(High Energy) scattering of strings in AdS

Maria Nocchi

University of Oxford

Based on work with L. F. Alday and T. Hansen

[2312.02261]

iTHEMS-YITP Workshop: Bootstrap, Localization and Holography 20 May 2024

Outline

- Introduction
- Mathematical structure of scattering amplitudes
- The (AdS) Virasoro-Shapiro amplitude
- The High Energy limit of string scattering in AdS
- Summary & Conclusions

Introduction

Introduction

- Scattering amplitudes encode the differential probability for a certain process to happen. This predictive power makes them an essential object in Particle Physics, Mathematics, and String Theory.
- String scattering in flat space $A^{(n)}(\Lambda_i, p_i) = \sum_{\text{topologies}} g_s^{-\chi} \frac{1}{\text{Vol}} \int DXDg \ e^{-S_{\text{Poly}}} \prod_{i=1}^n V_{\Lambda_i}(p_i)$ \rightarrow perturbative String Theory \rightarrow worldsheet methods
- When considering scattering processes, we sum over all possible configurations of WSs.
- Sum over Riemann surfaces of increasing genus with insertions of vertex operators for the initial/final states (different topologies).
- In some regimes, the sum is dominated by a **saddle point**.

Parameters:

 g_s (string coupling constant) α' (size of the string)

Introduction

- What about curved spacetimes?
	- \rightarrow difficulties with standard formulations
	- \rightarrow perturbative genus expansion but no direct worldsheet approach, even at tree-level
- AdS/CFT: tool to compute string scattering amplitudes on AdS from CFT correlators of the dual boundary theory.
- Strategy: combine worldsheet intuition with other powerful tools.

This program: how to compute string amplitudes on AdS

- \rightarrow Analyze and include curvature corrections systematically and efficiently.
- \rightarrow Exploit and emphasize the interplay between String Theory and **Number Theory.**

Main object of study of this program

- Scattering of four graviton states at tree level.
- Flat space : Virasoro Shapiro amplitude Prefactor: polarisation vectors $A_4(\varepsilon_i,p_i)=\widehat{K(\varepsilon_i,p_i)}\sqrt{d^2z|z|^{-2S-2}|1-z|^{-2T-2}}$ The integrand is a **single-valued** function of z.
- $AdS_5\times S^5$: correlator of 4 stress-tensor multiplets, to leading non-trivial order in a $1\!/c$ expansion.
- Right language: Mellin space.
- Then, Borel transform: AdS analog of the Virasoro Shapiro amplitude.

Key Takeaway

In flat space, we can use the worldsheet theory to compute string amplitudes. For curved backgrounds, we need additional tools.

Relate the AdS Virasoro Shapiro amplitude to a **worldsheet action**.

High Energy limit: further step in this program.

Goal of this project [2312.02261]

Mathematical structure of scattering amplitudes

Let's start from a general problem:

Reveal and understand the hidden mathematical structure of scattering amplitudes in Field Theory/String Theory.

Scattering amplitudes in QFT

Perturbation theory:

- sum over Feynman diagrams
- loop integrals
- complicated functions with branch cuts (intermediate virtual particles going on-shell)

Strategy: study loop integrals from a purely mathematical and algebraic point of view.

Special numbers and functions in loop computations

$$
B(p^2) = e^{\gamma_E \epsilon} \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{k^2 (k+p)^2},
$$

$$
T(p_1^2, p_2^2, p_3^2) = e^{\gamma_E \epsilon} \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{k^2 (k+p_1)^2 (k+p_1+p_2)^2}
$$

Rational functions are insufficient to write down the answer!

