# (High Energy) scattering of strings in *AdS*

#### Maria Nocchi

University of Oxford

Based on work with L. F. Alday and T. Hansen

[2312.02261]

iTHEMS-YITP Workshop: Bootstrap, Localization and Holography 20 May 2024

### Outline

- Introduction
- Mathematical structure of scattering amplitudes
- The (AdS) Virasoro-Shapiro amplitude
- The High Energy limit of string scattering in AdS
- Summary & Conclusions



## Introduction



## Introduction

- Scattering amplitudes encode the differential probability for a certain process to happen. This predictive power makes them an essential object in Particle Physics, Mathematics, and String Theory.
- String scattering in flat space  $\rightarrow$  perturbative String Theory  $A^{(n)}(\Lambda_i, p_i) = \sum_{\text{topologies}} g_s^{-\chi} \frac{1}{\text{Vol}} \int DXDg \ e^{-S_{\text{Poly}}} \prod_{i=1}^n V_{\Lambda_i}(p_i)$  $\rightarrow$  worldsheet methods
- When considering scattering processes, we sum over all possible configurations of WSs.
- Sum over Riemann surfaces of increasing genus with insertions of vertex operators for the initial/final states (different topologies).
- In some regimes, the sum is dominated by a saddle point.

Parameters:

 $g_s$  (string coupling constant) lpha' (size of the string)



Introduction

- What about curved spacetimes?
  - $\rightarrow$  difficulties with standard formulations
  - → perturbative genus expansion but no direct worldsheet approach, even at tree-level
- AdS/CFT: tool to compute string scattering amplitudes on AdS from CFT correlators of the dual boundary theory.
- <u>Strategy</u>: combine worldsheet intuition with other powerful tools.

#### This program: how to compute string amplitudes on AdS

 $\rightarrow$  Analyze and include curvature corrections systematically and efficiently.

 $\rightarrow$  Exploit and emphasize the interplay between String Theory and Number Theory.

Main object of study of this program

- Scattering of four graviton states at tree level.
- Flat space : Virasoro Shapiro amplitude  $A_4(\varepsilon_i, p_i) = K(\varepsilon_i, p_i) \int d^2z |z|^{-2S-2} |1-z|^{-2T-2}$ The integrand is a single-valued function of z.
- $AdS_5 \times S^5$  : correlator of 4 stress-tensor multiplets, to leading non-trivial order in a 1/c expansion.
- Right language: Mellin space.
- Then, Borel transform: AdS analog of the Virasoro Shapiro amplitude.



# Key Takeanay

In flat space, we can use the **worldsheet theory** to compute string amplitudes. For curved backgrounds, we need additional tools.

Relate the *AdS* Virasoro Shapiro amplitude to a **worldsheet action**.

High Energy limit: further step in this program.

Goal of this project [2312.02261]

### Mathematical structure of scattering amplitudes

2

#### Let's start from a general problem:

Reveal and understand the hidden mathematical structure of scattering amplitudes in Field Theory/String Theory.

## Scattering amplitudes in QFT

Perturbation theory:

- sum over Feynman diagrams
- loop integrals
- complicated functions with branch cuts (intermediate virtual particles going on-shell)



<u>Strategy</u>: study loop integrals from a purely mathematical and algebraic point of view.

$$B(p^2) = e^{\gamma_E \epsilon} \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{k^2 (k+p)^2},$$
$$T(p_1^2, p_2^2, p_3^2) = e^{\gamma_E \epsilon} \int \frac{d^D k}{i\pi^{D/2}} \frac{1}{k^2 (k+p_1)^2 (k+p_1+p_2)^2}$$

Rational functions are insufficient to write down the answer!

