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Introduction

Supersymmetric localization is a vast subject — Nekrasov's 2003
paper reproducing the instanton contributions to Seiberg-Witten has
1577 cites, while Pestun’s landmark 2007 paper has 1387 cites.

Obviously, | will not be able to review everything.

Instead | will focus on localizations that are relevant for holography.

» | will first consider spheres in various dimensions that preserve a

maximal amount of supersymmetry.

| will then consider deformations of the sphere and mass
deformations which are of interest for computing integrated
correlators.

I will be working with a generalization of Pestun's original formalism
and be considering theories with 8 or 16 supersymmetries.

| will discuss solutions to the relevant matrix models (mainly
ignoring instantons).



» Localization of gauge theories on spheres or other compact
manifolds has been successfully applied to many situations.

» Examples:
N =4 and N =2 SYM in 4d Pestun
N =2 and higher CS/SYM in 3d Kapustin, Willett, Yakov; Jafferis
N =1,2SYM in 5d: Killén, Zabzine; Killén, Qiu, Zabzine; Kim, Kim
(2,2) SYM in 2d: Benini and Cremonisi; Daroud et. al.
N =26d and N =1 7d SYM JAM, Zabzine

> Different techniques used for the different situations.

> Index theorems to compute one-loop determinants for even and odd
dimensions

> Even spheres have vector fields with fixed points.
(sec. 2.2 of 1608.02953)

> Odd spheres have vector fields that act freely.
(sec. 2.3 of 1608.02953)

> At the end, the results are very similar

» This suggests the possibility to analytically continue the value of d
and solve in one go.
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Maximal SYM and the dimensional reduction procedure

» 10-dimensional flat-space Lagrangian: Brink, Scherk & Schwarz
1
L= —Tr(3FuF"N —wpv) .
&io
> Action is invariant (on-shell) under the susy transformations
SAM = € TyapV?, M=0,...9
s = ArMNesFyn P a,f=1,...16

€% are bosonic real chiral spinors; TMNe 5 — f[MQVF;V]B

» Dimensionally reduce to d-dimensional Euclidean gauge theory.
Ay, p=1...,d or=A, 1=0d+1,...9.
» Derivatives along compactified directions are zero,
Fur=[Du, 1] Fuu=I[d1,¢4].

» Scalars transform under vector rep. of SO(1,9 — d) R-symmetry in
flat Euclidean space. ¢ has wrong-sign kinetic term.
» d-dimensional coupling: g&y, = g%/ Vio—d-
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The theory on spheres Biau 00, Zabzine and M '15

S9 with radius R.

v

1
2 _ _ 1
ds” = (1+ 32x2)2 dx, dx*, B =z

v

d = 4: gauge theory is superconformal, = conformal mass term

5¢>¢>—g7 d4XF( Tf¢/¢')

v

d # 4: not conformal, but we include a similar term:

S¢p = g— d¥xy/— (2R2 Tro, ¢’> , [l is summed over]

YM

A, is the analog of the dimension for ¢;.

v

Need further terms to preserve the supersymmetry.

6
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Conformal Killing spinors

» Supersymmetries defined by conformal Killing spinors (CKS)

1

a _ raf= ~
Vue® = ru €g, V,éa = 12

rua5€ﬁ.
€, has opposite chirality to €.
» General solution for d < 10:
_ 1 P e
S ]

€s and &. are arbitrary constant spinors = 32 independent CKS's.
» Reduce to 16 spinors by further imposing

€ = pPAe, A = —ATH AN =1
d+#4alsoneed \T = A =— A=T5r°
= & = B¢
» This construction can be used for spheres up to d = 7.
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Modified SUSY Transformations

» SUSY transfs. need to be modified

5€AM = ErM\U
SV = %I'MNFMNG—&—%F“'QS,VME
4(d - 3)

ap = T ,
> Set Ap = aa, A = 2(d — 2)/d
» Complete maximally SUSY Lagrangian:

A=8,9,0, a,-:g7 i=d+1,...7

2(d -3

WAV + =7 )TmsAqu

1
Lo = —Te|(AFmF™™ — WD +

(d—14)
gYM 2R

L (d=2)
R2
» Preserves 16 susys but R-symmetry explicitly broken (d # 4,7):

Tr6/ g1 — o (d — A1, %)

SO(1,9 — d) — SO(1,2) x SO(7 — d)
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d <5, can reduce to 8 supersymmetries
> Ifd <5 e=+IF VU ¢+ y

’l/} — +r6789w X = 7r6789X

> Vector multiplet: A, 9, ng’, I =0,d+1...5
» Hypermultiplet: x, ¢', | =6...9
» Can give masses to the hypermultiplets

a

A

2(d -2 4 R
( )+ iorm

I=6...
p g 6...9

d(d - 2)

- 2 (mr+ioy) +
d mr(mr + 1oy 7

>, o =+1(-1) 1=6,7(8,9).

L (A H)BTYVAY = 1 ((d — 4)BTrpAd + i mTr xAY)
Eywm &ym

1 4 05,8 49
ar A GRDRI GG e

1 ((2(5’72_ ) 4 ai m> Te(¢°[6°, ¢7]) — (% — 4i m> Tr(¢°[°, ¢9]))

2
gym
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Off-shell formulation

» Choose € to select a convenient vector field vM = e Me.

vMvy =0, set V09=1, V¥ =0
» Introduce 7 bosonic spinors v, and auxilliary fields K™, m=1...7.
eMy,, =0 vl™Muy = 8pmv™ .
» Off-shell SUSY transformations:
0AM = elyV,
R L %r#’@vue T K™,
K™ = —v™(PV — (d —4)BAV),

» «y are same as before. 6.K™ = 0 on-shell.
Algebra closes up to symmetries of the Lagrangian:

e.g.: (53/4” = _VHFMV + [Du7 VI¢I]
Off-shell Lagrangian

v

v

1
Eaux = — 5 TI'Kme

Eym

10 /40



Localization
> Localizing the off-shell action. Modify the path integral to

Z= /D¢e—5—f0‘/7

Q is a fermionic symmetry generator. QV positive definite.

» Take t — oo so fields localize onto fixed loci of V under Q.

Z = Z /choe*SkDetk

kefixed loci
» For Q choose &, while

V= /ddx\/—g\llW.

T = 3TV Fyn O + ST G0V e = K™ uy .

Bosonic part of 6.V

5V :/ddngTr(aéwew).

bos
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Localization (continued)

» Many terms are zero. Left-over terms (assume v0 =1, v89 = Q)

1 1 ! !
ooV = 5/:,V,,\,/:MN _ ,,:MN,:M,N,(GFMNM N 06)

ML ’FMNQS,(e/\(F [FMNEO _ FOr/pMN) e
2 42
K™ +25(d = 3)oalmhe)l + C 5 Y ()00

J#0

» Fixed-point locus (zero instanton sector and after analytically
continuing K™ — i K™ and ¢ — i ¢o):

K™ = —28(d — 3)¢o(vm\e), $;=0 J#0.
Vupo =0
> Substitute the fixed locus into L, (zero instanton sector)

1 (d—-1)(d—-3
Lgp = g’Q/M(,])z(z)Tr(QSOQsO) :
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Localization (continued)

» Define dimensionless variable: 0 = Rey.

d=3
d=4
d=5
d=656
d=7:

d=4(d — 1)(d —
Sg = VgLg, = RTH 2)( 3)5¢ Tro?,
Eym
Sp =0
8 2
Sg = ZLTrU2
&ym
8m3R
Sg = 7T2 Tro?
Eym
1673 R?
5, = JOTR
Eym
8m*R3
Sfp = %TTUQ
&ym

Does not change when breaking the susy’s, since only the

vector multiplet field ¢q contributes.
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One-loop determinants

» Compute quadratic fluctuations about fixed point locus

> Instead of index theorems we will compute determinants for bosons
and fermions separately

» Generalization of 5D for 8 susy’s (Kim & Kim) (and 3D for 4 susy's
(Kapustin, Willet & Yaakov))