Notice the appearance of zeta values (Riemann ζ function at integer values):

$$
\zeta_n = \sum_{k=1}^{\infty} \frac{1}{k^n}, \ n > 1
$$

$$
B(p^2) = \frac{1}{\epsilon} + 2 - \log(-p^2)
$$

+ $\epsilon \left[\frac{1}{2} \log^2(-p^2) - 2 \log(-p^2) - \frac{1}{2} \zeta_2 + 4 \right] + \mathcal{O}(\epsilon^2)$
 $T(p_1^2, p_2^2, p_3^2) = \frac{2}{\sqrt{\lambda}} \left[\text{Li}_2(z) - \text{Li}_2(\bar{z}) - \log(z\bar{z}) \log \frac{1-z}{1-\bar{z}} \right] + \mathcal{O}(\epsilon).$

 $\mathbf{1}$

 ϵ^{2} and the (powers) of logarithms as well as their generalisations (polylogs):

$$
\log z = \int_1^z \frac{dt}{t}
$$

Special numbers and functions in loop computations

Can arbitrarily complicated functions appear in the Feynman integrals computation?

Feynman integrals evaluate to a restricted set of numbers and functions called periods, such as zeta values and polylogs!

Let's focus on a specific class of special functions, the (single-valued) polylogs.

- SVMPLS are of great interest in pure mathematics.
- They appear in loop computations: Feynman integrals with massless propagators and 3 off-shell external legs, conformal 4 pt functions in 4d.
- They describe multi-Regge limit of scattering amplitudes in planar N=4 SYM, and much more.

Polylogarithms

Classical polylogs: $Li_m(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^m}$ $\frac{Z^m}{k^m}$. Converges on the unit disk $|z| < 1$.

Can be continued to the cut plane $C \setminus [1, \infty)$ by an iterated integral representation:

$$
Li_m(z) = \int_0^z dz' \frac{Li_{m-1}(z')}{z'} \quad Li_m(1) = \zeta_m, m > 1
$$

Can define more general classes of polylogs by changing the kernel \Rightarrow harmonic polylogs

- $\partial_z H_{x_0w}(z) = \frac{H_w(z)}{z}$ Z
- $\partial_z H_{x_1w}(z) = \frac{H_w(z)}{1-z}$ $1-z$
- $H_e(z) = 1$
- $H_{\chi_0^n}(z) =$ $logⁿ z$ $n!$
- \blacksquare \lim $\lim_{z\to 0} H_{w\neq x_0^n}(z)=0$

 $w =$ word $\{x_0, x_1\}$ = alphabet WEIGHT $|w|$ = lenght of the word

HPLs: analytic functions of a single complex variable, with branch points (multi-valued functions on the complex plane).

$$
\left|\log|z|^2 = \log z + \log \bar{z}\right|
$$

Single-valued polylogs

We can build weight-preserving linear combinations of $H_{w_{1}}(z)$ and $H_{w_{2}}(\bar{z})$ such that all the discontinuities cancel and they are single-valued in the (z, \bar{z}) plane.

Polylogs are examples of periods. SVPLs are their images under the *sv* projection [F.Brown].

$$
\blacksquare \frac{\partial}{\partial z} \mathcal{L}_{0w}(z) = \frac{1}{z} \mathcal{L}_w(z)
$$

$$
\blacksquare \frac{\partial}{\partial z} \mathcal{L}_{1w}(z) = \frac{1}{z - 1} \mathcal{L}_w(z)
$$

- $\mathcal{L}_0 n(z) =$ $log^n(z\bar{z})$ $p!$
- \blacksquare \lim $\lim_{z\to 0}$ $\mathcal{L}_{w\neq x_0^n}(z) = 0$

At any given weight, there is a finite-dimensional vector space of available functions.

[Brown]: there exists a unique family of solutions that's singlevalued in the complex plane.

Single-valued multiple zetas

• The traditional polylog of a single variable can be generalized to the multiple version:

$$
\mathrm{Li}_{n_1,\ldots,n_r}(z_1,\ldots,z_r) := \sum_{0 < k_1 < \cdots < k_r} \frac{z_1^{k_1} \cdots z_r^{k_r}}{k_1^{n_1} \cdots k_r^{n_r}}
$$

• Multiple zeta values: real numbers defined by the absolutely convergent nested series

$$
\zeta(n_1,\ldots,n_r)=\sum_{0
$$

• Single-valued multiple zeta values = single-valued projection of MZVs = SVMPLs at unity.