Notice the appearance of **zeta values** (Riemann  $\zeta$  function at integer values):

$$\zeta_n = \sum_{k=1}^{\infty} \frac{1}{k^n} , \ n > 1$$

$$B(p^{2}) = \frac{1}{\epsilon} + 2 - \log(-p^{2}) + \epsilon \left[\frac{1}{2}\log^{2}(-p^{2}) - 2\log(-p^{2}) - \frac{1}{2}\zeta_{2} + 4\right] + \mathcal{O}(\epsilon^{2})$$

$$T(p_{1}^{2}, p_{2}^{2}, p_{3}^{2}) = \frac{2}{\sqrt{\lambda}} \left[\operatorname{Li}_{2}(z) - \operatorname{Li}_{2}(\bar{z}) - \log(z\bar{z})\log\frac{1-z}{1-\bar{z}}\right] + \mathcal{O}(\epsilon) + \mathcal$$

<sup>2</sup>) and the (powers) of logarithms as well as their generalisations (polylogs):

$$\log z = \int_1^z \frac{dt}{t}$$

### Special numbers and functions in loop computations

Can arbitrarily complicated functions appear in the Feynman integrals computation?

Feynman integrals evaluate to a restricted set of numbers and functions called <u>periods</u>, such as zeta values and polylogs!

Let's focus on a specific class of special functions, the (single-valued) polylogs.

- SVMPLS are of great interest in pure mathematics.
- They appear in loop computations: Feynman integrals with massless propagators and 3 off-shell external legs, conformal 4 pt functions in 4d.
- They describe multi-Regge limit of scattering amplitudes in planar N=4 SYM, and much more.

Classical polylogs:  $Li_m(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^m}$ . Converges on the unit disk |z| < 1.

Can be continued to the cut plane  $\mathbb{C} \setminus [1, \infty)$  by an iterated integral representation:

$$Li_m(z) = \int_0^z dz' \, \frac{Li_{m-1}(z')}{z'} \quad Li_m(1) = \zeta_m \,, m > 1$$

Can define more general classes of polylogs by changing the kernel  $\Rightarrow$  harmonic polylogs

- $\partial_z H_{x_0 w}(z) = \frac{H_w(z)}{z}$
- $\partial_z H_{x_1w}(z) = \frac{H_w(z)}{1-z}$
- $H_e(z) = 1$
- $H_{x_0^n}(z) = \frac{\log^n z}{n!}$
- $Iim_{z \to 0} H_{w \neq x_0^n}(z) = 0$

w = word{ $x_0, x_1$ } = alphabet WEIGHT |w| = lenght of the word

HPLs: analytic functions of a single complex variable, with branch points (**multi-valued** functions on the complex plane).

$$\log |z|^2 = \log z + \log \bar{z}$$

Single-valued polylogs

We can build weight-preserving linear combinations of  $H_{w_1}(z)$  and  $H_{w_2}(\overline{z})$  such that all the discontinuities cancel and they are single-valued in the  $(z, \overline{z})$  plane.

Polylogs are examples of periods. SVPLs are their images under the sv projection [F.Brown].

$$\frac{\partial}{\partial z} \mathcal{L}_{0w}(z) = \frac{1}{z} \mathcal{L}_w(z)$$

• 
$$\frac{\partial}{\partial z} \mathcal{L}_{1w}(z) = \frac{1}{z-1} \mathcal{L}_w(z)$$

- $\mathcal{L}_{0^n}(z) = \frac{\log^n(z\bar{z})}{p!}$
- $\lim_{z\to 0} \mathcal{L}_{w\neq x_0^n}(z) = 0$

At any given weight, there is a finite-dimensional vector space of available functions.

[Brown]: there exists a unique family of solutions that's singlevalued in the complex plane.

Single-valued multiple zetas

• The traditional polylog of a single variable can be generalized to the multiple version:

$$\operatorname{Li}_{n_1,\dots,n_r}(z_1,\dots,z_r) := \sum_{0 < k_1 < \dots < k_r} \frac{z_1^{k_1} \cdots z_r^{k_r}}{k_1^{n_1} \cdots k_r^{n_r}}$$

• Multiple zeta values: real numbers defined by the absolutely convergent nested series

$$\zeta(n_1, \dots, n_r) = \sum_{0 < k_1 < \dots < k_r} \frac{1}{k_1^{n_1} \dots k_r^{n_r}}$$

• Single-valued multiple zeta values = single-valued projection of MZVs = SVMPLs at unity.

