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History: motivation for the critical endpoint

[Rajagopal 95, Halasz et al., PRD 98, Stephanov, Rajagopal, Shuryak PRL 98, 
 Rajagopal, Wilczek 00, Hatta, Ikeda, PRD 03,…]

Model predictions, no full QCD information

Model predictions, 
early lattice results

Breaking/restoration of exact chiral symmetry requires a (non-analytic) phase transition
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.

Tricritical point + wing line

Triple line



Other (mostly ignored) possibilities

Knowledge of the chiral phase transition at               narrows down possibilities          
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[Pisarski, Wilczek, PRD 84]: 
(Linear sigma model in 3d) 
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U(1)A
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Nf � 3 1st order
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Nf = 2 + 1



The Columbia plot with chemical potential
The thermal phase transition at imaginary µ
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Chiral critical surface goes smoothly from imag. to real      
[de Forcrand, O.P. JHEP 07]

Chiral+deconfinement transition weaken with real, strengthen with imag.  
 
Phys. point “deeper” in crossover region than for zero density 
 
 
 
 
 
 
 
 
 
 
 

First-order region in RW plane shrinks towards continuum  
 

µ
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[Wu, Meng PRD 17, Czaban et al., PRD 16,  O.P., Sciarra 19]
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Nf = 2 + 1

[Stephanov, Rajagopal, Shuryak PRL 98]:

“As        is reduced from infinity, the tricritical point … moves to lower    until it reaches
 the T-axis and can be identified with the tricritical point in the            -plane”
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.

– 6 –
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and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.
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and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.
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Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.

– 6 –



Methodology to determine order of transition
<latexit sha1_base64="0KPeC0HEKTuSAL1KBEnchAYzI90="></latexit>

Bn =
h( ̄ � h ̄ i)ni

h( ̄ � h ̄ i)2in/2

 
 
Finite size scaling of generalised 
cumulants

(Pseudo-critical) phase boundary:                                   3d manifold                    
<latexit sha1_base64="ySGvBe1KlLl7pUhgxJ06fkYLB+c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1ItQ6sVjBdMW2lA22027dLMJuxOhlP4GLx4U8eoP8ua/cdvmoNUHA4/3ZpiZF6ZSGHTdL6ewsrq2vlHcLG1t7+zulfcPmibJNOM+S2Si2yE1XArFfRQoeTvVnMah5K1wdDvzW49cG5GoBxynPIjpQIlIMIpW8uu98xu3V664VXcO8pd4OalAjkav/NntJyyLuUImqTEdz00xmFCNgkk+LXUzw1PKRnTAO5YqGnMTTObHTsmJVfokSrQthWSu/pyY0NiYcRzazpji0Cx7M/E/r5NhdB1MhEoz5IotFkWZJJiQ2eekLzRnKMeWUKaFvZWwIdWUoc2nZEPwll/+S5pnVe+y6t5fVGr1PI4iHMExnIIHV1CDO2iADwwEPMELvDrKeXbenPdFa8HJZw7hF5yPb68FjfI=</latexit>

B3 = 0

Standard staggered fermions, bare parameters:       
<latexit sha1_base64="jf0zMmquQgfWV/5ARmQ9mRd6Ipg=">AAAB/HicbVBNS8NAEN34WetXtUcvwSJ4KCURUY9FL56kgv2AJoTJdtMu3XywOxFCqH/FiwdFvPpDvPlv3LY5aOuDgcd7M8zM8xPBFVrWt7Gyura+sVnaKm/v7O7tVw4OOypOJWVtGotY9nxQTPCItZGjYL1EMgh9wbr++Gbqdx+ZVDyOHjBLmBvCMOIBp4Ba8ipVx2cIdQjrd16gy0FIvUrNalgzmMvELkiNFGh5lS9nENM0ZBFSAUr1bStBNweJnAo2KTupYgnQMQxZX9MIQqbcfHb8xDzRysAMYqkrQnOm/p7IIVQqC33dGQKO1KI3Ff/z+ikGV27OoyRFFtH5oiAVJsbmNAlzwCWjKDJNgEqubzXpCCRQ1HmVdQj24svLpHPWsC8a1v15rXldxFEiR+SYnBKbXJImuSUt0iaUZOSZvJI348l4Md6Nj3nrilHMVMkfGJ8/omeUHg==</latexit>

�, am,Nf , N⌧

Second-order 3d Ising:                              

2d chiral critical surface
separates 1st order  
from crossover                    

3 Lattice simulations and analysis

For our numerical investigation, we work with the standard unimproved Wilson gauge
and staggered fermion actions. All numerical simulations have been performed using the
publicly available OpenCL-based code CL

2
QCD, which is optimised to run e�ciently on AMD

GPUs and contains an implementation of the RHMC algorithm for unimproved rooted
staggered fermions. In particular, version v1.0 [34] has been employed for simulations on
smaller N· on the L-CSC supercomputer, while version v1.1 [35] has been run on the newer
Goethe HLR supercomputer to run the most costly simulations. To e�ectively handle the
thousands of necessary simulations, the BaHaMAS software [36] has been extensively used.

Our goal is to determine the location and order of chiral phase transitions in the
four-dimensional space spanned by the dimensionless parameters of our lattice action: the
lattice gauge coupling —, the bare quark mass in lattice units am, the number of degenerate
quark flavours Nf, and the number of time-slices N· . For any fixed value of N· and Nf, we
achieve this by making use of two particular standardised moments,

Bnp—, am, N‡q “ xpO ´ xOyqny
A

pO ´ xOyq2
En{2 , (3.1)

where the chiral condensate has been chosen as observable, O “ Â̄Â, as it becomes
the order parameter of the thermal phase transition in the chiral limit. In particu-
lar, to extract the order of the transition as a function of the quark mass, we evalu-
ate the kurtosis B4p—c, am, N‡q [37] of the sampled xÂ̄Ây distribution, where —c denotes
the (pseudo-) critical coupling of the phase boundary, for which the zero-skewness con-
dition B3p— “ —c, am, N‡q “ 0 holds. In the thermodynamic limit N‡ Ñ 8, the kurtosis
B4p—c, am, N‡q takes the values of 1 for a first order transition and 3 for an analytic cros-
sover, respectively, with a discontinuity when passing from a first order region to a crossover
region via a second order point; for the 3D Ising universality class of interest here, it takes
the value 1.604 [38]. On finite, increasing volumes this discontinuity is smoothed out and
approached gradually with a rate characteristic of the universality class in question,

B4p—c, am, N‡q « 1.604 ` c pam ´ amcq N
1{0.6301
‡ with c P R . (3.2)

Data have been analysed in a completely analogous way to that explained in Refs. 18, 39
and, in particular, the critical mass amc has been extracted at fixed N· and Nf by fitting
the kurtosis data according to this finite size scaling formula.