Scattering amplitudes in String Theory

• Scattering amplitudes in open/closed string theory: correlation functions of vertex operators inserted at/in the boundary/bulk of a Riemann surface (worldsheet).

$$
A_4(\varepsilon_i, p_i) = K(\varepsilon_i, p_i) \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2}
$$

- The nature of the underlying worldsheet describing the string interaction is fundamental!
- We want to motivate why the dependence on α' (inverse string tension) encodes a rich analytic structure of the amplitude.

Single-valuedness & String Theory

• Building blocks of closed string theory amplitudes at genus 0 (tree-level):

$$
M_{N+3}(\mathbf{s}, \mathbf{n}, \tilde{\mathbf{n}}) = \left(\frac{i}{2\pi}\right)^N \int_{\mathbb{C}^N} \prod_{0 < i < j < N+1} |z_i - z_j|^{2s_{ij}} \left(z_i - z_j\right)^{n_{ij}} \left(\bar{z}_i - \bar{z}_j\right)^{\tilde{n}_{ij}} \prod_{i=1}^N dz_i d\bar{z}_i
$$

• Functions of the complex variables s_{ij} .

s : collection of Mandelstam kinematic invariants: $s_{ij} = \boldsymbol{\alpha}' p_i \cdot p_j$ $z_0 = 0$, $z_{N+1} = 1$, $N \in \mathbb{N}$, $n_{ij}, \tilde{n}_{ij} \in \mathbb{Z}$

 $N = 1$, $n_{12} = \tilde{n}_{12} = -1$: Virasoro-Shapiro amplitude

• [Vanhove, Zerbini] The global (any *s*) and local properties are related to the theory of SV periods.

Single-valuedness & String Theory

• The Low Energy expansion $(a' \rightarrow 0)$ of closed string amplitudes contains only SVMZVs.

Let's see this for Virasoro-Shapiro.

- Theory of integration of SVMPLs to compute algorithmically the coefficients of the asymptotic expansion.
- Moreover, the Low Energy expansion can be obtained from the open string amplitude by replacing MZVs by their SV image.
- Tree-level open and closed strings are related by the KLT relations.
- Relation between gauge and gravity amplitudes.

Picture from Braune, Broedel.

Here: Virasoro-Shapiro amplitude

$$
A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}
$$

• Crossing symmetry in the 3 Mandelstam variables $S + T + U = 0$

• Fix T and vary S .

Poles at mass of the tachyon + higher states of the closed string

⇒ STRING AMPLITUDE AS AN INFINITE NUMBER OF (s-channel) TREE-LEVEL QFT DIAGs

• Regge behaviour (large $|S|$)

• Low/High Energy
$$
S = -\frac{\alpha'}{4}(p_1 + p_2)^2
$$
, $T = -\frac{\alpha'}{4}(p_1 + p_3)^2$, $U = -\frac{\alpha'}{4}(p_1 + p_4)^2$

Virasoro-Shapiro amplitude and singlevalued periods

Low Energy expansion of VS $A^{(0)}(S,T) = \xrightarrow{\begin{pmatrix} 1 \\ STU \end{pmatrix}} 2 \sum_{a,b=0}^{\infty} \xrightarrow{\sigma_a^a \sigma_3^b \alpha_{a,b}^{(0)}} \qquad \sigma_2 = \frac{1}{2} (S^2 + T^2 + U^2) \ , \sigma_3 = STU$

SUGRA + TOWER OF STRINGY CORRECTIONS

• Only odd ζ values appear! The Wilson coefficients live in the ring of SVMZVs*.*

$$
A^{(0)}(S,T) = \frac{\exp\left(\sum_{n=1}^{\infty} \frac{\zeta^{sv}(2n+1)(S^{2n+1}+T^{2n+1}+U^{2n+1})}{2n+1}\right)}{STU}
$$

• This reflects the single-valued nature of the integral representation.

$$
A^{(0)}(S,T) = \frac{1}{U^2} \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2}
$$

Key Takeaways

• The infinite number of vibration modes in string spectra introduces transcendental numbers already at tree-level!