### Scattering amplitudes in String Theory

• Scattering amplitudes in open/closed string theory: correlation functions of vertex operators inserted at/in the boundary/bulk of a Riemann surface (worldsheet).

$$A_4(\varepsilon_i, p_i) = K(\varepsilon_i, p_i) \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2}$$

- The nature of the underlying worldsheet describing the string interaction is fundamental!
- We want to motivate why the dependence on  $\alpha'$  (inverse string tension) encodes a rich analytic structure of the amplitude.

## Single-valuedness & String Theory

• Building blocks of **closed string theory** amplitudes at genus 0 (tree-level):

$$M_{N+3}(\mathbf{s}, \mathbf{n}, \tilde{\mathbf{n}}) = \left(\frac{i}{2\pi}\right)^N \int_{\mathbb{C}^N} \prod_{0 < i < j < N+1} |z_i - z_j|^{2s_{ij}} (z_i - z_j)^{n_{ij}} (\bar{z}_i - \bar{z}_j)^{\tilde{n}_{ij}} \prod_{i=1}^N dz_i d\bar{z}_i$$

• Functions of the complex variables  $s_{ij}$ .

s : collection of Mandelstam kinematic invariants:  $s_{ij} = \alpha' p_i \cdot p_j$  $z_0 = 0$ ,  $z_{N+1} = 1$ ,  $N \in \mathbb{N}$ ,  $n_{ij}, \tilde{n}_{ij} \in \mathbb{Z}$ 

N = 1,  $n_{12} = \tilde{n}_{12} = -1$ : Virasoro-Shapiro amplitude

[Vanhove, Zerbini]
 The global (any s) and local properties are related to the theory of SV periods.

## Single-valuedness & String Theory

• The Low Energy expansion  $(\alpha' \rightarrow 0)$  of closed string amplitudes contains only SVMZVs.

→ Let's see this for Virasoro-Shapiro.

- Theory of integration of SVMPLs to compute algorithmically the coefficients of the asymptotic expansion.
- Moreover, the Low Energy expansion can be obtained from the open string amplitude by replacing MZVs by their SV image.
- Tree-level open and closed strings are related by the KLT relations.
- Relation between gauge and gravity amplitudes.



### Here: Virasoro-Shapiro amplitude

$$A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$$

• Crossing symmetry in the 3 Mandelstam variables S + T + U = 0



• Fix T and vary S.

Poles at mass of the tachyon + higher states of the closed string

⇒ STRING AMPLITUDE AS AN INFINITE NUMBER OF (s-channel) TREE-LEVEL QFT DIAGs

• Regge behaviour (large |S|)

• Low/High Energy 
$$S = -\frac{\alpha'}{4}(p_1 + p_2)^2$$
,  $T = -\frac{\alpha'}{4}(p_1 + p_3)^2$ ,  $U = -\frac{\alpha'}{4}(p_1 + p_4)^2$ 

### Virasoro-Shapiro amplitude and singlevalued periods

• Low Energy expansion of VS  $A^{(0)}(S,T) = \underbrace{\frac{1}{STU}}_{a,b=0} + 2\sum_{a,b=0}^{\infty} \sigma_2^a \sigma_3^b \alpha_{a,b}^{(0)} \qquad \sigma_2 = \frac{1}{2}(S^2 + T^2 + U^2), \sigma_3 = STU$ 

SUGRA + TOWER OF STRINGY CORRECTIONS

 Only odd ζ values appear! The Wilson coefficients live in the ring of SVMZVs.

$$A^{(0)}(S,T) = \frac{\exp\left(\sum_{n=1}^{\infty} \frac{\zeta^{\text{sv}}(2n+1)(S^{2n+1}+T^{2n+1}+U^{2n+1})}{2n+1}\right)}{STU}$$

• This reflects the single-valued nature of the integral representation.

$$A^{(0)}(S,T) = \frac{1}{U^2} \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2}$$

### Key Takeaways

 The infinite number of vibration modes in string spectra introduces transcendental numbers already at tree-level!

