

Doubled Hilbert space in double scaled SYK

Kazumi Okuyama (Shinshu University)

based on KO [JHEP 04 (2024) 091] and [arXiv:2404.02833] (see also KO [arXiv:2212.09213, 2305.12674, 2306.15981])

Bootstrap, Localization and Holography (May 21, 2024)

Holographic principle

 \triangleright Quantum many body system without gravity is expected to be holographically dual to quantum gravity

Holographic duality

d-dim quantum system \Leftrightarrow $(d+1)$ -dim quantum gravity

In particular, duality between a critical point of quantum many body system (CFT) and quantum gravity on AdS (AdS/CFT correspondence) has been widely studied [Maldacena 1997]

SYK model

- \triangleright Sachdev-Ye-Kitaev (SYK) model is an interesting toy model of holographic duality [Sachdev-Ye 1993, Kitaev 2015]
- ▶ SYK model is a quantum system of *N* Majorana fermions

$$
H = i^{p/2} \sum_{1 \leq i_1 < \cdots < i_p \leq N} J_{i_1 \cdots i_p} \psi_{i_1} \cdots \psi_{i_p}
$$

▶ Coupling constant *J* of *p*-body interaction is randomly distributed with Gaussian weight

- \triangleright 2-point function of fermions is exactly solvable in the large *N* limit
- \triangleright Approximate conformal symmetry emerges at low energy [Sachdev-Ye 1993]
- \triangleright This conformal symmetry is spontaneously broken
- \triangleright Nambu-Goldstone mode for this SSB is called Schwarzian mode, which governs the low energy behavior

 \triangleright Jackiw-Teitelboim (JT) gravity is a 2d dilaton gravity

$$
S=-\frac{1}{2}\int_M \sqrt{g}\phi(R+2)-\int_{\partial M} \sqrt{h}\phi(K-1)
$$

Dynamical DOF of JT gravity is Schwarzian mode describing the fluctuation of AdS₂ boundary

Holographic duality

SYK model at low energy \Leftrightarrow JT gravity on AdS₂

Double scaled SYK (DSSYK)

\triangleright Certain scaling limit of SYK model is exactly solvable without low energy approximation

[Berkooz-Isachenkov-Narovlansky-Torrents 2018]

I Take a large *N* limit with *p*-body interaction *p* ∼ √ *N*

$$
N, p \to \infty, \quad \lambda = \frac{2p^2}{N} = \text{fixed}
$$

 \triangleright This is called double scaled SYK model (DSSYK)

Chord diagram

I Average $\langle \cdots \rangle$ *j* over random coupling $J_{i_1\cdots i_p}$ boils down to the computation of chord diagrams

$$
\langle \text{tr } H^{2k} \rangle_j = \sum_{\text{chord diagrams}} q^{\#(\text{intersections})}, \quad q = e^{-\lambda}
$$

▶ Average over *J* is computed by Wick contraction \Rightarrow $HH = chord$

$$
\langle tr H^8 \rangle_j \supset \bigotimes = q^2
$$

 \triangleright Combinatorics of chord diagrams is solved by introducing the transfer matrix *T*

Figure 1 Transfer matrix *T* acts on a chord number state $|n\rangle$

 \triangleright *T* is given by the *q*-deformed oscillator A_+

$$
T = \frac{A_+ + A_-}{\sqrt{1-q}}
$$

 \blacktriangleright A_+ creates/annihilates the chords

$$
A_{-}|n\rangle = \sqrt{1-q^n}|n-1\rangle
$$

$$
A_{+}|n\rangle = \sqrt{1-q^{n+1}}|n+1\rangle
$$

\triangleright Partition function of DSSYK is written in terms of the transfer matrix *T*

$$
\left\langle \text{tr } e^{-\beta H} \right\rangle_J = \left\langle 0 | e^{-\beta T} | 0 \right\rangle
$$

 \triangleright 0-chord state $|0\rangle$ is interpreted as Hartle-Hawking vacuum of bulk quantum gravity [Lin 2022]

Matter operator

 \triangleright We can introduce matter operators in DSSYK

[Berkooz-Isachenkov-Narovlansky-Torrents 2018]

$$
O_{\Delta} = i^{s/2} \sum_{1 \leq i_1 < \dots < i_s \leq N} K_{i_1 \dots i_s} \psi_{i_1} \dots \psi_{i_s}
$$

