}{N} \, d_{k,\ell,n} \; ,$$

At order 1/N, just add this vertex to the above free theory

The *E* theory

► For the *E* theory using the above results ► Back, the interaction action reads ► Forward

$$S_{0} = 4 \sum_{n,\ell=1}^{\infty} (-1)^{n+\ell} \frac{(2n+2\ell+1)! \zeta_{2n+2\ell+1}}{(2n+1)! (2\ell+1)!} \left(\frac{\lambda}{8\pi^{2}N}\right)^{n+\ell+1} \operatorname{tr} a^{2n+1} \operatorname{tr} a^{2\ell+1}$$

- Quadratic in odd traces only
- Written as an expansion in the coupling λ
- In terms of the \mathcal{P}_k operators it becomes

$$S_0 = -rac{1}{2}\sum_{k,\ell=1}^\infty \mathcal{P}_{2k+1} \, {\sf X}_{2k+1,2\ell+1} \, \mathcal{P}_{2\ell+1}$$

where in the coefficients we can resum the perturbative expansion: Forward

$$X_{n,m} = 2 \left(-1\right)^{\frac{n+m+2nm}{2}+1} \sqrt{nm} \int_0^\infty \frac{dt}{t} \frac{1}{\sinh(t/2)^2} J_n\left(\frac{t\sqrt{\lambda}}{2\pi}\right) J_m\left(\frac{t\sqrt{\lambda}}{2\pi}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Even and odd

- The interactions only involve the odd operators P_{2k+1}. Observables in the E theory involving only even operators are planar equivalent to N = 4
- The dual holographic theory is an orbifold/orientifold of AdS₅ × S⁵ Ennes et al, 2000: the odd operators are dual to twisted fields
- Writing $(X^{odd})_{k,\ell} \equiv X_{2k+1,2\ell+1}$ the partition function is

$$\begin{split} \mathcal{Z}_{E} &= \int \mathcal{D} \boldsymbol{p}_{\text{even}} \, e^{-\frac{1}{2} \boldsymbol{p}_{\text{even}}^{T} \, \boldsymbol{p}_{\text{even}}} \int \, \mathcal{D} \boldsymbol{p}_{\text{odd}} \, e^{-\frac{1}{2} \boldsymbol{p}_{\text{odd}}^{T} (1 - X^{\text{odd}}) \boldsymbol{p}_{\text{odd}}} \\ &= \det \left(1 - X^{\text{odd}} \right)^{-\frac{1}{2}} \end{split}$$

so the free energy is $\mathcal{F}_E = -\frac{1}{2} \text{tr } \log(1 - X^{odd})$

Basic 2pt correlators in the E Theory even case

In the even case, O_{2q} = P_{2q} − ⟨P_{2q}⟩, with ⟨P_{2q}⟩ = O(1/N)
 The 2-pt function of the even P operators is unchanged:

$$\langle \mathcal{P}_{2k} \mathcal{P}_{2\ell} \rangle = \delta_{k\ell} + O(N^{-2})$$

The normal ordered even operators are simply

$$\mathcal{O}_{2q} = \mathcal{G}_{2q}^{(0)} \left(\mathcal{P}_{2q} - \langle \mathcal{P}_{2q} \rangle \right)$$

so that

$$\mathcal{G}_{2q} \equiv \langle \mathcal{O}_{2q} \, \mathcal{O}_{2q} \rangle = \mathcal{G}_{2q}^{(0)} \left((1 + O(1/N^2)) \right)$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Basic 2pt correlators in the E Theory Odd case

The 2pt function of odd P's is now

$$\langle \mathcal{P}_{2k+1} \mathcal{P}_{2\ell+1} \rangle = (\mathsf{D}^{odd})_{k,\ell} + O(N^{-2}) , \quad \mathsf{D}^{odd} = \frac{1}{1 - \mathsf{X}^{odd}}$$