• The Low Energy expansion of closed string amplitudes contains only SVMZVs.

Let's use what we learnt to compute **strings amplitudes on curved backgrounds**, where we lack a worldsheet technology.

3



We reviewed the Low Energy expansion of the flat space VS.

What about the higher corrections  $A^{(k)}(S,T)$ ?

- Each of them admits a **Low Energy expansion**: assume the unknown coefficients to be single-valued zetas as in flat space!
- Intuition from the worldsheet:  $A^{(k)}(S,T)$  from WS integrals similar to the one in flat space.  $\int d^2z |z|^{-2S-2} |1-z|^{-2T-2}G(z,\bar{z})$
- Structure of poles (from the expansion of the AdS propagator around flat-space and dispersive sum-rules). [Alday, Hansen, Silva]

What is the relevant space of functions? Linear combination of single-valued functions such that the Low Energy expansion contains only SVMZVs.

The k-th order answer takes the form of a genus 0 WS integral involving **weight 3k** SVMPLs. [Alday, Hansen]

$$A(S,T) = \int d^2 z |z|^{-2S} |1-z|^{-2T} W_0(z,\bar{z}) \left( 1 + \frac{S^2}{R^2} W_3(z,\bar{z}) + \frac{S^4}{R^4} W_6(z,\bar{z}) + \dots \right)$$
$$W_0(z,\bar{z}) = \frac{1}{2\pi U^2 |z|^2 |1-z|^2}$$

Tools:

-crossing symmetry

-SUGRA limit

-structure of poles (dispersive sum rules) -CFT data (from integrability) NOTE: This is <u>NOT</u> the result of a direct worldsheet computation!

 $\alpha' = 1$ 

## Key Takeaways

• Single valuedness plays a fundamental role in the construction of AdS scattering amplitudes, as in flat space!

• Can extract the CFT-data and compare with integrability results for planar N = 4 SYM at strong coupling!

Next step towards the worldsheet theory: investigate the High Energy regime!

### The High Energy limit of string scattering in Ads

4

#### Motivations

- Difficult to investigate String Theory in general. We can explore its mathematical structure
   ⇒ formulate questions and carry out computations that probe String Theory in different
   regimes.
- QFT: the short-distance behavior of the theory plays a crucial role (OPE, RG flow...) What about String Theory?
- <u>Here</u>: after the Low Energy analysis ( $\alpha' \to 0$ , field theory limit) of the AdS VS amplitude, the next step towards the WS theory is the High Energy limit ( $\alpha' \to \infty$ ).

#### How to make connections to more direct WS computations?

High Energy = regime in which such a connection can be made, at least classically!

#### Flat space result [Gross & Mende]

- HE limit: |S|,  $|T| \gg 1$  and S/T fixed
- Use Stirling's formula to access this regime:

 $A^{(0)}(S,T)_{HE} \sim e^{-2S \log |S| - 2T \log |T| - 2U \log |U|}$ 

 $\rightarrow$  soft exponential behavior!

Analogous to the universality of singularities of the OPE in field theory.

 $A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$ 

- The exponential behavior is universal: independent of the particular String Theory and the quantum numbers of the scattered particles.
- We can understand this also from the WS integral representation:

$$A(S,T) \sim \int d^2 z |z|^{-2S} |1-z|^{-2T} W_0(z,\bar{z})$$

HE limit: saddle point approximation  $z = \overline{z} = \frac{S}{S+T} = z_0$ 

### What do we expect for Ads?

Given the "WS representation" for AdS, given that the transcendental functions  $W_n(z, \overline{z})$  are polynomials in S, T, the location of the saddle is not modified in a 1/R expansion!

