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Introduction
• Scattering amplitudes encode the differential probability for a certain process to 

happen. This predictive power makes them an essential object in Particle Physics, 
Mathematics, and String Theory.

• String scattering in flat space
→ perturbative String Theory
→ worldsheet methods

• When considering scattering processes, we sum over all possible configurations of WSs.

• Sum over Riemann surfaces of increasing genus with insertions of vertex operators for 
the initial/final states (different topologies).

• In some regimes, the sum is dominated by a saddle point.

. . .

Parameters:
𝑔𝑠 (string coupling constant) 
𝛼′ (size of the string)



Introduction
• What about curved spacetimes?

→ difficulties with standard formulations
→ perturbative genus expansion but no direct worldsheet approach, even at tree-level

• AdS/CFT: tool to compute string scattering amplitudes on AdS from CFT correlators of the 
dual boundary theory.

• Strategy: combine worldsheet intuition with other powerful tools.

This program: how to compute string amplitudes on 𝑨𝒅𝑺

→ Analyze and include curvature corrections systematically and efficiently. 
→ Exploit and emphasize the interplay between String Theory and Number Theory.

. . .



Main object of study of this program
• Scattering of four graviton states at tree level.

• Flat space : Virasoro Shapiro amplitude

• 𝐴𝑑𝑆5 × 𝑆5 : correlator of 4 stress-tensor multiplets, to leading non-trivial order in a 1/c 
expansion.

• Right language: Mellin space.

• Then, Borel transform: AdS analog of the Virasoro Shapiro amplitude.

Prefactor: polarisation vectors

The integrand is a single-valued function of 𝑧.



Key
Takeaway

In flat space, we can use the 
worldsheet theory to compute string 
amplitudes. For curved backgrounds, 
we need additional tools.

. . .



Goal of this project
[2312.02261]

Relate the 𝐴𝑑𝑆 Virasoro
Shapiro amplitude to a 
worldsheet action.

High Energy limit: further 
step in this program.



Mathematical structure 
of scattering amplitudes2



Let’s start from a general problem:

Reveal and understand the hidden mathematical structure of scattering 
amplitudes in Field Theory/String Theory.



Perturbation theory: 

- sum over Feynman diagrams

- loop integrals 

- complicated functions with branch cuts 

(intermediate virtual particles going 

  on-shell)

Scattering amplitudes in QFT

Strategy: study loop integrals from a purely 
mathematical and algebraic point of view.



Special numbers and functions in 
loop computations 

Rational functions are insufficient to 
write down the answer!

Notice the appearance of zeta values 
(Riemann 𝜁 function at integer values): 

and the (powers) of logarithms as well 
as their generalisations (polylogs):



Special numbers and functions in 
loop computations 
Can arbitrarily complicated functions appear in the Feynman integrals computation?

Let’s focus on a specific class of special functions, the (single-valued) polylogs.

• SVMPLS are of great interest in pure mathematics.

• They appear in loop computations: Feynman integrals with massless propagators and 
3 off-shell external legs, conformal 4 pt functions in 4d.

• They describe multi-Regge limit of scattering amplitudes in planar N=4 SYM, and 
much more.

Feynman integrals evaluate to a restricted set of numbers and functions called 
periods, such as zeta values and polylogs!



Polylogarithms
Classical polylogs: 𝐿𝑖𝑚 𝑧 = σ𝑘=1

∞ 𝑧𝑘

𝑘𝑚 . Converges on the unit disk 𝑧 < 1.

Can be continued to the cut plane ℂ \ [1, ∞) by an iterated integral representation: 

𝐿𝑖𝑚 𝑧 = න
0

𝑧

𝑑𝑧′
𝐿𝑖𝑚−1 𝑧′

𝑧′

Can define more general classes of polylogs by changing the kernel ⇒ harmonic polylogs

▪ 𝜕𝑧𝐻𝑥0𝑤 𝑧 =
𝐻𝑤 𝑧

𝑧

▪ 𝜕𝑧𝐻𝑥1𝑤 𝑧 =
𝐻𝑤 𝑧

1−𝑧

▪ 𝐻𝑒 𝑧 = 1

▪ 𝐻𝑥0
𝑛 𝑧 =

𝑙𝑜𝑔𝑛 𝑧

𝑛!