The odd P operators are no longer normal ordered and

$$\mathcal{O}_{2q+1} = \sqrt{\mathcal{G}_{2q+1}^{(0)}} \left(\mathcal{P}_{2q+1} - \sum_{q' < q} \mathsf{Q}_{q,q'} \mathcal{P}_{2q'+1} \right)$$

where the λ -dependent coefficients $Q_{q,q'}$ can be expressed in terms of the matrix D^{odd} via Gram-Schmid

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Forward

Basic 3-pt correlators in the E Theory

Taking into account the interaction action the correlator of three even P operators stays the same, while

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Forward

"Exact" expressions

- All the basic computational ingredients in the interacting matrix model for the *E* theory can be expressed in terms of the infinite matrices X and D = 1/(1 - X)
- This is crucial for comparisons with the dual holographic description

Equipped with the above tools, let us now consider a specific class of observables in this theory

Integrated correlators Foreword

- The coordinate dependence of non-extremal correlators with more than three operators is not fixed by conformal symmetry symmetry. They cannot be encoded in a matrix model.
- However, integrated 4-point functions can

Binder et al, 2019; Chester, 2019; long list ...

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Such observables correspond to derivatives w.r.t. to parameters in the partition function.
- They were first introduced in the N = 4 theory. We just recall briefly their definition then move to the *E* theory

Parameters in the partition function

- Even if we're interested in a massless N = 2 theory, we can turn on masses for the hypers in the representation R. Pestun's localization still applies.
- Deforming the Lagrangian on S⁴ in a susy invariant way by adding with couplings τ_ρ the multiplet containing the chiral operators O_p(x) has a matrix model description

Gerkovits et al, 2016

It is thus possible to compute expressions such as

 $\begin{array}{l} \partial_{\tau_p} \partial_{\bar{\tau}_p} \partial_m^2 \, Z(m, \tau_p, \bar{\tau}_p) |_{defs=0} \\ \partial_m^4 \, Z(m, \tau_p, \bar{\tau}_p) |_{defs=0} \end{array} ,$

exploiting the power of localization

The $\mathcal{N} = 2^*$ mass terms on the sphere

- These expressions are related to the integrated correlators of certain operators in the N = 2 theory on flat space
- For instance, the mass terms that deform the N = 4 action on S⁴ into N = 2∗ are of the form see Binder et al, 2019

$$\int d^4x \sqrt{g(x)} \left(\frac{\mathrm{i}\,m}{r} \,\mathcal{J}(x) + m\,\mathcal{K}(x) + m^2\,\mathcal{L}(x) \right)$$

- *m* 𝔅(*x*) and *m*² 𝔅(*x*) are the usual mass terms for the fermions and the bosons in the hypermultiplet
- $\mathcal{J}(x)$ is a moment map operator tr $(q^2 + \tilde{q}^2 + (q^*)^2 + (\tilde{q}^*)^2)$
- Two mass derivatives bring down two integrated J or K operators (or one L, but this has been shown not to contribute Binder et al.2019; ...)

Integrated 4pt correlators

in flat space for the $\mathcal{N} = 4$ theory

Deriving w.r.t.the τ_p and τ_p couplings brings down the operators O_p(N), O_p(S) an the North, South pole

- The integrated $\langle \mathcal{J} \mathcal{J} \mathcal{O}_{\rho} \bar{\mathcal{O}}_{\rho} \rangle$ and $\langle \mathcal{K} \mathcal{K} \mathcal{O}_{\rho} \bar{\mathcal{O}}_{\rho} \rangle$ correlators
 - ► can be conformally mapped to ℝ⁴;
 - are related by a a susy Ward identity
- One can write the result, with a specific measure μ , as

$$\partial_{\tau_{\rho}} \partial_{\bar{\tau}_{\rho}} \partial_{m}^{2} \log \mathcal{Z}_{\mathcal{N}=2^{*}} \Big|_{defs=0}$$

$$= \int \prod_{i=1}^{4} dx_{i} \ \mu(\{x_{i}\}) \left\langle \mathcal{O}_{\rho}(x_{1}) \ \bar{\mathcal{O}}_{\rho}(x_{2}) \ \mathcal{J}(x_{3}) \ \mathcal{J}(x_{4}) \right\rangle_{\mathcal{N}=4, \textit{flat}} .$$

The l.h.s. can be computed by localization. This gives a constraint on the 4pt correlator on the r.h.s.