The AdS VS in the HE limit can be computed by evaluating the WS integral representation on the saddle point:

$$A_4^{AdS}(S,T)_{\rm HE} \sim e^{-2S\log|S|-2T\log|T|-2U\log|U|}W_0(z_0)\left(1+\frac{S^2}{R^2}W_3(z_0)+\frac{S^4}{R^4}W_6(z_0)+\cdots\right)$$
  
where we keep **the leading large energy** contribution at each order.

We are looking at a regime with large R, Sand  $S^2/R^2$  finite.

### Flat space result [Gross & Mende]

Alternatively, we can understand HE from the point of view of spacetime.

$$\begin{split} A^{(0)}(S,T) &\sim \int Dg \ DX \exp\left[-\frac{1}{4\pi} \int d\zeta_1 d\zeta_2 \sqrt{g} g^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X_\mu\right] \prod_i V_i(p_i) \\ \text{WS coordinates: } (\zeta,\bar{\zeta}) \\ \text{Punctures: } z_k \in \mathbb{R} \end{split} \qquad V_i(p_i) \sim \int d^2 z_i \sqrt{g} e^{ip_i \cdot X(z_i)} \\ p_i^2 &= 0 \ , \ p_1 \cdot p_2 = -2S \ , \ p_1 \cdot p_3 = -2T \ , \ p_1 \cdot p_4 = -2U \end{split}$$

At HE, the path integral is dominated by a classical solution:

$$X^{\mu}(\zeta) = -i\sum_{k} p_{k}^{\mu} \log \left| 1 - \frac{\zeta}{z_{k}} \right|$$

Punctu

Plug the classical solution into the PI: correct HE result!

 Image: Non-standing state
 High Energy limit:

 Image: Non-state
 High Energy limit:

 Image: Non-state
 WS representation → saddle point

 Image: Non-state
 Spacetime (path interval)

- spacetime (path integral)  $\rightarrow$  classical solutions

Let's carry this classical analysis for AdS!

Embedding coordinates labeled by  $M = (0; \mu) = (0, 1, ..., d)$ Constraint:  $X^M X_M = -R^2$ Vertex operators:  $V_i(P_i) \sim \int d^2 z_i \sqrt{g} e^{iP_i^M X_M(z_i)}$ 

$$\mathcal{L} = \frac{1}{2\pi} \partial X^M \bar{\partial} X_M + \Lambda (X^M X_M + R^2) - i \sum_k P_k^M X_M \delta^{(2)} (\zeta - z_k)$$

Expectation: the HE behavior of the amplitude is captured by classical solutions, now in AdS!

- <u>Virasoro constraints</u>:  $\partial X^N \partial X_N = \bar{\partial} X^N \bar{\partial} X_N = 0$
- Equations of motion away from the punctures:  $\partial \bar{\partial} X^M = \frac{\partial X^N \partial X_N}{R^2} X^M$
- Boundary conditions:  $X^M = -iP_k^M \log \left| 1 \frac{\zeta}{z_k} \right| + Q_k^M + \dots$

The scattering problem in flat space arises as a limit of the AdS problem.

We solve for  $X^0$  using the constraint and take  $R \to \infty$ . The  $X^{\mu}$  coordinates are constant in this limit and identified with the flat space coordinates.

$$X^{0} = R + \frac{1}{R}X_{1}^{0} + \dots, \qquad P_{k}^{0} = \frac{1}{R}p_{k,1}^{0} + \dots,$$
$$X^{\mu} = X_{0}^{\mu} + \frac{1}{R^{2}}X_{1}^{\mu} + \dots, \qquad P_{k}^{\mu} = p_{k,0}^{\mu} + \frac{1}{R^{2}}p_{k,1}^{\mu} + \dots$$