The outcome of all fits can be found in Table 1, where also the simulated mass range
has been included. In appendix A a detailed overview of the simulations can be found.
To give an idea of the numerical e�ort: over 400 values of — have been simulated in total,
producing about 60 millions of trajectories.

There is a new aspect of the data analysis, which is worth mentioning here. Since the
subsequent analysis presented in section 4 heavily relies on the outcome of the B4-fits , we
decided to cross-check the error estimate on amc using a more accurate procedure. Values
of B4p—c, am, N‡q are obtained using the multiple-histogram method [40], and their error
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1st order scenario:                                                                         incompatible!

The chiral transition is second order for                                                                                                                                                                                             

crossover

1st

[Cuteri, O.P., Sciarra 21] 1st order scenario does not fit!
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mc(a) = mc(0) + c1(aT ) + c2(aT )
2 + . . .
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Nf = 2� 6



Nf=3 O(a)-improved Wilson fermions

[Kuramashi et al. PRD 20]  
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mc
⇡  110 MeV N⌧ = 4, 6, 8, 10, 12

Re-analysis using:

1st

with fipxq an interpolating operator for the pseudoscalar meson and a renormalisation
factor Z. Approaching the chiral limit, the pseudoscalar meson mass and the quark mass
are related as in the continuum,

am
2
P S 9 amq . (5.4)

It is therefore customary to define Ÿcp—q by the vanishing of the pseudoscalar meson mass in
the vacuum, i.e., amP SpŸcp—q, —q “ 0 at N· “ 8. This is shown schematically as a dashed
line in figure 9 (left). Towards the strong coupling region, this line meets the parity-flavour
violating Aoki phase [40, 41], which ends in a cusp [42, 43] whose location depends on
the lattice action and the value of N· . Around Ÿcp—q, Wilson chiral perturbation for the
theory predicts a metastability region corresponding to a first-order bulk transition between
positive and negative quark mass, while the meson mass stays finite everywhere, both for
untwisted and twisted mass [44, 45]. A metastability region has been identified numerically
at zero temperature [46] as well as at finite temperature [47, 48], but its location and extent
depend strongly on the chosen action and N· [49].

The series of Nf “ 3 data [15, 20, 21], which we re-analyse below, is based on the
RG-improved Iwasaki gauge action [50] and a non-perturbatively Opaq-improved Wilson
clover fermion action [51]. We are not aware of a dedicated study of the bare phase diagram
pertaining to the precise action and parameter tunings used in those simulations, besides
determining the line Ÿcp—, N· “ 8q. However, a previous study using the same action with
a mean-field tuning of the clover coe�cient [52] reports a phase diagram as sketched by the
dashed lines in figure 9, with no additional structures besides an Aoki phase in the strong
coupling region, so we will base our discussion on this situation.

First, it has to be emphasised that for studies of the thermal phase transition we need
the lines Ÿcp—, N· q for the finite N· under consideration, and not Ÿcp—, N· “ 8q, which is
only needed to set the scale. The former marks the vanishing of the pseudoscalar screening
mass in the low temperature phase, and is related to the latter by an expansion in powers
of N

´1
· “ aT ,

Ÿcp—, N· q “ Ÿcp—, 8q ` G1p—q N
´1
· ` G2p—q N

´2
· ` O

`
N

´3
·

˘
. (5.5)

In the literature the di�erence between the two is often dismissed, being of Opaq, whereas
in fact it is qualitatively crucial. The partition function at finite N· has no singularities on
the line Ÿcp—, 8q (except at its crossings with the thermal transition). Furthermore, the
subtracted chiral condensate has finite values with di�erent signs across Ÿcp—, N· q, which
should therefore mark a first-order transition2. Following this line with increasing — at fixed
N· , the thermal chiral phase transition is reached at some critical coupling. From this point
the thermal transition lines Ÿtp—, N· q branch o� into the positve and negative quark mass
directions, respectively, along which the chiral transition weakens to end in a critical point.
At the branching point the line Ÿcp—, N· q should terminate, since on the large-—-side of
the thermal transition the Matsubara modes „ 2fiT produce an always non-zero screening
mass and the subtracted chiral condensate can pass through zero smoothly. The branching

2
For the order of this transition it is immaterial whether the pseudoscalar screening mass is actually

zero on the line, or whether it jumps between finite values.

– 18 –

                                                                           Tricritical scaling! 

Nf=3 consistent with staggered, 2nd order in chiral continuum limit!
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[Cuteri, O.P., Sciarra, JHEP 21]
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The Columbia plot in the continuum
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T 0
c = 135(8)MeV
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T 0
c = 98(6)MeV
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Tpc = 156(3)MeV

[HotQCD PRD 22]

Universality class(es)?

[HotQCD PRL 19]

[Cuteri, O.P., Sciarra JHEP 21]

HISQ, crossover 
down to 

[Zhang et al., PoS LAT22, 23]Crossover for DW fermions, Nf=3,  
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U(3)L ⇥ U(3)R
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m⇡ ⇡ 80 MeV

•  expansion:  1st order phase transition

                           in the chiral limit for Nf = 3

ϵ

 [R. D. Pisarski,  F.  Wilczek PRD 84]

The nature of QCD phase transition at μB = 0

2

Columbia plot

• Possible 2nd order phase transition in the Nf = 3 
chiral limit:   [G. Fejos,  PRD 22]

[S. R. Kousvos,  A. Stergiou SciPost 23]
[J. Bernhardt, C. S. Fischer PRD 23]
[R. D. Pisarski, F. Rennecke PRL 24]
[G. Fejos, T. Hatsuda PRD 24]
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b) Imaginary chemical potential

Repeat study of Columbia plot with
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µ = i 0.81⇡T/3

1st-order region not connected to continuum limit!

Same situation as
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µ = 0Results - am-aT -plane: µi = 0 (Cuteri, Philipsen, and Sciarra 2021)
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Tricritical scaling formula for (aT )c

(aT )c(am, Nf) =

(aT )tric(Nf) + E1(Nf)(am)2/5 + E2(Nf)(am)4/5

critical lines are LO+NLO interpolations

results are non-zero (aT )tric(Nf)

first-order region not continuously connected
to continuum limit up to Nf = 6

implies second-order chiral phase transition
in the continuum

identical qualitative behavior for
µi = 0.81⇡T/3 and µi = 0

Reinhold Kaiser (ITP Frankfurt) The QCD chiral PT with imaginary µ 30/07/2024 9 / 14

crossover
1st

[D’Ambrosio, Kaiser, O.P.,  PoS LAT 22 + in preparation]



Imaginary chemical potential, improved actions

[Bonati et al., PRD 19]  
stout-smeared staggered 
 
 
 

[Bielefeld+Frankfurt, PRD 22]    
HISQ      
 
 

No sign of 1st-order phase transition!  