▪ 𝑙𝑖𝑚
𝑧→0

𝐻𝑤≠𝑥0
𝑛 𝑧 = 0

𝑤 = word 
𝑥0, 𝑥1  = alphabet

WEIGHT 𝑤  = lenght of the word

HPLs: analytic functions of a single complex 
variable, with branch points (multi-valued 
functions on the complex plane). 

𝐿𝑖𝑚 1 = 𝜁𝑚 , 𝑚 > 1



Single-valued polylogs
We can build weight-preserving linear combinations of 𝐻𝑤1

(𝑧) and 𝐻𝑤2
( ҧ𝑧) such that all 

the discontinuities cancel and they are single-valued in the (𝑧, ҧ𝑧) plane. 

Polylogs are examples of periods. SVPLs are their images under the sv projection [F.Brown].

▪
𝜕

𝜕𝑧
ℒ0𝑤 𝑧 =

1

𝑧
 ℒ𝑤 𝑧

▪
𝜕

𝜕𝑧
ℒ1𝑤 𝑧 =

1

𝑧−1
 ℒ𝑤 𝑧

▪ ℒ0𝑛 𝑧 =
𝑙𝑜𝑔𝑛 𝑧 ҧ𝑧

𝑝! 

▪ 𝑙𝑖𝑚
𝑧→0

 ℒ𝑤≠𝑥0
𝑛 𝑧 = 0 

At any given weight, there is a finite-dimensional vector space of available functions.

[Brown]: there exists a unique 
family of solutions that’s single-
valued in the complex plane.



Single-valued multiple zetas
• The traditional polylog of a single variable can be generalized to the multiple version:

• Multiple zeta values: real numbers defined by the absolutely convergent nested series

• Single-valued multiple zeta values = single-valued projection of MZVs = SVMPLs at 
unity.



Scattering amplitudes in String Theory
• Scattering amplitudes in open/closed string theory: correlation functions of vertex 

operators inserted at/in the boundary/bulk of a Riemann surface (worldsheet). 

• The nature of the underlying worldsheet describing the string interaction is 
fundamental!

• We want to motivate why the dependence on 𝛼′ (inverse string tension) encodes a 
rich analytic structure of the amplitude.



Single-valuedness & String Theory
• Building blocks of closed string theory amplitudes at genus 0 (tree-level):

• Functions of the complex variables 𝑠𝑖𝑗. 

𝑠 : collection of Mandelstam kinematic invariants: 𝑠𝑖𝑗 = 𝜶′𝑝𝑖 ⋅ 𝑝𝑗

𝑧0 = 0 , 𝑧𝑁+1 = 1,  𝑁 ∈ ℕ, 𝑛𝑖𝑗 , ෤𝑛𝑖𝑗 ∈ ℤ

• [Vanhove, Zerbini] 
The global (any s) and local properties are related to the theory of SV periods.

𝑁 = 1, 𝑛12 = ෤𝑛12 = −1: Virasoro-Shapiro amplitude



Single-valuedness & String Theory
• The Low Energy expansion (𝜶′ → 𝟎) of closed 

string amplitudes contains only SVMZVs. 

• Theory of integration of SVMPLs to compute 
algorithmically the coefficients of the 
asymptotic expansion.

• Moreover, the Low Energy expansion can be 
obtained from the open string amplitude by 
replacing MZVs by their SV image. 

• Tree-level open and closed strings are related 
by the KLT relations.

• Relation between gauge and gravity amplitudes.
Picture from Braune, Broedel.

Let’s see this for Virasoro-Shapiro.



Here: Virasoro-Shapiro amplitude

• Crossing symmetry in the 3 Mandelstam variables

• Fix 𝑇 and vary 𝑆. 

Poles at mass of the tachyon + higher states of the closed string

⇒ STRING AMPLITUDE AS AN INFINITE NUMBER OF (s-channel) TREE-LEVEL QFT DIAGs

• Regge behaviour (large 𝑆 )

• Low/High Energy



Virasoro-Shapiro amplitude and single-
valued periods
• Low Energy expansion of VS 

SUGRA + TOWER OF STRINGY CORRECTIONS

• Only odd 𝜁 values appear! 
The Wilson coefficients live in the ring of 
SVMZVs.

• This reflects the single-valued nature of the 
integral representation.