» Strategy is to find sets of basis vectors for bosons and fermions

» Directly doing 16 susy's is harder this way (But we can find the
results indirectly)
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One—|OOp determinants (8 SUSYS) Gorantis, Naseer, JAM '17

Following Kim and Kim we introduce basis states in terms of spherical

harmonics YX
Basis vectors for vector multiplet bosons:

Al = v Yo+ 'V Y

A%y = M 5" NeV Y+ PV 5 Vi

Ai;, = erm“r‘”gew Yk

Al = el H TV, Y M=1...5

VMg =1 VAV LY = 2imBY,,
Basis spinors for vector multiplet fermions:

For <7,
Fol ™Y,

§x

Xt=vkn X2
X2

k
m
k
m

1]

F = Yo

N——

n=(1+irNe = (rP+ir*)e
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One—|OOp determinants (8 SUSYS) JAM '15; Gorantis, Naseer, JAM '17

Large cancellation between bosons and fermions:

Detﬂv k k, CI = [ D(k,k,d)
Detb,v* H Hk"‘l’y, Hk+d_2+l<77¢0>)

~yEroots k=1

where D(k, m, d) is the degeneracy of YX in d dimensions.

Only contributions from Yik survive.

D(k,+k,d) = D(k,—k, d)
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Counting factor D(k k,d)

» Fixed point set for vM. Note that v™ V/\h =1.

» On S vM " has fixed 5.
On S* v™ has fixed S°.
On S* v has fixed S*.
On S? v has fixed S°.
On S? vM has fixed S*7.
» Counting of Y,f‘ polynomials
S° |zl + |zl + |z = 1
> SY zP |z xd =1
» 3 a4+ xd=1

» 2 xE 4+ xE=1

k
Yk ~ ZjZj ... Zj

k+d—2)

vy vy VvVYy

v

I(k+d—2)

Det
b,v k=0

Dets _Mkd—2)
e~ IO+ 2 Tk 02 s
vy

17
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A similar story holds for the hypermultiplet:
(k+d—2)
2

Det¢ p — d—2 . d— T k) (d—2)
—_— k - = k— i
Detp, p 1:[1:10 [( Hin o)t 2 ) < ihoi—int 2 )}

nw=mR

» For d <5 we can combine a vector multiplet with an adjoint hyper
with mass u = i(d — 4)/2 to give 16 supercharges.

> For general d (after shifting some k) the combined determinant

factor is
o > r(k+d—3)
k + % ) T(k+1)I(d—3)
e 11 ;
7>0 5 k+d—3)24(v,0)

> It is possible to put 16 susys on S® and S7 JAM, Zabzine.

> Analytically continuing the 16 susy expression to d > 5 we find
agreement with the d =6 and d =7 cases.
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The |arge N ||m|t for MSYM Bobev, Bomans, Gautason, Nedelin, JAM '19

e In the large N-limit (where we can ignore instantons) the theory can
be localized onto constant ¢g, with all other fields zero.
e Taking our previous results:
—3)

M(k+d
CN k2 + v, 0 > F(k+1)T(d—3)
Z = -
/daexp( \ tra)}:[o< 2H( k+d—3)2+ (v, >2>

where o is an N x N matrix. We can diagonalize o to get

N N 2, NG cEy
CIN ) oo k +O' F(k+1)r(d—3
Z:/Hd"fex"(‘» Ui>HH<(/<Jr¢13)2+¢7
i=1 i i<j k=0
C 167"+ A= g2uNR?
1= — ) = &YM
re“z)

e Large N limit — solve by saddle point (eigenvalue force equation)

> G(oy)

J#i
. M—io) rio) Md—3—io) M(d=3+io)
G(U):_’F(H)(F(4—d—ia)_r(4—d+io)_ rA—io)  TA+io) )
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Saddle point equations

GN
1TO',' = ZG(O’U)
J#i

e |oji| < 1 (weak coupling): G(ojj) ~ 0% (Gaussian m.m. approx.)

e |o;| > 1 (strong coupling): G(o;) ~ Gloy;|?~5 sign(oy)
Gi6(0)

d=5.5

d=5

d=4
O d=35
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Free energy for maximal SYM (d < 6)

» We are interested in A > 1 = weak eigenvalue central potential,
= repulsive force terms in G(oj;) push the eigenvalues far apart.