Flat space solution: single-valued as we move around each puncture on the worldsheet

$$X_0^{\mu} = -\frac{i}{2} \sum_k p_{k,0}^{\mu} \mathcal{L}_{z_k}(\zeta)$$

#### Higher orders?

-solve EOMs and Virasoro constraints in a 1/R expansion

-write the solution in terms of SVMPLs whose letters are the locations of the punctures

$$\partial\bar{\partial}X^M = \frac{\partial X^N \bar{\partial}X_N}{R^2} X^M$$

Integrate  $\partial \overline{\partial} X$  at each order with the rules:

$$\int d\zeta \frac{\mathcal{L}_w(\zeta)}{\zeta - z_i} \to \mathcal{L}_{z_i w}(\zeta)$$

$$\int d\bar{\zeta} \frac{\mathcal{L}_w(\zeta)}{\bar{\zeta} - z_i} \to \mathcal{L}_{w z_i}(\zeta) + \dots$$
Sum of terms of uniform weight  $|w| + 1$ 

### Solution for the first correction

$$\partial \overline{\partial} X_1^{\mu} = \partial X_0 \cdot \overline{\partial} X_0 X_0^{\mu} = \frac{i}{8} \sum_{i,j,k} \frac{p_{i,0} \cdot p_{j,0}}{(\zeta - z_i)(\overline{\zeta} - z_j)} p_{k,0}^{\mu} \mathcal{L}_{z_k}(\zeta)$$

$$\int d\overline{\zeta} \frac{\mathcal{L}_{z_k}(\zeta)}{(\overline{\zeta} - z_j)} \to \mathcal{L}_{z_k z_j}(\zeta) + \mathcal{L}_{z_k}(z_j) \mathcal{L}_{z_j}(\zeta) - \mathcal{L}_{z_j}(z_k) \mathcal{L}_{z_k}(\zeta)$$

$$X_{1}^{\mu} = \frac{i}{8} \sum_{i,j,k=1}^{4} p_{i,0} \cdot p_{j,0} \ p_{k,0}^{\mu} \left( \mathcal{L}_{z_{i}z_{k}z_{j}}(\zeta) + \mathcal{L}_{z_{k}}(z_{j})\mathcal{L}_{z_{i}z_{j}}(\zeta) - \mathcal{L}_{z_{j}}(z_{k})\mathcal{L}_{z_{i}z_{k}}(\zeta) \right)$$

$$X^{\mu} = \mathcal{L}_1(\zeta) + \frac{1}{R^2}\mathcal{L}_3(\zeta) + \frac{1}{R^4}\mathcal{L}_5(\zeta) + \dots$$

#### FINAL SOLUTION

$$X^{0} = \sqrt{R^{2} + X_{\mu}X^{\mu}} \implies X^{0} = R\mathcal{L}_{0}(\zeta) + \frac{1}{R}\mathcal{L}_{2}(\zeta) + \frac{1}{R^{3}}\mathcal{L}_{4}(\zeta) + \dots$$

 $\mathcal{L}_n(\zeta)$  are linear combinations of **pure** SVMPLs of weight n, with either  $\zeta$  or  $z_i$  as their arguments and letters in the alphabet  $\{z_1, z_2, z_3, z_4\}$ .

Once the seed solution  $X_0^{\mu}$  is given, the whole tower in 1/R is fixed by the EOMs and integration.

$$X_0^{\mu} \to X^{\mu} = X_0^{\mu} + \frac{1}{R^2} X_1^{\mu} + \dots$$

 $X_n^{\mu}$  has weight 2n + 1.

### Evaluate the action

Plugging our classical solution into the action:  $A_{4,\text{bos}}^{AdS}(S,T)_{\text{HE}} \sim A_{4}^{\text{flat}}(S,T)_{\text{HE}} \times e^{\frac{S^2}{R^2}V_3(z_0) + \frac{S^3}{R^4}V_5(z_0) + \cdots}$ 

 $V_i(z_0)$  = combinations of transcendental functions of weight i

Our result correctly reproduces the HE limit (after an appropriate redefinition of the Mandelstam variables):

$$A_4^{AdS}(S,T)_{\rm HE} \sim e^{-2S\log|S| - 2T\log|T| - 2U\log|U|} W_0(z_0) \left(1 + \frac{S^2}{R^2} W_3(z_0) + \frac{S^4}{R^4} W_6(z_0) + \cdots\right)$$

 $W_3(z_0) = V_3(z_0)$  $W_6(z_0) = \frac{1}{2}V_3(z_0)^2$ 

HIGHLY NON-TRIVIAL!!! Test of exponentiation at quadratic order!