Key 
Takeaways

• The infinite number of vibration modes 
in string spectra introduces transcendental 
numbers already at tree-level!

• The Low Energy expansion of closed 
string amplitudes contains only SVMZVs. 

Let’s use what we learnt to compute strings 
amplitudes on curved backgrounds, where we 
lack a worldsheet technology.



The AdS Virasoro-
Shapiro amplitude

3



The AdS Virasoro-Shapiro amplitude
Scattering of massless 
strings: 4 gravitons on 
𝑨𝒅𝑺𝟓 × 𝑺𝟓 in Type IIB 
superstring theory

AdS/CFT

Correlator of four stress-
tensor multiplets in Mellin 
space, to leading order in 
inverse powers of the central 
charge

VS in flat space Curvature 
corrections𝐴𝑑𝑆 amplitude as a curvature 

expansion around flat space



The AdS Virasoro-Shapiro amplitude
We reviewed the Low Energy expansion of the flat space VS. 

What about the higher corrections 𝐴 𝑘 𝑆, 𝑇 ?
 
• Each of them admits a Low Energy expansion: assume the unknown coefficients to be 

single-valued zetas as in flat space! 

• Intuition from the worldsheet: 𝐴 𝑘 𝑆, 𝑇  from WS integrals similar to the one in flat 
space.

• Structure of poles (from the expansion of the AdS propagator around flat-space and 
dispersive sum-rules). [Alday, Hansen, Silva]



The AdS Virasoro-Shapiro amplitude
What is the relevant space of functions? Linear combination of single-valued functions 
such that the Low Energy expansion contains only SVMZVs. 

The k-th order answer takes the form of a genus 0 WS integral involving weight 3k 
SVMPLs. [Alday, Hansen] 

Tools:
-crossing symmetry
-SUGRA limit
-structure of poles (dispersive sum rules)
-CFT data (from integrability)

 

NOTE: This is NOT the result 
of a direct worldsheet 

computation! 



Key 
Takeaways

• Single valuedness plays a fundamental 
role in the construction of AdS scattering 
amplitudes, as in flat space!

• Can extract the CFT-data and compare 
with integrability results for planar 𝑁 = 4
SYM at strong coupling!

Next step towards the worldsheet theory: 
investigate the High Energy regime!



The High Energy limit 
of string scattering in 

AdS
4



Motivations

• Difficult to investigate String Theory in general. We can explore its mathematical structure
⇒ formulate questions and carry out computations that probe String Theory in different 
regimes.

• QFT: the short-distance behavior of the theory plays a crucial role (OPE, RG flow…)
What about String Theory?

• Here: after the Low Energy analysis (𝛼′ → 0, field theory limit) of the AdS VS amplitude, the 
next step towards the WS theory is the High Energy limit (𝛼′ → ∞).

How to make connections to more direct WS computations?

High Energy = regime in which such a connection can be made, at least classically!



Flat space result [Gross & Mende]
• HE limit: 𝑺  , 𝑻 ≫ 𝟏 and 𝑺/𝑻 fixed 

• Use Stirling's formula to access this regime:

 

     → soft exponential behavior!

• The exponential behavior is universal: independent of the particular String Theory and the 
quantum numbers of the scattered particles. 

• We can understand this also from the WS integral representation:

 

     HE limit: saddle point approximation

Analogous to the universality of 
singularities of the OPE in field theory. 



Given the “WS representation” for AdS, given that the transcendental functions 𝑊𝑛(𝑧, ҧ𝑧) 
are polynomials in 𝑆, 𝑇, the location of the saddle is not modified in a 1/𝑅 expansion!

The AdS VS in the HE limit can be computed by evaluating the WS integral representation 
on the saddle point:

where we keep the leading large energy contribution at each order.

What do we expect for AdS?

We are looking at a regime with large 𝑅, 𝑆 
and 𝑆2/𝑅2 finite.



WS coordinates: (𝜁, ҧ𝜁)
Punctures: 𝑧𝑘 ∈ ℝ

Alternatively, we can understand HE from the point of view of spacetime.

At HE, the path integral is dominated by a classical solution:

Flat space result [Gross & Mende]

Plug the classical 
solution into the PI: 
correct HE result!