» We write the saddle point equation as an integral equation

b
% o= C2/[ do’p(a”)|o — o’|97 % sign(o — o).
—b

» Scaling: o ~ AZd = F o~ N62d N2

» We can solve the integral equation to find the density

5 re4-4
p(U):/C(b2—02)Td —-b<o<b, K= (

p(o)=0 |o|>b

b= <Asm i | B L L G LN Gl §)> "
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Free energy(d < 6)

e Substitute p(o) into Z to find the free energy in terms of d:

d—4 (d+1)(4—d)
Fo_ (A7 16m X9 (6=d) (1 is-g)p(6ma)r(d=1))77
N2 T <2) r(%)(8—d)(d—4) (4r( 2 )I'( 2 )r( 2 ))

e d =4 and d =5 reproduces previous results:

8T2N2 [ A\ /2 N2 N2
d=4—¢: F4~7 e (87‘[‘2) ~7777|Og>\
16m3N2 /A \? AN2
d=5: Fo=——0 = (2 ) =20
> > 3\ <167r2> 487

e Consider d =3

d—>3+: F3:O
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BPS Wilson loops

e BPS Maldacena-Wilson loop is along the equator of S¢
(W) =Tr (Pe'§dx A“*’fds'd"’) ~ / dap(a)ezm.
—b
e Using the previous distribution p(c)
8—d
(W) = (b) 7T (254) lo_s (27b)

e d =4 and d = 5 reproduces previous results:

2
d=24": <W> = ﬁ /1(\/X) Erickson, Semenoff, Zarembo '00
e d = 3 has nontrivial behavior
1 . 24\1/3
d—3;: (W)= < (Ecosh(¢) —sinh(€)) , €= (37°N)
» d =3resultisexact for A >0. A1l (W)y=1+ (3”21’3)2/3

Verified holographlcally
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d=17

e For d > 6 the determinant is divergent and needs to be regularized.

[ee] (7,-2-
log Zi_10op(0) = D> 2(k*+1)log <1 + k;)

i<j k=1

= %ZZzag(HH)—a;}(k*2+k*4)+....

ij n=1

e Divergent piece with mode # cutoff ky has same form as action:
2o N> 07

e Renormalized coupling:

11 ko
)\ren B )\bare 4t
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d = 7 (continued)

e Analytically continued eigenvalue equation:

167T4N (7) (7) 2
N 0= Z G\oj), GY(oj) =2n(1— (0j)°)coth(may)
ren _j;él
0
1
_é 1 2 Central force (A>>1)

Eigenvalue force
Central force (A<<1)

e )., = 0o eigenvalue distribution (solved numerically)

. ] /—\E

°

» Eigenvalues not widely separated — wide sep. approx. not valid
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d = 7 (continued)

20 Central force (A<0)
; -1
o / e Continue A, <0
e C.0.M. is unstable
N - /[ ! : = SU(N) not U(N)
10
/ 2 Eigenvalue force

g,

— ) v 2 4 T 20 Y 20 0 T 37 38 39 40

e Large separation: d -7 = G(o;) — —27(0;)? sign(o)
1 473
plo) = 5(0(c+b)+d(c — b)), b=—
2 )\ren
o Free energy: Fy = 1287 N’
P <= Valid for
e Wilson loop: (W)7 = cosh (%) ~ exp (— i’;n) finite N
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Comparison to supergravity: S’

Supergravity dual for MSYM on S” : Bobev, Bomans, Gautason 2018

R2e2*/3 (1 1 ~ g2
2 2 2 .2 2 _ YM
d510 —? <de + dQ7 + E sinh P dQQ) 8s = (271')4[2
w of R 3 N, N6 2o
e =g (2gsN€s sinh p) , F = TVOIZ , H; = 7 - dp A vola

e Puzzle (Peet &Polchinski): Weakly coupled SYM appears dual to
weakly coupled SUGRA

e Resolution suggested by localization: gs <0, p — —p, H3 = —Hs.