• The Low Energy expansion of closed string amplitudes contains only SVMZVs.

Let's use what we learnt to compute strings amplitudes on curved backgrounds, where we lack a worldsheet technology.

The Add Virasoro-Shapiro amplitude 3

The Ads Virasoro-Shapiro amplitude

The Ads Virasoro-Shapiro amplitude

We reviewed the Low Energy expansion of the flat space VS.

What about the higher corrections $A^{(k)}(S,T)$?

- Each of them admits a Low Energy expansion: assume the unknown coefficients to be single-valued zetas as in flat space!
- Intuition from the worldsheet: $A^{(k)}(S,T)$ from WS integrals similar to the one in flat space. $\int d^2z |z|^{-2S-2} |1-z|^{-2T-2} G(z,\bar z)$
- Structure of poles (from the expansion of the AdS propagator around flat-space and dispersive sum-rules). [Alday, Hansen, Silva]

The Ads Virasoro-Shapiro amplitude

What is the relevant space of functions? Linear combination of single-valued functions such that the Low Energy expansion contains only SVMZVs.

The k-th order answer takes the form of a genus 0 WS integral involving weight 3k SVMPLs. [Alday, Hansen]

$$
A(S,T) = \int d^2 z |z|^{-2S} |1-z|^{-2T} W_0(z,\bar{z}) \left(1 + \frac{S^2}{R^2} W_3(z,\bar{z}) + \frac{S^4}{R^4} W_6(z,\bar{z}) + \dots\right)
$$

$$
W_0(z,\bar{z}) = \frac{1}{2\pi U^2 |z|^2 |1-z|^2}
$$

 $\alpha' = 1$

NOTE: This is NOT the result of a direct worldsheet computation!

Tools:

-crossing symmetry

-SUGRA limit

-structure of poles (dispersive sum rules) -CFT data (from integrability)

Key Takeaways

• Single valuedness plays a fundamental role in the construction of AdS scattering amplitudes, as in flat space!

• Can extract the CFT-data and compare with integrability results for planar $N = 4$ SYM at strong coupling!

Next step towards the worldsheet theory: investigate the High Energy regime!

The High Energy limit of string scattering in AdS

4

Motivations

- Difficult to investigate String Theory in general. We can explore its mathematical structure ⇒ formulate questions and carry out computations that probe String Theory in different regimes.
- QFT: the short-distance behavior of the theory plays a crucial role (OPE, RG flow…) What about String Theory?
- Here: after the Low Energy analysis ($\alpha' \rightarrow 0$, field theory limit) of the AdS VS amplitude, the next step towards the WS theory is the High Energy limit $(\alpha' \rightarrow \infty)$.

How to make connections to more direct WS computations?

High Energy = regime in which such a connection can be made, at least classically!

Flat space result [Gross & Mende]

- HE limit: $|S|$, $|T| \gg 1$ and S/T fixed
- Use Stirling's formula to access this regime:

 $A^{(0)}(S,T)_{HE} \sim e^{-2S \log |S| - 2T \log |T| - 2U \log |U|}$

 \rightarrow soft exponential behavior!

Analogous to the universality of singularities of the OPE in field theory.

 $A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$

- The exponential behavior is universal: independent of the particular String Theory and the quantum numbers of the scattered particles.
- We can understand this also from the WS integral representation:

$$
A(S,T) \sim \int d^2z |z|^{-2S} |1-z|^{-2T} W_0(z,\bar z)
$$

HE limit: saddle point approximation $z = \overline{z} = \frac{S}{S + T} = z_0$

What do we expect for AdS?