▶ *K* is assumed to be Gaussian random and independent of *J*

I We also take a scaling limit *s* ∼ √ *N*

$$
\Delta = \frac{2ps}{N} = \text{fixed}
$$

▶ Two types of chord arise from Wick contraction of *J* and *K*

$$
\overrightarrow{HH} = H\text{-chord}
$$
\n
$$
\overrightarrow{O_{\Delta}O_{\Delta}} = \text{matter chord}
$$

► Correlator of \mathcal{O}_Δ also reduces to the computation of chord diagrams

$$
\langle \mathcal{O}_\Delta \mathcal{O}_\Delta \rangle = \sum_{\text{chord}} q^{\#(H\text{-}H\text{ intersections})} e^{-\Delta\#(H\text{-}\mathcal{O}\text{ intersections})}
$$

Matter 2-point function

- \triangleright Combinatorics of matter correlator is also solved by the technique of transfer matrix
- \triangleright 2-point function of \mathcal{O}_{Λ}

$$
\left\langle \text{tr}(e^{-\beta_1 H} \mathcal{O}_{\Delta} e^{-\beta_2 H} \mathcal{O}_{\Delta}) \right\rangle_{J,K} = \langle 0 | e^{-\beta_1 T} e^{-\Delta \widehat{N}} e^{-\beta_2 T} | 0 \rangle
$$

 \triangleright \widehat{N} is the number operator of chords

$$
\widehat{N}|n\rangle = n|n\rangle
$$

Hartle-Hawking wavefunction

 \triangleright 2-point function is expanded as

$$
\langle 0|e^{-\beta_1T}e^{-\Delta\widehat{N}}e^{-\beta_2T}|0\rangle=\sum_{n=0}^{\infty}\langle 0|e^{-\beta_1T}|n\rangle e^{-\Delta n}\langle n|e^{-\beta_2T}|0\rangle
$$

 \triangleright $\langle n|e^{-\beta T}|0\rangle$ is interpreted as the Hartle-Hawking wavefunction [KO 2022]

$$
\langle n|e^{-\beta T}|0\rangle = \frac{n}{\beta}
$$

2-point function

▶ 2-point function $\langle 0|e^{-\beta_1T}e^{-\Delta\hat{N}}e^{-\beta_2T}|0\rangle$ is obtained by gluing HH wavefunctions $\langle n|e^{-\beta_i \mathcal{T}}|0\rangle$

▶ *n* is interpreted as a discretized bulk geodesic length

Transfer matrix *T* is diagonalized in the $|\theta\rangle$ -basis

$$
T|\theta\rangle = E_0 \cos \theta |\theta\rangle, \qquad E_0 = \frac{2}{\sqrt{1-q}}
$$

 $\rightarrow \theta$ **-representation of chord number state** $|n\rangle$ **is** *q*-Hermite polynomial *Hn*(*x*|*q*)

$$
\langle \theta | n \rangle = \frac{H_n(\cos \theta | q)}{\sqrt{(q; q)_n}}
$$

Big *q***-Hermite polynomial and EOW brane**

- \triangleright Big *q*-Hermite polynomial $H_n(x, a|q)$ is a 1-parameter generalization of *q*-Hermite polynomial *Hn*(*x*|*q*)
- \blacktriangleright $H_n(x, a|q)$ is a wavefunction of bulk quantum gravity in the presence of end of the world (EOW) brane $[KO 2023]$

 \triangleright Amplitude of half-wormhole ending on the EOW brane

▶ Sum over *n* represents a trace

 \Rightarrow top and bottom of the LHS are identified

Trumpet

 \blacktriangleright Half-wormhole can be decomposed into trumpet and the factor coming from EOW brane

\blacktriangleright Half-wormhole in JT gravity has a similar decomposition [Gao-Jafferis-Kolchmeyer 2021]

Trumpet of DSSYK

 \triangleright Trumpet of DSSYK is given by the modified Bessel

function [Jafferis-Kolchmeyer-Mukhametzhanov-Sonner 2022, KO 2023]

 \triangleright Trumpet also arises in JT gravity, but there is a difference

- ▶ In DSSYK, length of geodesic loop *b* is discrete
- In JT gravity, length *b* is continuous [Saad-Shenker-Stanford 2019]

Cylinder amplitude

 \triangleright Cylinder amplitude is obtained by gluing two trumpets

▶ Sum over *b* can be performed in a closed form [KO 2023]

$$
above = \frac{\beta_1\beta_2E_0}{2(\beta_1+\beta_2)}\Big[I_0(\beta_1E_0)I_1(\beta_2E_0)+I_1(\beta_1E_0)I_0(\beta_2E_0)\Big]
$$

More general topology

 \triangleright Amplitude with more general topology is constructed by gluing trumpets and discrete volume of the moduli space of Riemann surfaces [KO 2023]