27 /40



M* theory uplift

>

As p — oo, €?® — oo, uplift to M* theory (M theory with a (2,9)
signature Hull '98)

Solution lies on H2’2/ZN x §7 (Bobev, Bomans, Gautason 2018)
R2
ds*> = T (ds; +4dQ3)
ds} = dp? = =L (df? — cosh® tdy? + (N~ dw —sinh £ d))?)
G4 = 7% VOle,z

w is the direction along the time-like M* theory circle
ds? has an Ay_1 singularity at p = 0.
) 1/3
Dictionary: f11 = (_g(yznjr)i)
The usual holographic computations reproduce the free energy and
the the Wilson loop from localization Bobev, Bomans, Gautason, Nedelin,
JAM '19
Finite N is valid in sugra ltzhaki et. al. '98
We will see other examples of “negative coupling” later in this talk.
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Deformations

» We can squash the spheres and still maintain some of the
supersymmetry.

p
S2ptl. Z lzi]* =1
i—1

3d: ds? = R? (wy?|dzi? + w; 2[dzf?) . wi+wr =2

5d: ds? = R? (wy?|dzi? + w; 2|dzf® + w3 ?ldzsf?) ,  witwrtws =3
The isometry group is broken from SO(2p) — U(1)".

» In 4d we can consider the ellipsoid: |22 + |z|> + y?> =1
ds®> = R? (b?|dzi|> + b~2|dz|* + dy?)

Isometry breaks SO(5) — U(1) x U(1).

» The breaking of the isometry leads to more complicated partition
functions.
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N —

2* on the 4D ellipsoid

> We let 4 = MR for mass of adjoint hypermultiplet.

2N
Z = /dO’ exp <— 87T)\ tr U2> ZvethypZinSt

Zpee = H g ( (m+1)+ b7 (n+1))° <%a>2)
'y>0

m,n>0

X ((bm + b_ln)2 + (v, a>2)

Ze = [[ II (b(m+1/2)+ b7 (n+1/2) + i((r.0) + )~

Y m,n>0

x (b(m+1/2) + b~ (n+1/2) — i((7,0) + ) "

» b=1pu=0= ZcZhp=1 N =4on round 54
> b# 1 p=1(b—b"1) = ZrecZpyp = 1. Why?

» Turns out that there are 2 extra supersymmetries at the fixed points.

Naseer and Thull '21



N = 2* on the 4D ellipsoid for large \

7[_2
Z(b, ) = / [] dos [(oi e 5N 20 Zuy

i<j

» We can write the partition function in terms of Ty (icj;) functions
(cf. Nakayama '04), but we keep it in product form

Zvethyp -
oo n . -1
HHH 17(n72m)27’2 17(n72m+1+lp)2'y'2
i#j n=1m=1 (n + 10':1)2 (n + Io”’l)2
o~ () N 1
= exp| — -
(S5 S [err

XZ((n—2m)2p—(n—2m+1—|—ip)2p):|>
m=1
~ = ,/l—é, p= éﬁ:/, ol =20;/Q, Q=b+ b1

> The sum over n is divergent and needs to be regularized.
» Cutoff: n=RN, N =A/Q.
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N —

2* on the 4D ellipsoid for large A

ZecZugp = exp | (1+0°) DD (7)) he(0%. p)

i#j p=1
» For large (0}, p) = —log ' + log o, = — log A\ + log 0.
2 _8r? s g2
reg /HdJ’H U 4 +U‘ e X E,OV
1<j
» Saddle point equation

v
-n
=
[0
D
[0)
>
[0)
=
(]
<

v

Wilson loop
~

<W> = e?2r 4 +# Russo and Zarembo '12; Bobev, Elvang, Freedman, Pufu”13
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Other examples of “negative couplings”

» N'=2*on S$* u=MR

87T2 2
Z= do eXp\ ——= tro ZvethypZinst

20
o0
HH (k + {7, ¢o) k+1H (k+2+i(v, o))<
v k=1 k=0

Zhp =1 H [(k+ily, o) +ipt1) (k=ify, o) —ip+1)]

,%E.g?
zZ = /Hda;e g

o5(G(1+io5)G(1-ioy))?