Given the "WS representation" for AdS, given that the transcendental functions $W_n(z, \bar{z})$ are polynomials in S, T, the location of the saddle is not modified in a $1/R$ expansion!

The AdS VS in the HE limit can be computed by evaluating the WS integral representation on the saddle point:

$$
A_4^{AdS}(S,T)_{\text{HE}} \sim e^{-2S \log |S| - 2T \log |T| - 2U \log |U|} W_0(z_0) \left(1 + \frac{S^2}{R^2} W_3(z_0) + \frac{S^4}{R^4} W_6(z_0) + \cdots \right)
$$

where we keep **the ieaang large energy contribution** at each order.

We are looking at a regime with large R, S and S^2/R^2 finite.

Flat space result [Gross & Mende]

Alternatively, we can understand HE from the point of view of spacetime.

$$
A^{(0)}(S,T) \sim \int Dg \, DX \exp\left[-\frac{1}{4\pi} \int d\zeta_1 d\zeta_2 \sqrt{g} g^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X_\mu\right] \prod_i V_i(p_i)
$$

WS coordinates: $z_k \in \mathbb{R}$

$$
V_i(p_i) \sim \int d^2 z_i \sqrt{g} e^{ip_i \cdot X(z_i)}
$$

$$
p_i^2 = 0 \ , \ p_1 \cdot p_2 = -2S \ , \ p_1 \cdot p_3 = -2T \ , \ p_1 \cdot p_4 = -2U
$$

At HE, the path integral is dominated by a classical solution:

$$
X^{\mu}(\zeta) = -i \sum_{k} p_k^{\mu} \log \left| 1 - \frac{\zeta}{z_k} \right|
$$

Punctures:

Plug the classical solution into the PI: correct HE result!

Key Takeaways

High Energy limit:

- WS representation \rightarrow saddle point
- spacetime (path integral) \rightarrow classical solutions

Let's carry this classical analysis for AdS!

Classic scattering problem in

Embedding coordinates labeled by $M = (0; \mu) = (0, 1, \dots, d)$ Constraint: $X^M X_M = -R^2$

Vertex operators: $V_i(P_i) \sim \int d^2 z_i \sqrt{g} e^{i P_i^M X_M(z_i)}$

$$
\mathcal{L} = \frac{1}{2\pi} \partial X^M \bar{\partial} X_M + \Lambda (X^M X_M + R^2) - i \sum_k P_k^M X_M \delta^{(2)}(\zeta - z_k)
$$

Expectation: the HE behavior of the amplitude is captured by classical solutions, now in AdS!

- Virasoro constraints: $\partial X^N \partial X_N = \bar{\partial} X^N \bar{\partial} X_N = 0$
- Equations of motion away from the punctures: $\partial \bar{\partial} X^M = \frac{\partial X^N \partial X_N}{\partial x^2} X^M$
- Boundary conditions: $X^M = -i P_k^M \log \left| 1 \frac{\zeta}{z_k} \right| + Q_k^M + \dots$

Classic scattering problem in

The scattering problem in flat space arises as a limit of the AdS problem.

We solve for X^0 using the constraint and take $R \to \infty$. The X^μ coordinates are constant in this limit and identified with the flat space coordinates.

$$
X^{0} = R + \frac{1}{R} X_{1}^{0} + \cdots, \qquad P_{k}^{0} = \frac{1}{R} p_{k,1}^{0} + \cdots, X^{\mu} = \overbrace{(X_{0}^{\mu})}^{1} + \frac{1}{R^{2}} X_{1}^{\mu} + \cdots, \qquad P_{k}^{\mu} = \overbrace{(p_{k,0}^{\mu})}^{1} + \frac{1}{R^{2}} p_{k,1}^{\mu} + \cdots
$$

Classic scattering problem in AdS_d

Flat space solution: single-valued as we move around each puncture on the worldsheet

$$
X_0^{\mu} = -\frac{i}{2} \sum_k p_{k,0}^{\mu} \mathcal{L}_{z_k}(\zeta)
$$

Higher orders?