Consistent with DSE approach [Bernhardt, Fischer, PRD 23]

Entire chiral critical surface moves to massless limit                                                                                                                                
  
                                                            

The physical point at imaginary µ
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No sign of crossing into first order region 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ν γ γ/ν 1/ν
3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
Tricritical 1/2 1 2 2
1st Order 1/3 1 3 3

TABLE III: Critical exponents relevant to our finite size scal-
ing analysis (see, e.g., Refs. [81–83]).

should lie on a universal scaling curve when plotted as a

function of (β − βRW )L1/ν
s .

The critical exponents which are relevant to our anal-
ysis are reported in Table III. Apart from first order and
3D-Ising exponents, we also report tricritical indexes:
they are expected to describe the critical behavior ex-
actly at the separation point between the first order and
the second order region, however, before the thermody-
namic limit is really approached, they could describe the
critical behavior in a finite neighborhood of the tricritical
point [84].

A plot of χL/L
γ/ν
s vs. (β − βRW )L1/ν

s for the three
different masses is reported in Figs. 3, 4 and 5, respec-
tively for first order, 3D-Ising and tricritical indexes. It
clearly appears that a first order transition is excluded for
all masses, while a reasonable scaling is obtained when
considering both the 3D-Ising and the tricritical critical
behavior.
As a further confirmation of the absence of a first order

transition for all explored masses, in Fig. 6 we report, just
for the lowest quark mass, aml = 0.00075, the probability
distribution of the plaquette and of the unrenormalized
quark condensate at the critical point for the different
lattice sizes. A vague double peak structure is visible only
in the distribution of the chiral condensate and for small
Ls, however it tends to disappear as the thermodynamic
limit is approached.
Therefore, our results suggest that a chiral first order

region, if any, is limited to a region of pion masses be-
low 50 MeV. There are of course many systematics that
should be considered before drawing a definite conclu-
sions. First of all, as we have already discussed, our
approach to the chiral limit actually means that just one
pion becomes massless, while all other pion masses stay
above 400 MeV. Therefore one should repeat this study
with significantly larger values ofNt (smaller lattice spac-
ings), so that also the other pions become lighter. In prin-
ciple, additional chiral degrees of freedom could change
the scenario and make the first order region larger, even
if this is at odds with the common experience of shrink-
ing of first order regions as the continuum limit is ap-
proached. Unfortunately, going to significantly larger
values of Nt is not feasible with our present computa-
tional resources, so this is left for future work.
A second remark regards the lattice sizes that we have

adopted in our study, in particular the maximum values
of aLsmπ that we have reached are 2, 3, and 4 respec-
tively for aml = 0.00075, aml = 0.0015 and aml = 0.003.
The values are not particularly large, especially for the
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FIG. 4: Finite size scaling for the susceptibility of the
Polyakov loop according to 3D-Ising critical indexes. From
top to bottom: aml = 0.003, aml = 0.0015 and aml =
0.00075.

lowest explored quark mass. However, we have seen no
significant deviation from a second order scaling, and no
signal for the development of a double peak structure
as the volume is increased; on the contrary, some weak
double peak signals visible in the chiral condensate distri-
bution for small Ls have shown a tendency to disappear
when going to larger volumes.
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 Roberge-Weiss plane with improved actions:

[Bonati et al., PRD 19]:  
staggered, stout smearing,  
 
quark mass scan down to                         ,                 
fixed

[HotQCD, PoS CORFU 18] and ongoing:  
HISQ,  
 
quark mass scan down to  
fixed 

No sign of crossing into first order region 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TABLE III: Critical exponents relevant to our finite size scal-
ing analysis (see, e.g., Refs. [81–83]).

should lie on a universal scaling curve when plotted as a

function of (β − βRW )L1/ν
s .

The critical exponents which are relevant to our anal-
ysis are reported in Table III. Apart from first order and
3D-Ising exponents, we also report tricritical indexes:
they are expected to describe the critical behavior ex-
actly at the separation point between the first order and
the second order region, however, before the thermody-
namic limit is really approached, they could describe the
critical behavior in a finite neighborhood of the tricritical
point [84].

A plot of χL/L
γ/ν
s vs. (β − βRW )L1/ν

s for the three
different masses is reported in Figs. 3, 4 and 5, respec-
tively for first order, 3D-Ising and tricritical indexes. It
clearly appears that a first order transition is excluded for
all masses, while a reasonable scaling is obtained when
considering both the 3D-Ising and the tricritical critical
behavior.
As a further confirmation of the absence of a first order

transition for all explored masses, in Fig. 6 we report, just
for the lowest quark mass, aml = 0.00075, the probability
distribution of the plaquette and of the unrenormalized
quark condensate at the critical point for the different
lattice sizes. A vague double peak structure is visible only
in the distribution of the chiral condensate and for small
Ls, however it tends to disappear as the thermodynamic
limit is approached.
Therefore, our results suggest that a chiral first order

region, if any, is limited to a region of pion masses be-
low 50 MeV. There are of course many systematics that
should be considered before drawing a definite conclu-
sions. First of all, as we have already discussed, our
approach to the chiral limit actually means that just one
pion becomes massless, while all other pion masses stay
above 400 MeV. Therefore one should repeat this study
with significantly larger values ofNt (smaller lattice spac-
ings), so that also the other pions become lighter. In prin-
ciple, additional chiral degrees of freedom could change
the scenario and make the first order region larger, even
if this is at odds with the common experience of shrink-
ing of first order regions as the continuum limit is ap-
proached. Unfortunately, going to significantly larger
values of Nt is not feasible with our present computa-
tional resources, so this is left for future work.
A second remark regards the lattice sizes that we have

adopted in our study, in particular the maximum values
of aLsmπ that we have reached are 2, 3, and 4 respec-
tively for aml = 0.00075, aml = 0.0015 and aml = 0.003.
The values are not particularly large, especially for the
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FIG. 4: Finite size scaling for the susceptibility of the
Polyakov loop according to 3D-Ising critical indexes. From
top to bottom: aml = 0.003, aml = 0.0015 and aml =
0.00075.

lowest explored quark mass. However, we have seen no
significant deviation from a second order scaling, and no
signal for the development of a double peak structure
as the volume is increased; on the contrary, some weak
double peak signals visible in the chiral condensate distri-
bution for small Ls have shown a tendency to disappear
when going to larger volumes.
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Columbia plot with chemical potential

The thermal phase transition at imaginary µ
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Chiral critical surface goes smoothly from imag. to real      
[de Forcrand, O.P. JHEP 07]

Chiral+deconfinement transition weaken with real, strengthen with imag.  
 
Phys. point “deeper” in crossover region than for zero density 
 
 
 
 
 
 
 
 
 
 
 

First-order region in RW plane shrinks towards continuum  
 

µ
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[Wu, Meng PRD 17, Czaban et al., PRD 16,  O.P., Sciarra 19]
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This is opposite to the “traditionally expected” scenario with crit. point:

Critical point not ruled out,
requires additional critical surface

Class of low energy models now ruled out! 