A G mmeaio, it -mea-ite-m
xZn (foyip) Zs (ioyip)
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N — 2* on 54 Russo '14; Naseer, Thull, JAM unpub
» Saddle point (ignoring instantons)

12—7;0/ = E (UZ — 20 (Y(1 + ioy) + (1 + ioy))
0 # N
+(oij + 1) (b1 + i (o + p) + (1 — i (o5 + 1))

+(oj —p) (W1 +i (05— p)) + (1 —i (o5 — u)))) ;

> x| >1= YP(1+ix)+¢P(l—ix)~2log(x)
» Reduce to pure N’ = 2: Assume > |oj| > 1,

1672
—5-0i=4No;logp+4 E 0ij(1 — log |o)
80 j#i

J#i

. 1672
Rewrite as ——o0; = 420'7(1 — log o)),

Eym i
47?2 42 AR
—— =—% —Nlogu= —NIogT
8ym 8o
» Eigenvalues split in half: o =~ exp(—%) = ATR
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> Specialize to SU(2)

272 AR
logolp =1— —— =1+log —
8ym 2

» At strong coupling we should expect to reach the massless monopole
point (where the magnetic theory is weakly coupled).

A
Seiberg-Witten: o015 = §7R = (2.54565)%
T

AR
2
» Need to include instantons; modifies the saddle point equation

A
Localization: o120 =€ TR = (2.71828)

AR ARN\*
1linst. —4log (2) 012 +8 <;2> 01—23 = 4o13(1 — log o17) .

o =alk, = 2=2a%1-loga) = a~ 2.6023.
9 instantons: a &~ 2.5595
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N = 1% on S° Nedelin, 1AM 21

» This is closer to the 7D case.

e SU(N) N = 1* on round S°: Eigenvalue eq. in limit of large
hypermultiplet mass M

8N 2 472 472 ( 472 )
—o0i = 271(1 — % 03) coth o —=——=R - M
) ; (1=z0) ! A gl &N

Fo A=-01
o(#) olo)

- -
o s, E

Nedelin, JM 2020
e A\ — 0_: Coulomb branch SU(N) — SU(N/2) x SU(N/2) x U(1)

e Generate an effective coupling for U(1), gzz = f% >0
U(1)

e U(1) enhanced to SU(2).
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5D N =1 SU(2) Pure SYM at negative coupling

1,1 1,1
(1,1) 1.0 (-1,1)
1,1 1,1 ¥
(1,1) 1,0 (-1,1) ‘[
s 42 7 472
(0,1) <— E—’&\ (0,1) 01| “g, |01
|
1,1) (.0 (.1
1,0
(-1,1) 0.9 (1,1)
(a) g5y >0 (b) g2y <0,
2 2
mW:¢ymI:¢+gzi mW:¢'*22L,m/:¢’
YM YM
472
(rb/ = (UIZ + 2> 'Ril
Eym
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SU(2) in 7D

» In 7D instantons are membranes
e Membrane tension T = %60.
e R dependence suggests that do is not part of a vector multiplet.

e Membrane is minimally coupled to a three-form field
= Expect do to be in the same multiplet.

e Only such multiplet in 7D is the A/ = 2 graviton multiplet.

e Contains the graviton, the three-form C, an SO(1,2) triplet of
vector fields A’, and a real scalar p.

» Suggests that “negative coupling” regime is actually weakly coupled
supergravity.
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Summary

» We have given a uniform description for putting MSYM and its mass
deformed cousins on S9.

» We can generalize this to deformed spheres

» While localization is limited to only supersymmetric observables, it
can still provide a wealth of exact information.



THANKS!



Other stuff



Alternative 2D vector multiplet Lagrangian

» In 2 dimensions we can choose a different modification of the flat
space Lagrangian.