-solve EOMs and Virasoro constraints in a *1/R* expansion

-write the solution in terms of SVMPLs whose letters are the locations of the punctures

$$
\overline{\partial \bar{\partial} X^M = \frac{\partial X^N \bar{\partial} X_N}{R^2} X^M}
$$

Integrate $\partial \overline{\partial} X$ at each order with the rules:

$$
\int d\zeta \frac{\mathcal{L}_w(\zeta)}{\zeta - z_i} \to \mathcal{L}_{z_i w}(\zeta)
$$
\n
$$
\int d\overline{\zeta} \frac{\mathcal{L}_w(\zeta)}{\overline{\zeta} - z_i} \to \mathcal{L}_{w z_i}(\zeta) + \dots
$$
\nSum of terms of uniform weight $|w| + 1$

Solution for the first correction

$$
\partial \overline{\partial} X_1^{\mu} = \partial X_0 \cdot \overline{\partial} X_0 X_0^{\mu} = \frac{i}{8} \sum_{i,j,k} \frac{p_{i,0} \cdot p_{j,0}}{(\zeta - z_i)(\overline{\zeta} - z_j)} p_{k,0}^{\mu} \mathcal{L}_{z_k}(\zeta)
$$

$$
\int d\overline{\zeta} \frac{\mathcal{L}_{z_k}(\zeta)}{(\overline{\zeta}-z_j)} \to \mathcal{L}_{z_k z_j}(\zeta) + \mathcal{L}_{z_k}(z_j) \mathcal{L}_{z_j}(\zeta) - \mathcal{L}_{z_j}(z_k) \mathcal{L}_{z_k}(\zeta)
$$

$$
X_1^{\mu} = \frac{i}{8} \sum_{i,j,k=1}^4 p_{i,0} \cdot p_{j,0} p_{k,0}^{\mu} (\mathcal{L}_{z_iz_kz_j}(\zeta) + \mathcal{L}_{z_k}(z_j) \mathcal{L}_{z_iz_j}(\zeta) - \mathcal{L}_{z_j}(z_k) \mathcal{L}_{z_iz_k}(\zeta))
$$

Classic scattering problem in

$$
X^{\mu} = \mathcal{L}_1(\zeta) + \frac{1}{R^2} \mathcal{L}_3(\zeta) + \frac{1}{R^4} \mathcal{L}_5(\zeta) + \dots
$$

FINAL SOLUTION

$$
X^0 = \sqrt{R^2 + X_\mu X^\mu} \Longrightarrow X^0 = R\mathcal{L}_0(\zeta) + \frac{1}{R}\mathcal{L}_2(\zeta) + \frac{1}{R^3}\mathcal{L}_4(\zeta) + \dots
$$

 $\mathcal{L}_n(\zeta)$ are linear combinations of pure SVMPLs of weight n, with either ζ or z_i as their arguments and letters in the alphabet $\{z_1, z_2, z_3, z_4\}$.

Once the seed solution X_0^{μ} is given, the whole tower in $1/R$ is fixed by the EOMs and integration.

$$
X_0^{\mu} \to X^{\mu} = X_0^{\mu} + \frac{1}{R^2} X_1^{\mu} + \dots
$$

 X_n^{μ} has weight $2n + 1$.

Evaluate the action

Plugging our classical solution into the action: $A_{4,\rm bos}^{AdS}(S,T)_{\rm HE}\sim A_4^{\rm flat}(S,T)_{\rm HE}\times e^{\frac{S^2}{R^2}V_3(z_0)+\frac{S^3}{R^4}V_5(z_0)+\cdots}$

 $V_i(z_0)$ = combinations of transcendental functions of weight i

Our result correctly reproduces the HE limit (after an appropriate redefinition of the Mandelstam variables):

$$
A_4^{AdS}(S,T)_{\text{HE}} \sim e^{-2S \log |S| - 2T \log |T| - 2U \log |U|} W_0(z_0) \left(1 + \frac{S^2}{R^2} W_3(z_0) + \frac{S^4}{R^4} W_6(z_0) + \cdots \right)
$$

 $W_3(z_0) = V_3(z_0)$ $W_6(z_0) = \frac{1}{2}V_3(z_0)^2$

HIGHLY NON-TRIVIAL!!! Test of exponentiation at quadratic order!