Gerkovitz et al, 2026

Integrated 4pt correlators

for the E theory

- Only the details of the mass deformation change
 - ► One can give two different masses to the hypers in the symmetric and antisymmetric representation. Here for simplicity m_S = m_A = m

Thus we have

$$\begin{split} \mathcal{I}_{p} &\equiv \partial_{\tau_{p}} \partial_{\bar{\tau}_{p}} \partial_{m}^{2} \log \mathcal{Z}_{E^{*}} \Big|_{defs=0} \\ &= \int \prod_{i=1}^{4} dx_{i} \ \mu(\{x_{i}\}) \left\langle \mathcal{O}_{p}(x_{1}) \ \bar{\mathcal{O}}_{p}(x_{2}) \ \mathcal{J}_{E}(x_{3}) \ \mathcal{J}_{E}(x_{4}) \right\rangle_{E, \textit{flat}} \, . \end{split}$$

- The computation of the l.h.s. is now more difficult: the matrix model of the undeformed E theory is interacting
- We exploit the "full Lie algebra" method introduced above

Correlators in the matrix model

that capture the integrated correlators

Recall the mass expansion of the matrix model It is rather direct to see that

$$\mathcal{I}_{p} = \langle \mathcal{O}_{p} \, \mathcal{O}_{p} \, \boldsymbol{S}_{2} \rangle - \langle \mathcal{O}_{p} \, \mathcal{O}_{p} \, \boldsymbol{S}_{2} \rangle = \langle\!\langle \mathcal{O}_{p} \, \mathcal{O}_{p} \, \boldsymbol{S}_{2} \rangle\!\rangle$$

- The operators $\mathcal{O}_p\mathcal{O}_p$ must be connected with S_2
- The vevs are in the E theory matrix model

► Just as the interaction action S_0 of the *E* theory **CBACK** also S_2 can be expanded in traces:

$$S_2 = \sum_{n=1}^{\infty} \sum_{\ell=0}^{2n} (-1)^n \frac{(2n+1)! \zeta_{2n+1}}{(2n-\ell)! \ell!} \left(\frac{\lambda}{8\pi^2 N}\right)^n \operatorname{tr} a^{2n-\ell} \operatorname{tr} a^{\ell}$$

but here both even and odd powers of the matrix *a* appear.

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

The mass deformation operator S_2

Since the even traces have a vev, passing to the *P* basis the mass deformation operator S₂ gets terms with 0, 1 or 2 *P*'s:

$$S_2 = S_2^{(0)} + S_2^{(1)} + S_2^{(2)}$$

In each term the λ expansion can be resummed in terms of Bessel functions. The basic quantity is an infinite matrix M, similar to X:

$$\begin{split} \mathsf{M}_{0,0} &= \int_{0}^{\infty} \frac{dt}{t} \, \frac{(t/2)^{2}}{\sinh(t/2)^{2}} \left[1 - \frac{16\pi^{2}}{t^{2}\lambda} \, J_{1} \left(\frac{t\sqrt{\lambda}}{2\pi} \right)^{2} \right] \,, \\ \mathsf{M}_{0,n} &= (-1)^{\frac{n}{2}+1} \, \sqrt{n} \int_{0}^{\infty} \frac{dt}{t} \, \frac{(t/2)^{2}}{\sinh(t/2)^{2}} \left(\frac{4\pi}{t\sqrt{\lambda}} \right) \, J_{1} \left(\frac{t\sqrt{\lambda}}{2\pi} \right) \, J_{n} \left(\frac{t\sqrt{\lambda}}{2\pi} \right) \,, \\ \mathsf{M}_{n,m} &= (-1)^{\frac{n+m+2nm}{2}+1} \, \sqrt{nm} \int_{0}^{\infty} \frac{dt}{t} \, \frac{(t/2)^{2}}{\sinh(t/2)^{2}} \, J_{n} \left(\frac{t\sqrt{\lambda}}{2\pi} \right) \, J_{m} \left(\frac{t\sqrt{\lambda}}{2\pi} \right) \,. \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