 \triangleright This is a discrete version of the construction of amplitude in JT gravity [Saad-Shenker-Stanford 2019]

Doubled Hilbert space

- \triangleright Matter correlator of DSSYK has a simple expression in terms of the doubled Hilbert space $H \otimes H$
- \triangleright H is the Fock space of *q*-oscillators, spanned by the chord number state |*n*i
- \triangleright H ⊗ H is spanned by $|n,m\rangle = |n\rangle \otimes |m\rangle$

$$
\mathcal{H}\otimes\mathcal{H}=\bigoplus_{n,m=0}^{\infty}\mathbb{C}|n,m\rangle
$$

 \triangleright Matter correlator takes the form $\langle 0|X|0\rangle$ with some operator $X \in End(\mathcal{H})$

 \triangleright *X* ∈ End(H) can be mapped to the state $|X\rangle \in \mathcal{H} \otimes \mathcal{H}$

$$
X \quad \mapsto \quad |X\rangle = \sum_{n,m=0}^{\infty} |n,m\rangle\langle n|X|m\rangle
$$

If Then the matter correlator $\langle 0|X|0\rangle$ is written as $\langle 0, 0|X\rangle$

▶ The operator $q^{\Delta \hat{N}}$ corresponds to an entangled state $|q^{\Delta \hat{N}}\rangle$

$$
|q^{\Delta \widehat{N}}\rangle = \sum_{n=0}^{\infty} q^{\Delta n} |n, n\rangle = \mathcal{E}_{\Delta} |0, 0\rangle
$$

$$
\mathcal{E}_{\Delta} = \frac{1}{(q^{\Delta}A_{+} \otimes A_{+}; q)_{\infty}}
$$

- \triangleright Matter 4-point function G_4 is written in terms of the $6j$ -symbol of $\mathcal{U}_q(\mathfrak{sl}_2)$ [Berkooz-Isachenkov-Narovlansky-Torrents 2018]
- In the doubled Hilbert space formalism, G_4 is written as

$$
G_4=\langle 0,0|{\cal U}_{41} {\cal E}_{\Delta_1}(q^{\Delta_2\widehat{N}}\otimes q^{\Delta_2\widehat{N}})({\cal E}_{\Delta_1})^{-1}{\cal U}_{32}|q^{\Delta_1\widehat{N}}\rangle
$$

▶ Here $\mathcal{U}_{ij} = e^{-\beta_i T} \otimes e^{-\beta_j T}$ denotes the Euclidean time evolution

$$
G_4=\langle 0,0|{\mathcal U}_{41}{\mathcal E}_{\Delta_1}(q^{\Delta_2\widehat{N}}\otimes q^{\Delta_2\widehat{N}})({\mathcal E}_{\Delta_1})^{-1}{\mathcal U}_{32}|q^{\Delta_1\widehat{N}}\rangle
$$

 \triangleright G_4 is schematically depicted as

▶ The intersection-counting operator $q^{\Delta_2\widehat{N}}$ ⊗ $q^{\Delta_2\widehat{N}}$ is conjugated by the entangler \mathcal{E}_{Δ_1} and disentangler $(\mathcal{E}_{\Delta_1})^{-1}$

Relation to Lin-Stanford

 \triangleright Lin and Stanford introduced a 1-particle state [Lin-Stanford 2023]

Their state $|n, m\rangle$ ^{LS} corresponds to a bivariate q-Hermite polynomial [Xu 2024]

Their $|n, m\rangle$ ^{LS} and our $|n, m\rangle$ are related by [KO 2024]

$$
|n,m\rangle^{LS}=(q^{\Delta}A_{-}\otimes A_{-};q)_{\infty}|n,m\rangle
$$

- \triangleright DSSYK is a solvable example of holography
- \triangleright Combinatorics of chord diagrams is solved by the technique of transfer matrix
- \triangleright Bulk geodesic length is discreteized in DSSYK
- \triangleright One can define EOW brane, trumpet, and volume of moduli space in a similar manner as JT gravity
- \triangleright In the doubled Hilbert space formalism, the entangler and disentangler should be inserted into the 4-point function

Future problem

- \triangleright Curiously, transfer matrix of DSSYK is exactly same as that of ASEP (asymmetric simple exclusion process)
- \triangleright ASEP is a lattice gas model, studied as a toy model of out-of-equilibrium system
- \triangleright ASEP can be mapped to a matrix product state of open XXZ spin chain
- \triangleright What is the role of spin chain in DSSYK? Relation to tensor network?