Tuning of parameters for                       theory with critical point at             ! 
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If we take these results seriously:



Summary: constraints on the critical point

‣ Ordering of critical temperatures  

‣ Cluster expansion model of lattice fluctuations 

‣ Singularities, Pade-approx. fluctuations 

‣ Direct simulations with refined reweighting

‣ Consistent with DSE, fRG         
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23) [O.P.  Symmetry 21] 
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µcep
B > 2.5T, T < 125 MeV  [Bollweg et al. PRD 21] 
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µcep
B > 2.5T  [Wuppertal-Budpest collaboration, PRD 21] 

 [Vovchenko et al. PRD 18] 
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served charge distributions. Importantly, computations
at finite density are not obstructed by the sign problem
as for lattice QCD, and are only limited by the compu-
tational resources required for computations in reliable
approximations. By now functional QCD can access the
regime with µB/T . 4 with quantitative precision, and
allows for qualitative estimates in the regime µB/T & 4.
For recent reviews see [19–21].

These functional QCD studies have passed through
strict benchmark tests in the regime of µB/T . 2 � 3,
where the respective results on the phase structure and
on fluctuations can be compared with results from lattice
QCD simulations, see e.g. [22–28] and the recent review
[29]. Hence, they represent themselves a self-consistent
analytic continuation from QCD with µB/T . 3. Ac-
cordingly, results from functional QCD at µB/T & 3
are not only fully compatible with constraints from ana-
lytic extrapolations based on lattice data, see e.g. [29–32],
their reliability qualitatively surpasses that of analytic
extrapolations as they are based on solving dynamical
equations in QCD.

The present fRG approach with a QCD-assisted LEFT
relies on results and technical advances in the description
of first-principles QCD at finite temperature and density
with the fRG put forward in [2], based on [33–40] in the
vacuum and at finite temperature. The construction of
a quantitatively reliable LEFT is facilitated by the fact
that the glue dynamics decouple very e�ciently due to
the gluonic mass gap of QCD at energy scales of about
1GeV [2, 20, 21]. This entails that low energy QCD is
well described by the respective emergent LEFT: QCD
without gluonic fluctuations but in a gluonic background.
Moreover, quantitative precision is then obtained by us-
ing the fRG to match the RG flows of QCD to those
of the LEFT. This set-up has been named QCD-assisted
LEFT, and a first study including a detailed discussion
of the setup has been presented in [12].

In the present work we aim for quantitative preci-
sion and reliable predictions at high densities. This is
achieved by directly evolving the RG flow of quark-meson
scattering processes obtained in first-principles QCD in
[2] in our LEFT. These processes encode the correlations
between quarks and gluons in the channel that carries
the dynamics of the chiral condensate. This allows us
to accurately capture the CEP as it arises in QCD at
large µB , while being in excellent agreement with lattice
data at small µB . The CEP in the present QCD-assisted
LEFT is located at

(TCEP, µBCEP) = (98, 643)MeV , (1)

consistent with the constraint

600MeV . µBCEP
. 650MeV , (2)

in full functional QCD, [2, 16–18]. Variations of the CEP
location within this regime are possible and we shall
use them later for an investigation of the experimental
imprints and properties of the regime around the CEP.

The details of our setup can be found in the supplement.

Baryon number fluctuations at freeze-out.– In the
present work we use vanishing chemical potentials for the
electric charge and strangeness, as the e↵ects of the corre-
sponding charge conservation are subleading for baryon-
number fluctuations [41–43]. We thus compute the grand
potential ⌦[T, µB ] and extract from it the pressure,

p =� ⌦[T, µB ] , (3)

and the generalised susceptibilities,

�B
n =

@n

@(µB/T )n
p

T 4
. (4)

The �B
n are directly related to the cumulants of the net-

baryon number distribution, whose proxy, the net-proton
distribution, can be measured in the experiments [44].
The cumulants of the lowest four orders, the mean value
M , the variance �, the skewness S and the kurtosis ,
are given by

M

V T 3
= �B

1 ,
�2

V T 3
= �B

2 , S =
�B
3

�B
2 �

,  =
�B
4

�B
2 �

2
, (5)

where we have already divided out the volume depen-
dence. The latter is naturally absent in the ratio between
two susceptibilities of di↵erent orders,

RB
nm =

�B
n

�B
m

. (6)

These ratios have been computed in equilibrium and at
vanishing density in lattice QCD, e.g. [27, 45–47] and
with functional methods both at vanishing and finite den-
sity, e.g. [12, 48–52].
In particular in the regime of low collision energy, high-

order baryon number fluctuations are significantly sup-
pressed by global baryon number conservation, [53–55].
In order to accurately describe the relevant features of
the medium created in heavy-ion collisions, this is taken
into account here by considering canonical corrections to
grand canonical susceptibilities. To this end, we adopt
the subensemble acceptance method (SAM) as proposed
in [54]. In SAM the ratio between the subensemble vol-
ume, V1, measured in the acceptance window and that
of the whole system, V , is given by ↵ = V1/V . In
the thermodynamic limit, where both sizes of total- and
sub-systems are significantly larger than the correlation
length ⇠, the measured cumulants in the sub-system ap-
proach the grand canonical values discussed above when
↵ ! 0. When the e↵ect of global baryon number conser-
vation begins to play a role, the parameter ↵ develops a
nonzero value and canonical corrections apply.
We fix ↵ with the most sensitive and well-observed

ratio of low-order fluctuations. This is R32, for which
the experimental data show a significant flattening forp
sNN . 11.5GeV which is not seen in R32 computed

within the grand canonical ensemble. We attribute a siz-
able part of it to the increasing importance of canonical
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all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is
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= exp
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R
L
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. (4)

In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV
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all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.
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condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,
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An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as
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ducible representation are
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In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [27, 28],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [22]. The SU(2)CS chiral spin transformations are defined by
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�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

In Minkowski space in a given reference frame the quark-gluon interaction can be split into temporal and spatial
parts:

 �
µ
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0
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Di  , (29)

where
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The temporal term includes the interaction of the color-octet charge density

 ̄(x) �0
t

2
 (x) =  (x)†

t

2
 (x) (31)

with the chromo-electric component of the gluonic field. It is invariant under SU(2)CS [28]. We emphasize that the
SU(2)CS transformations defined in Eq. (26) via the Euclidean Dirac matrices can be identically applied to Minkowski
Dirac spinors without any modification of the generators. The spatial part contains the quark kinetic term and the
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all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,
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An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as
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In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
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The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,
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where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV

CS invariant breaks CS
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[⌃a, �0] = 0, [⌃a, �i] 6= 0,

Necessary condition for approximate CS symmetry: 

Quantum effective action  dynamically dominated by colour-electric interactions! 