The mass deformation operator S_2

In terms of the matrix M one finds in the E theory

$$\begin{split} S_2^{(0)} &= N^2 \, \mathsf{M}_{0,0} + \mathsf{M}_{1,1} - \frac{1}{6} \, \sum_{k=1}^{\infty} \sqrt{2k+1} \, \mathsf{M}_{1,2k+1} + O(N^{-2}) \,, \\ S_2^{(1)} &= 2N \sum_{k=1}^{\infty} \mathsf{M}_{0,2k} \, \mathcal{P}_{2k} + O(N^{-1}) \,, \\ S_2^{(2)} &= \sum_{k,\ell=1}^{\infty} \left[\mathsf{M}_{2k,2\ell} \, \mathcal{P}_{2k} \mathcal{P}_{2\ell} - \mathsf{M}_{2k+1,2\ell+1} \, \mathcal{P}_{2k+1} \mathcal{P}_{2\ell+1} \right] \end{split}$$

In the N = 4 theory there is just a + between the even and odd part of M⁽²⁾

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Mass corrections to the free energy

Just the results

- The first mass correction to the free energy is $m^2 \langle S_2 \rangle$.
- With the techniques discussed above, one finds

$$\begin{split} \langle \mathcal{S}_{2} \rangle &= \mathcal{N}^{2} \operatorname{\mathsf{M}}_{0,0} + \left[\left(1 + 2\lambda \, \partial_{\lambda} \mathcal{F} \right) \operatorname{\mathsf{M}}_{1,1} - \frac{1}{6} \sum_{k=1}^{\infty} \sqrt{2k+1} \operatorname{\mathsf{M}}_{1,2k+1} \right. \\ &+ \operatorname{\mathsf{Tr}} \operatorname{\mathsf{M}}^{\operatorname{even}} - \operatorname{\mathsf{Tr}} \left(\operatorname{\mathsf{M}}^{\operatorname{odd}} \operatorname{\mathsf{D}}^{\operatorname{odd}} \right) \right] + O(\mathcal{N}^{-2}) \end{split}$$

At weak coupling,

$$\begin{split} \langle S_2 \rangle &= N^2 \left[\frac{3 \zeta_3}{2} \hat{\lambda} - \frac{25 \zeta_5}{8} \hat{\lambda}^2 + \frac{245 \zeta_7}{32} \hat{\lambda}^3 - \frac{1323 \zeta_9}{64} \hat{\lambda}^4 + O(\hat{\lambda}^5) \right] \\ &- \left[\frac{3 \zeta_3}{2} \hat{\lambda} - \frac{25 \zeta_5}{8} \hat{\lambda}^2 - \frac{175 \zeta_7}{32} \hat{\lambda}^3 + \frac{6615 \zeta_9 + 360 \zeta_3 \zeta_5}{64} \hat{\lambda}^4 + O(\hat{\lambda}^5) \right] + O(N^{-2}) \end{split}$$

where we higlighted the terms differing from $\mathcal{N} = 2^*$

・ロト・(四ト・(日下・(日下・))の(で)

Mass corrections to the free energy

Just the results

- The first mass correction to the free energy is $m^2 \langle S_2 \rangle$.
- With the techniques discussed above, one finds

$$\begin{split} \langle S_2 \rangle &= \mathsf{N}^2 \,\mathsf{M}_{0,0} + \left[\left(1 + 2\lambda \,\partial_\lambda \mathcal{F} \right) \mathsf{M}_{1,1} - \frac{1}{6} \sum_{k=1}^{\infty} \sqrt{2k+1} \,\mathsf{M}_{1,2k+1} \right. \\ &+ \mathsf{Tr} \,\mathsf{M}^{\mathrm{even}} - \mathsf{Tr} \, \big(\mathsf{M}^{\mathrm{odd}} \,\mathsf{D}^{\mathrm{odd}} \big) \right] + O(\mathsf{N}^{-2}) \end{split}$$