Main result

$$
\boxed{A_4^{AdS}(S,T)_{HE}\sim A_4^{flat}(S,T)_{HE}\times e^{\frac{S^2}{R^2}W_3(z_0)}}
$$

- Curvature corrections in the HE limit exponentiate!
- The full High Energy limit of AdS VS to all orders in S^2/R^2 is determined by the subleading exponent.
- High Energy limit: regime where the amplitude can be computed to all orders in the curvature expansion.
- This result can be explicitly checked to order $1/R⁴$ by comparison with AdS VS.

Non-universality

- Momenta in a 1/R expansion from the flat space momenta: $P_k^{\mu} = p_{k,0}^{\mu} + \frac{1}{R^2} p_{k,1}^{\mu} + \cdots$
- Can consider deformations of our solution consistent with EOM and Virasoro such that the flat space momenta are invariant (next slide).
- Can rescale flat space momenta by a constant:

$$
p_0^{\mu} + \frac{1}{R^2} p_1^{\mu} + \frac{1}{R^4} p_2^{\mu} + \dots \to \lambda p_0^{\mu} + \frac{\lambda^3}{R^2} p_1^{\mu} + \frac{\lambda^5}{R^4} p_2^{\mu} + \dots
$$

• Mandelstam variables: $S \to \sqrt{2}S$ $\left(1 + \frac{\alpha}{R^2} + \dots\right)^2$

• Ratios of Mandelstam variables are invariant.

Non-universality

• Now, let's go back to the evaluation of the action on our classical solution.

 $A_{4,\text{bos}}^{AdS}(S,T)_{\text{HE}} \sim e^{-S} = \widehat{\mathcal{E}^{V_1(z_0)+\frac{S^2}{R^2}V_3(z_0)+\frac{S^3}{R^4}V_5(z_0)+\cdots}}$

- Rescale momenta (keep ratios invariant): $S \rightarrow S(1 + \frac{SF_2(z_0)}{R^2} + \cdots)$
- The first correction enters the leading High Energy behavior. $SV_1(z_0) = -S^{(0)}$, $S^2V_3(z_0) = -S^{(1)} - 2SF_2(z_0)S^{(0)}$
- This comes from quantum corrections (such as contributions from fermionic fields...).
- $F_2(z_0)$ is a subleading non-universal quantity: cannot be determined with our classical bosonic model, but can be fixed by comparing with AdS VS!

$$
F_2(z_0) = \frac{1}{4} \left(-\mathcal{L}_{00} (z_0) + \frac{2}{z_0} \mathcal{L}_{01} (z_0) + \frac{z_0 - 1}{z_0} \mathcal{L}_{11} (z_0) \right)
$$

Our HE result does not depend on the AdS dimension, but $F_2(z_0)$ can change for different theories.

Summary and conclusions

- Explore the mathematical structure of String Theory by probing it in different regimes.
- Compute string amplitudes on AdS from *- AdS/CFT*
	- *- Number Theory*
	- *- Integrability*
	- *- Worldsheet intuition*
- Single valuedness to understand/construct scattering amplitudes in AdS (as in flat space).
- AdS Virasoro-Shapiro amplitude as a «worldsheet» integral.

Summary and conclusions

- Further step towards the worldsheet theory: High Energy limit.
- Curvature corrections exponentiate!
- The leading behavior at High Energy is captured by a bosonic model describing scattering of classical strings on AdS.
- Universality of our result: in our regime, only the first-order curvature corrections around flat space are important!

 \Rightarrow Strong constraints on curvature corrections at higher orders.

Thanks for your attention!