II.  Emergent chiral spin symmetry
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We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

V. RESULTS

In Fig. 1 we compare the spatial correlators for a wide range of temperatures from T ⇠ 220 MeV to 960 MeV to
give an impression of the changing behavior observed for di↵erent values of T . The correlators are shown as a function
of the dimensionless combination zT = nz/Nt (compare Eq. (41)) using the full range of nz values – up to periodicity.
In order to compare di↵erent correlators without a proper renormalization, our correlators are normalized to 1 at
nz = 1. Because of the degeneracy of x and y components in vector operators we show only the correlators for the x

components.
The top left panel of Fig. 1 shows correlators at a temperature of T ⇠ 220 MeV, i.e., 1.2Tc. All correlation

functions of chiral partners are degenerate within errors. In detail, this are the two pairs (Vx, Ax) and (Vt, At), each
of which reflects SU(2)R ⇥ SU(2)L symmetry. U(1)A symmetry in the vector channel, represented by the operator
pairs (Tx, Xx) and (Tt, Xt), is manifest for all ensembles. For the scalar (PS, S) pair we find the restoration of U(1)A
symmetry to be heavily dependent on the parameters. As it is evident from the top left panel of Fig. 1, PS and S are
degenerate within errors for our finest lattice. On the coarser 32⇥ 8 ensemble at 220 MeV we find a visible di↵erence
of PS and S correlators consistent with previous findings in literature, e.g. the data for staggered quarks presented
in Fig. 7 of Ref. [19].3

For temperatures between T ⇠ 220 – 500 MeV the correlators are grouped into three distinct multiplets4:

E1 : PS $ S , (43)

E2 : Vx $ Tt $ Xt $ Ax , (44)

E3 : Vt $ Tx $ Xx $ At . (45)

Possible splittings within each of these multiplets are obviously much smaller than the distances between the multiplets.
The multiplet structure reflects the symmetries as follows: The multiplet E1 indicates the restoration of U(1)A
symmetry. Degeneracies within the multiplets E2 and E3 reflect the larger symmetries SU(2)CS and SU(4) as
discussed in the previous section.

The formation of the multiplet E3 is not necessarily a consequence of the SU(2)CS and SU(4) symmetries as
the same degeneracy of correlators is seen also for non-interacting quarks (15) and can be attributed to current
conservation. Consequently from the observation of the E3 multiplet alone we could not claim the emergence of the
SU(2)CS and SU(4) symmetries. However, the E2 degeneracy is not manifest in the free quark system (15) and
indeed can be attributed to the emergent SU(2)CS and SU(4) symmetries.
We speak of separate multiplets when the splittings within the multiplets are much smaller than splittings between

di↵erent multiplets. All correlators connected by chiral U(1)A and SU(2)L ⇥ SU(2)R transformations are indistin-
guishable at all temperatures. At temperatures above T ⇠ 600 MeV we observe that the distinct multiplet E2, related
to emergence of the SU(2)CS and SU(4) symmetries, is washed out. The remaining E3 multiplet structure can be
attributed to quasi-free quarks.
In Fig. 2 we now focus on the E1 and E2 multiplets at three di↵erent temperatures. For comparison we also show

the corresponding correlators computed for free quarks (dashed lines). The latter correlators are obtained with the
same lattice Dirac operator and lattice size as used for the full QCD but now with a unit gauge configuration. We
note that for free quarks only those degeneracies exist that are predicted by the chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries.
For the lowest temperature T ⇠ 220 MeV we still observe a small residual splitting within the E2 multiplet, while

at T ⇠ 380 MeV the di↵erence nearly vanishes. Furthermore, there is a clear splitting between the E1 and E2

multiplets indicating SU(2)CS and SU(4) symmetries. In addition all correlators are well separated from their free
quark counterparts shown as dashed curves.

3 For detailed studies of U(1)A symmetry around Tc see e.g. [21] or [24]. The latter study uses the same simulation setup as the present
work.

4 Note that in E2 and E3 we leave out the y components which are exactly degenerate with the respective x components explicitly listed
in E2 and E3.
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Spatial correlators: [Rohrhofer et al., PRD 19] 

 JLQCD domain wall fermions at phys. point 

confirmed by [Chiu, arxiv:2302.06073]

10-2

10-1

100

0.1 0.2 0.3 0.4 0.5

PS, S

b1, �(1/2,1/2)b

a1, �(1,0)+(0,1)

non interacting

C
(t)

 / 
C

(t=
1)

tT
0.1 0.2 0.3 0.4 0.5

10-2

10-1

100

PS, S

b1, �(1/2,1/2)b

a1, �(1,0)+(0,1)

full QCD

C
(t)

 / 
C

(t=
1)

tT

PS
S

�(0,1)+(1,0)
a1

�(1/2,1/2)b
b1

FIG. 2. Temporal correlation functions for 483⇥12 lattices. The l.h.s. shows correlators calculated

with free noninteracting quarks on the same lattice, and features a symmetry pattern expected from

chiral symmetry. The r.h.s. presents full QCD data at a temperature of T = 220MeV (1.2Tc),

which shows multiplets of all U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4) groups.

On the left side of Fig. 2 we show the correlators calculated with free, noninteracting

quarks on the same lattice with the same Dirac action (the gauge operator U is set to 1).

Dynamics of free quarks are governed by the Dirac equation and only chiral symmetries

exist. Indeed, a multiplet structure in this case is very di↵erent as compared to the right

side of Fig. 2 and only degeneracies due to U(1)A and SU(2)L ⇥ SU(2)R symmetries are

seen in meson correlators calculated for free quarks. The pattern seen on the left of Fig. 2

reflects correlators at a very high temperature, since due to the asymptotic freedom at very

high T the quark-gluon interactions can be neglected.

While we observe practically exact chiral symmetries, the SU(2)CS and SU(4) symme-

tries are only approximate. A degree of the symmetry breaking can be evaluated via the

parameter ,

 =
C

(1,0)�(0,1)
⇢ � C

(1/2,1/2)
⇢

C
(1,0)�(0,1)
⇢ � CS

, (11)

that measures the splitting within the SU(2)CS multiplet relative to the distance between

di↵erent multiplets. With this definition, good symmetry implies || ⌧ 1.

The degree of the symmetry breaking obviously depends on the dimensionless variable

tT . At tT ⇠ 0.5 the breaking is tiny, as can be seen from Fig. 3. For the noninteracting

quarks there is no SU(2)CS symmetry and in infinite volume || ⇠ 1 [13].
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FIG. 1. Transformations between interpolating vector operators, i = 1, 2, 3. The left columns

indicate the chiral representation for each operator. Red and blue arrows connect operators that

transform into each other under SU(2)L ⇥SU(2)R and U(1)A, respectively. Green arrows connect

operators that form triplets of SU(2)CS , k = 4. The f1 and a1 operators are the SU(2)CS , k = 4 –

singlets. Purple arrows show the 15-plet of SU(4). The f1 operator is a SU(4)-singlet.