At strong coupling one finds

$$\langle S_2
angle \mathop{\sim}\limits_{\lambda
ightarrow \infty} N^2 \, rac{\log \lambda}{2} - rac{5\sqrt{\lambda}}{48} + O(N^{-2})$$

- In $\mathcal{N} = 2^*$ one has $\frac{\sqrt{\lambda}}{6}$ instead Russo Zarembo, 2013
- For some terms, one needs Bessel Kernel techniques similar to those used for the octagon form factor in N = 4 in Belitsky Korchemsky, 2020

of the integrated correlators

We need to compute the correlators

$$\mathcal{I}_{p} = \langle\!\langle \mathcal{O}_{p} \, \mathcal{O}_{p} \, \mathcal{S}_{2}
angle
angle$$

where \mathcal{O}_p is the matrix image of the protected operator $O_p(x) = \text{tr} [\phi(x)]^p$

▶ From the expression of *S*₂, we get

$$\begin{split} \mathcal{I}_{\rho} &= 2N \sum_{k=1}^{\infty} \mathsf{M}_{0,2k} \langle\!\langle \mathcal{O}_{\rho} \, \mathcal{O}_{\rho} \, \mathcal{P}_{2k} \rangle\!\rangle + \sum_{k,\ell=1}^{\infty} \mathsf{M}_{2k,2\ell} \langle\!\langle \mathcal{O}_{\rho} \, \mathcal{O}_{\rho} \, \mathcal{P}_{2k} \, \mathcal{P}_{2\ell} \rangle\!\rangle \\ &- \sum_{k,\ell=1}^{\infty} \mathsf{M}_{2k+1,2\ell+1} \langle\!\langle \mathcal{O}_{\rho} \, \mathcal{O}_{\rho} \, \mathcal{P}_{2k+1} \, \mathcal{P}_{2\ell+1} \rangle\!\rangle \end{split}$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

for even operators

Recalling the simple relation between O_{2q} and P_{2q}

$$\frac{\mathcal{I}_{2q}}{\mathcal{G}_{2q}} = 2N \sum_{k=1}^{\infty} \mathsf{M}_{0,2k} \langle \mathcal{P}_{2q} \, \mathcal{P}_{2q} \, \mathcal{P}_{2k} \rangle_{c} + 2 \sum_{k,\ell=1}^{\infty} \mathsf{M}_{2k,2\ell} \langle \mathcal{P}_{2q} \, \mathcal{P}_{2k} \rangle \, \langle \mathcal{P}_{2q} \mathcal{P}_{2\ell} \rangle$$

From the properties of the even-P correlators, this gives

$$\frac{\mathcal{I}_{2q}}{\mathcal{G}_{2q}} = 4q \sum_{k=1}^{\infty} \mathsf{M}_{0,2k} \sqrt{2k} + 2\mathsf{M}_{2q,2q} = 2\,\mathsf{M}_{2q,2q} - 4q\,\mathsf{M}_{1,1}$$

The second step follows from Bessel function recursion id.s

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

The result is identical to the N = 4 one!

for odd operators

- ► The expansion of O_{2q+1} in terms of the odd P's is non trivial
- In this way \mathcal{I}_{2q+1} is determined by the correlators

$$\Pi_{q,r} \equiv \langle\!\langle \mathcal{P}_{2q+1} \, \mathcal{P}_{2p+1} \, \mathcal{S}_2 \rangle\!\rangle$$

Using the epansion of S₂ and the large-N properties of the odd P correlators, one finds

$$\Pi_{q,r} = 2N \sum_{k=1}^{\infty} \mathsf{M}_{0,2k} \langle \mathcal{P}_{2q+1} \mathcal{P}_{2r+1} \mathcal{P}_{2k} \rangle_{c}$$
$$- 2 \sum_{k,\ell=1}^{\infty} \mathsf{M}_{2k,2\ell} \langle \mathcal{P}_{2q+1} \mathcal{P}_{2k+1} \rangle \langle \mathcal{P}_{2q+1} \mathcal{P}_{2\ell+1} \rangle$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

for odd operators

Using the results for the 2pt and 3pt functions of odd operators • Back in the end

$$\Pi_{q,r} = -2 \, d_{2q+1} \, d_{2r+1} \, M_{1,1} - 2 \left(\mathsf{D}^{\text{odd}} \, \mathsf{M}^{\text{odd}} \, \mathsf{D}^{\text{odd}} \right)_{q,r}$$