> (2,2) vector multiplet [A,,#°, ¢>,1]:
detp = 5T Faaw € + %r”'(blvu €

M,N=0...3, 1,J=03 a3=2 ap=0

» The vector multiplet Lagrangian is modified to

Lo = %TI‘ [%FMNFMN — 1/)@7/1 + %Tr¢3¢3 - g’:12(7253]
gYM r r
2
- L <F12 - <z>3> + Du3iD"¢! + 361,016, '] — 0y
8ym r

This is the Q-exact Lagrangian

» No change in chiral multiplet Lagrangian
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One-loop determinants (8 SUSY5)

> Instead of index theorems we will generalize Kim & Kim for 8 susy's
and Kapustin, Willet & Yaakov for 4 susy's

» Directly doing 16 susy's is harder this way
» In this talk we only consider mass deformations of maximal SYM
» Fluctuations about fixed point locus (Bosons)

Low = A" ON Ay —[Ag 1AM, ¢%] M =1...5

ON = 892 4 48 1+ 28(d — 3)el ;" "V,
= 48 <(d _01) O (3) :
Las(w) = 3 [or (~V2+8(d =2+ 2in)°) & — [6% dillo, 6]
i=a,b
—48(1—2i) 6V Vs p=mr

LR = Lo7 (1) + Log (—p).
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One-loop determinants (8 SUSY5)

» Fermion fluctuations
Lot = (pYy) — %(d —3)8v™ <wr0f,\7,/\¢) 0 (wrooow)
- (@ =3)8 (FA) (ur'ggu) + L5 (whw)

£ = () + (\PDox) = 35 (7 Ac) (T i)

+ 2i,u6v'\~l (Xrof,;,/\x) .
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One-loop determinants (8 SUSY5)

Following Kim and Kim we introduce basis vectors for the vm bosons:
Al = v Yo+ 'V Y
Aoy = el " NV, Y 4+ PV 5 Vi
Ay = el " TV, Y
Al = el ' TV, Y
VWivg =1 V'V, Yk =2imBY,
(OA)}\;,:4B2[k(k+d—1)+(d—1)}A1~—4ﬁ( >A2
(OA); = —48°2(d — 1)k(k +d — 1) A, + 48°k(k + d — 1)A%,.
OAL = 4 [k(k +d—1)+(d — 22 Al +ic”(d — 3)mAﬂ . 1,J=34
eigenvalues:

487K, k>2 m#+k and  48%(k+d—1)%

4> [k(k+d—1)+(d—2)2i(d—3)m]. (H) m#+k (=) m# —k
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One-loop determinants (8 SUSY5)

Basis spinors for vm fermions
Xl = Y,l,;'r] X2 = For,\hﬁm\/:,?]
X =Yk X =", Vi
n=@+iMe = (r®+i%)e
Mg =in, % =—ir%3, vMgn, erMﬁ =7,
For k > 1, m # k determinants:
48 k(k+d —1), 48 [k(k+d—1)+(d—2)*+ m(d —3)]

For k > 0, m = k: eigenvalues
2iB(k+d—1), 2iB(k+d—2)

Detr, H H(k+ (8, d0)) D(k,k,d)H(k+d 24 i(B, ¢0>) (k,k,d)

Detb’v BEroots k=1
where we have included the contribution of the constant bosonic field ¢g
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Deformed Chern-Simons

Z(b; my, mp, m3) =
ez (b—bHM(M?— 1)/ dVtMpdNy ek (T vi -5, 13)
NI(N + M)!

X H 4sinh (wb(pa — pp)) sinh (b~ Yua — b))
a>b

H4sinh (mb(vj — v})) sinh (7rb_1(1/,- - )

i>j

iQ my + my + m3 iQ my — my — m3
1o [2 (s P [2 (s o)
i,a 4 2 4 2

Q —my—ma + Q —my 4 my
XSp ['7 - (—ua + i+ W)} b ['7 - (—ua + i+ W)

mb—|—nb‘1+%—ia
SplOo) =
»0) = 1] mb+nb~1+ 2 + o
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