Transformation properties of the local J = 1 quark-antiquark bilinears O�(x, y, z, t) with

respect to SU(2)L ⇥ SU(2)R and U(1)A are given on the left side of Fig. 1 and those with

respect to SU(2)CS, k = 4 and SU(4) on the right side of Fig. 1 [6]. Emergence of the

respective symmetries is signalled by the degeneracy of the correlators (9) calculated with

operators that are connected by the corresponding transformations.

III. METHODOLOGY

The lattice data presented in the next section is calculated on JLQCD gauge configura-

tions with NF = 2 fully dynamical domain wall fermions ([9, 16]). The length of the fifth

dimension for the fermions is chosen as L5 = 16, to ensure good chiral symmetry [14].

The quark propagators are computed on point sources after three steps of stout smearing.

The fermion fields obey anti-periodic boundary conditions in time direction. For the gauge

part we use the Symanzik-improved gauge action with an inverse gauge coupling �g =

4.3 (a = 0.075 fm). The time extent of the lattices is Nt = 12, which corresponds to a

temperature of T ' 220 MeV (⇠ 1.2Tc). We calculate the data on three spatial volumes,

Ns = 24, 32, 48, with a quark mass of mud = 0.001. Measurements are performed on O(50)

independent configurations.
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Nf=2+1+1 DW [Chiu, PRD 23]
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FIG. 6. Illustrative sketch for the temperature evolution of the QCD e↵ective degrees of freedom as suggested by the changing
symmetry content manifest in our spatial correlators.

of symmetry breaking: the confining electric interaction becomes small relative to the quark kinetic term. Finally, up
to T ⇠ 1 GeV (5.7Tc) there is an evolution to a weakly interacting QGP, where the relevant symmetries are the full
set of chiral symmetries. Fig. 6 provides an illustrative sketch of this temperature evolution for the e↵ective degrees
of freedom of QCD. We note that the temperature range, in which the most drastic changes of thermodynamical bulk
quantities occur, coincides qualitatively with the “stringy fluid” regime, see, e.g., Fig. 4 of Ref. [8].
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APPENDIX A

All free spatial continuum correlators that we discuss in Section 2 can be expressed as linear combinations of
Cz(z) and C⌧ (z) defined in Eq. (12). These two correlators can be simplified by switching to polar coordinates
px = r cos('), py = r sin('). The '-integration gives a factor of 2⇡ and the transformation ⇠

2 = (r/!n)2 + 1 of the
remaining integration variable brings the correlators to the form

Cz(z) =
1

2⇡�

X

n2Z
!
2
n

Z 1

1
d⇠ ⇠ e

�2 z |!n| ⇠ ,

C⌧ (z) =
1

2⇡�

X

n2Z
!
2
n

Z 1

1
d⇠ ⇠

1

⇠2
e
�2 z |!n| ⇠ . (47)

crossover

crossover

Degrees of freedom (to be verified):



Check well-studied observables: screening masses

3

Figure 2. Temporal correlation functions for NF = 2 QCD with chiral fermions on 12 ⇥ 483 lattices. Left: Full QCD results
at T = 220 MeV, representing multiplets of all groups, U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4). Right: Correlators
calculated with free quarks with manifest U(1)A and SU(2)L ⇥ SU(2)R symmetries. From [16].

[29, 30], one a priori expects observables to exhibit a
SU(2)L ⇥ SU(2)R chiral symmetry. The chiral conden-
sate decreases significantly through a smooth crossover
between T ⇡ 100 � 200 MeV. The effects of the axial
anomaly are determined by the topological charge den-
sity. There are strong indications from the lattice that
the U(1)A symmetry is approximately restored above
Tch ⇡ 200 MeV [31–34], which suggests that the topo-
logical fluctuations at these temperatures are strongly
suppressed. This effective symmetry restoration is visible
by the degeneracy of all correlators (obtained with a chi-
rally symmetric Dirac operator) connected by the U(1)A
transformation [15, 16]. Closer to Tpc, the quark conden-
sate becomes appreciable and should provide a splitting
of the respective correlators, as is also observed [33, 35].
For the following, mostly qualitative, considerations, we
take Tch ⇡ Tpc approximately, without loss of generality.

Detailed lattice studies of spatial [15] and temporal
[16] meson correlators at T>⇠Tch, calculated in NF = 2
QCD with a chirally symmetric Dirac operator at physi-
cal quark masses, exhibit approximate multiplets of both
SU(2)CS and SU(2NF ) groups, i.e. they display a sym-
metry larger than the chiral symmetry of the QCD La-
grangian. As an example and for later reference, we re-
produce the temporal correlators from [16] in Fig. 2. Cor-
relators of the isovector scalar (S) and isovector pseu-
doscalar (PS) operators are connected by the U(1)A
transformation and their degeneracy indicates an effec-
tive restoration of this symmetry. If there is a tiny split-
ting of the S and PS correlators, it is too small to be
seen in the present lattice data. An approximate degen-
eracy of the a1, b1, ⇢(1, 0)+(0, 1) and ⇢(1/2, 1/2)b correla-
tors indicates emergent approximate SU(2)CS and SU(4)
symmetries. This larger symmetry disappears again once
temperatures exceed T>⇠3Tch [15, 16]. Let us assess the
implications of this observation in some detail.

For any meson operator O�(⌧,x) =  ̄(⌧,x)�⌧
2 (⌧,x)

with � 2 {1, �5, �µ, �5�µ,�µ⌫ , �5�µ⌫}, the Euclidean cor-

relation functions,

C�(⌧,x) = hO�(⌧,x)O�(0,0)i , (10)

carry the full spectral information of all excitations with
J = 0, 1 in their associated spectral functions ⇢�(!,p),

C�(⌧,p) =

Z 1

0

d!

2⇡
K(⌧,!)⇢�(!,p) ,

K(⌧,!) =
cosh(!(⌧ � 1/2T ))

sinh(!/2T )
. (11)

The spatial and temporal correlators probed in [15, 16],

Cs

�(z) =
X

x,y,⌧

C�(⌧,x) , (12)

C⌧

�(⌧) =
X

x,y,z

C�(⌧,x) , (13)

collect the spectral information projected on the (px =
py = ! = 0) and (px = py = pz = 0) axes, respec-
tively. In thermal equilibrium the system is isotropic and
the momentum distribution is the same in all directions,
⇢�(!,p) = ⇢�(!, |p|). Observing approximate chiral spin
symmetry both in the frequency and one momentum di-
rection is therefore sufficient to conclude that it is also
realized in the full spectral functions ⇢�(!,p). Finally,
since different quantum number channels are evaluated
with the same action, one must conclude that the ob-
served degeneracy patterns reflect an approximate sym-
metry of the non-perturbative effective action, and hence
the thermal partition function of QCD.