Key 
Takeaways

High Energy limit:

• WS representation → saddle point

• spacetime (path integral) → classical solutions

Let’s carry this classical analysis for 
AdS!



Classic scattering problem in 𝐴𝑑𝑆𝑑

Embedding coordinates labeled by

Constraint:

Vertex operators:

Expectation: the HE behavior of the amplitude is captured by classical solutions, now in AdS!

▪ Virasoro constraints:

▪ Equations of motion away from the punctures:

▪ Boundary conditions:



The scattering problem in flat space arises as a limit of the AdS problem.

We solve for 𝑋0 using the constraint and take 𝑅 → ∞. The 𝑋𝜇 coordinates are constant in this 
limit and identified with the flat space coordinates.

Classic scattering problem in 𝐴𝑑𝑆𝑑

Plug into 
VIRASORO

CONSTRAINTS



Flat space solution: single-valued as we move 
around each puncture on the worldsheet

Higher orders?

-solve EOMs and Virasoro constraints in a 1/R 
expansion

-write the solution in terms of SVMPLs whose 
letters are the locations of the punctures

Classic scattering problem in 𝐴𝑑𝑆𝑑

Sum of terms of uniform 
weight 𝒘 + 𝟏

Integrate 𝜕 ҧ𝜕𝑋 at each order 
with the rules:



Solution for the first correction



ℒ𝑛(𝜁) are linear combinations of pure SVMPLs of weight 𝑛, with either 𝜁 or 𝑧𝑖 as their 
arguments and letters in the alphabet {𝑧1, 𝑧2, 𝑧3, 𝑧4}.

Once the seed solution 𝑋0
𝜇

is given, the whole tower in 1/𝑅 is fixed by the EOMs and 
integration.

Classic scattering problem in 𝐴𝑑𝑆𝑑

FINAL 
SOLUTION

𝑋𝑛
𝜇

 has weight 2𝑛 + 1.



Evaluate the action
Plugging our classical solution into the action:

Our result correctly reproduces the HE limit (after an appropriate redefinition of the Mandelstam 
variables):

𝑉𝑖 𝑧0  = combinations of 
transcendental functions of weight 𝑖

HIGHLY NON-TRIVIAL!!! Test of exponentiation at quadratic order!



Main result

• Curvature corrections in the HE limit exponentiate!

• The full High Energy limit of AdS VS to all orders in 𝑆2/𝑅2 is determined by the subleading
exponent.

• High Energy limit: regime where the amplitude can be computed to all orders in the curvature 
expansion.

• This result can be explicitly checked to order 1/𝑅4 by comparison with AdS VS.



Non-universality
• Momenta in a 1/𝑅 expansion from the flat space momenta:

• Can consider deformations of our solution consistent with EOM and Virasoro such that the flat 
space momenta are invariant (next slide).

• Can rescale flat space momenta by a constant:

• Mandelstam variables:

• Ratios of Mandelstam variables are invariant. 

1 +
𝛼

𝑅2
+ ⋯

2



Non-universality
• Now, let’s go back to the evaluation of the action on our classical solution.

• Rescale momenta (keep ratios invariant): 

• The first correction enters the leading High Energy behavior.

• 𝐹2 𝑧0 is a subleading non-universal quantity: cannot be determined with our classical bosonic 
model, but can be fixed by comparing with AdS VS!

This comes from 
quantum corrections 
(such as contributions 
from fermionic 
fields...).

Our HE result does not 
depend on the AdS 
dimension, but 𝐹2(𝑧0) 
can change for different 
theories.



Summary 
and 
conclusions

• Explore the mathematical structure of String 
Theory by probing it in different regimes.

• Compute string amplitudes on AdS from
- AdS/CFT
- Number Theory
- Integrability
- Worldsheet intuition

• Single valuedness to understand/construct 
scattering amplitudes in AdS (as in flat space).

• AdS Virasoro-Shapiro amplitude as a 
«worldsheet» integral.



Summary 
and 
conclusions

• Further step towards the worldsheet theory: High 
Energy limit.

• Curvature corrections exponentiate!

• The leading behavior at High Energy is captured by a 
bosonic model describing scattering of classical 
strings on AdS.

• Universality of our result: in our regime, only the 
first-order curvature corrections around flat space 
are important!

Strong constraints on curvature corrections at 
higher orders.



Thanks for your attention!
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