- All quantities here depend on the coupling through Bessel functions
- ► Working out the λ -dependent normal ordering gives finally the odd integrated correlator \mathcal{I}_{2q+1} in terms of the $\Pi_{q,r}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 At weak coupling one can generate easily very long perturbative series

Strong coupling behaviour

- At large λ , apply Mellin-Barnes methods
- To the elements of X, D Beccaria et al, 2021. This implies that the normal ordering simplifies at large λ

$$\mathcal{O}_{2q+1} \underset{\lambda \to \infty}{\sim} \sqrt{\mathcal{G}_{2q+1}^{(0)}} \Big(\mathcal{P}_{2q+1} - \sqrt{rac{2q+1}{2q-1}} \, \mathcal{P}_{2q-1} \Big)$$

► To the coefficients d_{2q+1} Billo et al, 2022

$$\mathsf{d}_{2q+1} \ \underset{\lambda o \infty}{\sim} \ \frac{2\pi}{\sqrt{\lambda}} \sqrt{2q+1} \, q \, (q+1) + \dots$$

To the mass deformation S₂:

$$(S_2)_{n,m} \underset{\lambda \to \infty}{\sim} -\frac{1}{2} \delta_{n,m} + \frac{\sqrt{nm}}{\sqrt{\lambda}} + \dots$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Strong coupling behaviour

of the integrated correlators

- In the expression of Π_{q,r} also the matrix (D^{odd}M^{odd}D^{odd})_{q,r} appears. Difficult to study analytically, but numerically (conformal Padé approximants) appears to go like λ^{-3/2}
- Altogether one gets

$$egin{aligned} \mathcal{I}_{2q} & \sim \ \lambda o \infty & rac{2q-1}{2}\,\mathcal{G}_{2q}^{(0)} + \mathcal{O}(\lambda^{-rac{1}{2}}) \ , \ \mathcal{I}_{2q+1} & \sim \ \lambda o \infty & rac{8\pi^2}{\lambda}(2q+1)q^2\,\mathcal{G}_{2q+1}^{(0)} + \mathcal{O}(\lambda^{-rac{3}{2}}) \end{aligned}$$

In the odd case, the 2pt function also goes like Billo et al, 2022

$$\mathcal{G}_{2q+1} ~~ {\sim}_{\lambda
ightarrow \infty} {8 \pi^2 \over \lambda} (2q+1) q \, \mathcal{G}^{(0)}_{2q+1}$$

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

Strong coupling behaviour

of the integrated correlators

The following relation holds therefore for both even and odd integrated correlators:

$$\lim_{\lambda\to\infty}\frac{\mathcal{I}_p}{\mathcal{G}_p}=\frac{p-1}{2}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It should be possible to exploit this constraint on the dual holographic correlators

Conclusions

remarks, perspectives

- The full Lie algebra method is rather efficient for dealing with integrated correlators in N = 2 matrix models such as the E theory one
- At large N it allows to resum the perturbative expansion into integrals of Bessel functions and access in this way the strong coupling regime
 - Similar integrals (with different kernels) often appear: cusp anomaly and octagon form factor in N = 4, chiral correlators in N = 2, integrated correlators ...
 - What could be the deep origin of this structure?
- The method is also very efficient at finite N to generate perturbative corrections. However (not yet) to resum them. Maybe try to somehow implement topological recursion in this framework?

Conclusions

remarks, perspectives

- To explore: the theory D, with 4 fundamental and 2 antisymmetric hypers
 - The holographic dual Ennes et al, 2000 has a sector with D7 branes on AdS₅ × S₃, similarly to the theory considered by Behan et al, 2023. Certain integrated correlators of moment map operators should relate to open string scatterings work at initial stage with Torino-Humbold group.

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

To explore: 2-pt integrated correlators with a Wilson loop in N = 2 theories

THE END

Thank you very much for your attention!