Finite temperature chiral spin symmetry is thus an ex-
ample of an emergent symmetry. Similar to the synthetic
vacuum situation described in the last section, for this to
happen the chromoelectric sector of the effective quark
action must dominate over the chromomagnetic sector.
Moreover, the chromoelectric interaction has to domi-
nate over the spatial kinetic terms, which implies that

<latexit sha1_base64="Csj+eb4WTmQAnkm1ecDmbmKuNaA="></latexit>z!1�! const. e�mscrz
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the effective action is far from that of a weakly interact-
ing system. Indeed, meson correlators evaluated in a free
quark gas are even qualitatively incompatible with the
observed multiplet structure [15, 16], as Fig. 2 demon-
strates. This suggests that the degrees of freedom of
QCD in the chiral spin symmetric regime, Tch<⇠T<⇠3Tch,
are chirally symmetric quarks bound to color singlet ob-
jects by the chromoelectric field.

Disappearance of these symmetries for T>⇠3Tch indi-
cates that the chromoelectric interactions between light
quarks get screened, and one observes a smooth crossover
to a quark gluon plasma with quasiquarks and quasiglu-
ons being effective degrees of freedom. The latter picture
is supported by the success of the hard thermal loop ap-
proach [36] at these temperatures.

At zero density, there are then three temperature
regimes in QCD with clearly distinguishable symmetries:
the low temperature regime with spontaneously broken
chiral symmetry, an intermediate regime with approxi-
mate chiral spin and SU(2NF ) symmetries, and a high
temperature regime with chiral symmetry1.

IV. SCREENING MASSES

Ultimately, the nature of the degrees of freedom com-
posing the thermal system in its different regimes is en-
coded in the spectral functions. At present, these are
not yet available fully non-perturbatively. However, we
have increasingly detailed, non-perturbative knowledge
of screening masses, which govern the exponential decay
of spatial correlators, Eq. (12). For the following it is
useful to recall that, on a Euclidean space time lattice,
the thermal partition function can be represented in two
equivalent ways,

epV/T = Z = Tr(e�aHN⌧ )

= Tr(e�aHzNz ) =
X

nz

e�EnzNz , (14)

where Hz is a “Hamiltonian” acting on a Hilbert space
defined over the (x, y, ⌧)-coordinates and generates trans-
lations in the z-direction, with Enz its eigenvalues. In
this language, the thermodynamic limit (Nx,y,z ! 1
with T�1 = aN⌧ finite) represents the “vacuum” physics
of Hz, whose spectrum is sensitive to the compactified

1
There are several other observations of non-perturbative dyna-

mics above Tch. The concept of a semi-QGP [37] predicts a sep-

aration of chiral symmetry restoration and deconfinement by an

intermediate T ⇠ 155�350 MeV range [38]. In recent lattice sim-

ulations at the physical point, thermal monopole condensation,

often interpreted as marking the transition between confined and

deconfined regimes, is observed at T ⇡ 275 MeV [39], and the

spectral density of a chiral Dirac operator suggests a novel phase

T ⇠ 200�250 MeV with approximate IR scale invariance [40, 41].

At present it is not clear if and how these phenomena are related

to chiral spin symmetry.

⌧ -direction, i.e. T�1, and contains the screening masses,
which represent the ground states in each quantum num-
ber channel. In the limit T = 0 the spectrum is identical
to that of H, while for T ! 1 it reduces to the spec-
trum of 3d QCD, which is known as dimensional reduc-
tion. Evidently, screening masses are directly related to
the equation of state, which is completely determined by
the full spectrum of Hz.

In order to characterize the dominant dynamical de-
grees of freedom, it is natural to proceed in analogy
to vacuum QCD, where rarely any confusion arises be-
tween hadronic physics and quark gluon physics. While
experimental inital and final states are ever exclusively
hadronic, one may speak of parton physics driving the dy-
namics whenever quark hadron duality holds [42], i.e. the
hadronic observables follow perturbative predictions for
partonic (sub- ) processes. This is also the terminol-
ogy adopted in some discussions of experimental re-
sults, see e.g. [43]. For a thermal equilibrium system,
screening masses are accessible by perturbative and non-
perturbative calculations, thus providing a viable theo-
retical testing ground.

A. Chromoelectric vs. chromomagnetic fields

Thermal QCD generates three parametrically distin-
guished scales, the hard scale of the non-zero Matsub-
ara modes, ⇠ ⇡T , the intermediate scale of the color-
electric fields, ⇠ gT , and the fully non-perturbative soft
scale ⇠ g2T of the color-magnetic fields [44, 45]. For
sufficiently small gauge coupling, the scales are sepa-
rated and the harder modes can be integrated out to
successively produce the effective theories EQCD, de-
scribing the gauge fields A0, Ai on scales <⇠gT , and
MQCD for Ai on scales <⇠g2T . The latter is equivalent
to three-dimensional Yang-Mills theory and fully non-
perturbative.

The balance between color-electric and color-magnetic
fields was studied on the lattice by a mixing analysis of
correlation matrices of gauge invariant gluonic operators
within EQCD [46]. At T ⇡ 2Tch the lowest screening
mass is associated with the operator Tr(A2

0), whereas the
one pertaining to Tr(F 2

ij
) is more than twice as large.

Hence, the dynamical ordering of “soft” and “ultra-soft”
scales is opposite to the perturbative expectation. The
color-electric fields cannot be integrated out, but rather
give the largest contributions to the EQCD partition
function at this temperature. This demonstrates their
dynamical dominance in this regime, and fully supports
the emergence of chiral spin symmetry as a consequence
of non-perturbative gauge field dynamics.

B. The Debye mass

According to a non-perturbative definition of the De-
bye mass based on Euclidean time reflection of gauge

Directly related to the partition function and equation of state

by transfer matrices:  
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T = e�aH , Tz = e�aHz

Screening masses: eigenvalues of 
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For T=0 equivalent to eigenvalues of     ,  for             temperature effects
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Figure 3. Screening masses of the lightest ūd mesons, evaluated in simulations using HISQ fermions, from [33].

that quantum number channel2. We may then conclude
that the bound states have released their quark gluon
content, i.e., their chromoelectric interaction is screened.
Once this happens in sufficiently many quantum number
channels, chiral spin symmetry is broken as expected for
a quark gluon plasma. Note that the resulting value of
Ts, where this happens, depends on the precise flavor and
mass content of the theory, as well as on the definition of
Ts(�), as expected for a crossover.

We conclude that the behavior of meson screening
masses from 12 different quantum number channels in
Nf = 2+ 1 QCD provide an independent demonstration
of the existence of a temperature window Tch<⇠T<⇠Ts, in
which chiral symmetry is restored but the dynamics is
inconsistent with a partonic description. By Eq. (14),
it is then equally impossible to describe the equation of
state in this regime by parton dynamics.

By contrast, Fig. 3 (left) shows chiral symmetry
restoration to be achieved by the initially heavier chi-
ral partners of the lowest screening masses dropping
abrubptly around Tch, and the same is true for all other
flavour combinations [33]. Then Eq. (14) implies growing
pressure around Tch, also in the absence of parton dynam-
ics. The same observation was made for chiral multiplets
of baryons extracted from temporal lattice correlators.
When used in a hadron resonance gas calculation, these
equally lead to growing pressure [58] at and above Tch.