#### Main result

$$A_4^{AdS}(S,T)_{HE} \sim A_4^{flat}(S,T)_{HE} \times e^{\frac{S^2}{R^2}W_3(z_0)}$$

- Curvature corrections in the HE limit exponentiate!
- The **full** High Energy limit of AdS VS to **all orders** in  $S^2/R^2$  is determined by the subleading exponent.
- High Energy limit: regime where the amplitude can be computed to all orders in the curvature expansion.
- This result can be explicitly checked to order  $1/R^4$  by comparison with AdS VS.

#### Non-universality

- Momenta in a 1/R expansion from the flat space momenta:  $P_k^{\mu} = p_{k,0}^{\mu} + \frac{1}{R^2}p_{k,1}^{\mu} + \cdots$
- Can consider deformations of our solution consistent with EOM and Virasoro such that the flat space momenta are invariant (next slide).
- Can rescale flat space momenta by a constant:

$$p_0^{\mu} + \frac{1}{R^2} p_1^{\mu} + \frac{1}{R^4} p_2^{\mu} + \dots \rightarrow \lambda p_0^{\mu} + \frac{\lambda^3}{R^2} p_1^{\mu} + \frac{\lambda^5}{R^4} p_2^{\mu} + \dots$$
  
Mandelstam variables:  $S \rightarrow \chi^2 S$   $\left(1 + \frac{\alpha}{R^2} + \dots\right)^2$ 

• Ratios of Mandelstam variables are invariant.

### Non-universality

• Now, let's go back to the evaluation of the action on our classical solution.

 $A_{4,\text{bos}}^{AdS}(S,T)_{\text{HE}} \sim e^{-S} = e^{SV_1(z_0) + \frac{S^2}{R^2}V_3(z_0) + \frac{S^3}{R^4}V_5(z_0) + \cdots}$ 

- Rescale momenta (keep ratios invariant):  $S \rightarrow S(1 + \frac{SF_2(z_0)}{R^2} + \cdots)$
- The first correction enters the leading High Energy behavior.  $SV_1(z_0) = -S^{(0)}, \qquad S^2V_3(z_0) = -S^{(1)} - 2SF_2(z_0)S^{(0)}$

- This comes from quantum corrections (such as contributions from fermionic fields...).
- $F_2(z_0)$  is a subleading non-universal quantity: cannot be determined with our classical bosonic model, but can be fixed by comparing with AdS VS!

$$F_{2}(z_{0}) = \frac{1}{4} \left( -\mathcal{L}_{00}(z_{0}) + \frac{2}{z_{0}}\mathcal{L}_{01}(z_{0}) + \frac{z_{0}-1}{z_{0}}\mathcal{L}_{11}(z_{0}) \right)$$

Our HE result does not depend on the AdS dimension, but  $F_2(z_0)$ can change for different theories. Summary and conclusions

- Explore the mathematical structure of String Theory by probing it in different regimes.
- Compute string amplitudes on AdS from - AdS/CFT
  - Number Theory
  - Integrability
  - Worldsheet intuition
- **Single valuedness** to understand/construct scattering amplitudes in AdS (as in flat space).
- AdS Virasoro-Shapiro amplitude as a «worldsheet» integral.

Summary and conclusions

- Further step towards the worldsheet theory: High Energy limit.
- Curvature corrections exponentiate!
- The leading behavior at High Energy is captured by a bosonic model describing scattering of classical strings on AdS.
- Universality of our result: in our regime, only the first-order curvature corrections around flat space are important!

Strong constraints on curvature corrections at higher orders.



### Thanks for your attention!