2
The screening masses discussed here were extracted by

exp(�mscrz) fits to the large distance correlators, which is ap-

propriate for bound states of Hz . However, for either unstable or

multiparticle states, the exponential gets modified by power law

factors, whose general effect is a lowering of the resulting mass.

While this implies some uncertainty on the value of Ts(�), the

exponential fits provide lower bounds on their true values.

V. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE AND DENSITY

Having discussed the chiral spin symmetric tempera-
ture range Tch<⇠T<⇠Ts at zero density, the question arises
what happens with this regime at non-vanishing baryon
chemical potential. The quark chemical potential term
in the QCD action is manifestly SU(2)CS and SU(2NF )
symmetric [59]. This suggests that both symmetries ob-
served at µ = 0 should also persist at finite chemical
potential.

It is well known from lattice simulations how the chiral
crossover temperature, which constitutes a lower bound
for and is close to the chiral spin symmetric regime, be-
haves for small µB

<⇠3T . Several consistent evaluations
give

Tpc(µB)

Tpc(0)
= 1� 0.016(5)

✓
µB

Tpc(0)

◆2

+ . . . ,

⇡ Tch(µB)

Tch(0)
(17)

with the subleading term not yet statistically significant
[30, 60–63]. The qualitative behavior of the upper bound-
ary can be inferred from the value of a chosen meson
screening mass at the temperature Ts (vector mesons
show the most pronounced knee across all flavor chan-
nels),

mV (Ts)

Ts
= C0 . (18)

Then, by CP -symmetry we know that mesonic screening
masses are even functions of µB/T , and therefore

mV (µB)

T
= C0 + C2

⇣µB

T

⌘2
+ . . . . (19)

According to the discussion above, the ⇢-meson gets
screened at zero density once mV (µB = 0)>⇠C0Ts. Keep-
ing this value constant as chemical potential is varied,

5

invariant operators [47], lattice evaluations at T ⇡ 2Tch

give mgi
D

⇡ 7.5T [46, 48, 49], which amounts to a Debye
radius of rD ⇡ 0.09 fm. Defining the Debye mass instead
as the matching coefficient of the A2

0-term in EQCD,
which to leading order corresponds to the propagator
pole mass, one obtains mpole

D
⇡ 2.5T [50] or rD ⇡ 0.27 fm.

While rather different, both definitions result in a screen-
ing length smaller than a typical hadron size. A chiral
spin symmetric regime composed of hadron-like objects
thus appears to contradict the common picture of Debye
screening [51], as was also pointed out in [52].

However, both definitions of the Debye mass are based
on pure gauge quantities and related to the screening
of static charges. Even for heavy quarks the dynami-
cal picture is more complicated, with mass values differ-
ing widely between quantum number channels, and the
precise connection between the Debye mass and the dis-
sociation of bound states remains far from clear, for a
review see [53]. In the context of chiral spin symme-
try we are interested in the fate of the light quarks and
mesons, which also give the dominant contribution to
the equation of state. But relativistic quarks have no
associated potentials in the first place, and chromoelec-
tric flux distributions within light mesons will depend on
all quantum numbers and behave quite differently from
those between static quarks.

Moreover, restricting QCD to Nf = 2+1 light flavors,
as is done in most lattice sumulations at the physical
point, neither propagator poles nor heavy quarkonium
screening masses enter the partition function Eq. (14)
at all. Only mgi

D
can possibly appear as screening mass

pertaining to the purely gluonic JPC = 0�+ operator
Tr(FijA0) [46]. This represents one single term, which is
subdominant since its screening mass value is larger than
those of all twelve flavor non-singlet J = 0, 1 mesons to
be discussed below. The Debye mass therefore has little
influence on the thermodynamics of light quarks.

C. Meson screening masses

What we need to do instead is to study meson screen-
ing masses in the light quark sector. A lot of progress has
been made, both analytically and numerically, towards
an increasingly precise evaluation over a wide temper-
ature range. In Fig. 3 we reprint a recent lattice de-
termination of the scalar and vector screening masses
composed of ūd quarks [33]. Also shown is the leading
perturbative result ⇠ 2⇡T , corresponding to the Mat-
subara modes of two free quarks, and the first correction
⇠ g2 evaluated within EQCD [54]. Note that this in-
cludes an all-loop-order HTL resummation of soft contri-
butions from the scale ⇠ gT . One observes the screening
masses in both vector and scalar channels to overshoot
the ⇠ 2⇡T level and to slowly approach the O(g2) pre-
diction, while spin dependence enters the perturbative
series at O(g4) only [55, 56].

Lattice calculations of pseudo-scalar and vector me-

son screening masses have recently been extended with
unprecedented precision to the high temperature range
T = 1 � 160 GeV [57], permitting a detailed analysis of
their perturbative behavior. In particular, over all three
orders of magnitude in temperature, the lattice data are
perfectly parametrized by

mPS

2⇡T
= 1 + p2 ĝ

2(T ) + p3 ĝ
3(T ) + p4 ĝ

4(T ) ,

mV

2⇡T
=

mPS

2⇡T
+ s4 ĝ

4(T ) , (15)

where ĝ2(T ) denotes the temperature-dependent running
coupling renormalized in the MS-scheme at µ = 2⇡T .
The perturbative value of p2 from [54] is fully confirmed,
while p3, p4, s4 are not yet computed analytically, but fit-
ted to the lattice data. Note that all coefficients are num-
bers, and the only temperature dependence of Eq. (15)
resides in the coupling, whose logarithmically slow run-
ning is responsible for the flat behavior observed for
T>⇠1 GeV in Fig. 3. The spin dependence is found to
be consistent with a single O(ĝ4) term s4 over the entire
temperature range down to 1 GeV, and vanishes only for
T ! 1 with the running coupling. Thus, (neglecting
the wiggles within errors) all structure of the lattice data
above T>⇠1 GeV in Fig. 3 can be desribed by a sufficiently
deep, resummed perturbative expansion about partonic
degrees of freedom, and is therefore characteristic of a
quark gluon plasma.

What has remained entirely uncommented in the liter-
ature so far is the rapid bending of the curves within
T ⇡ 0.5 � 0.7 GeV, from a steep increase with tem-
perature to an entirely flat behavior. The nearly ver-
tical portions of the plot cannot possibly be accounted
for by series like Eqs. (15), since their temperature de-
pendence resides in the coupling only. The same fea-
ture is observed in the same temperature range for all
J = 0, 1 mesons composed of ūs and s̄s quarks as well
[33]. That is, altogether this abruptly bending structure
is present across 12 different quantum number channels!
Since these constitute the dominant contributions to the
partition function Eq. (14), an apparent change of dy-
namics takes place for the entire system, signalled by the
complete breakdown of resummed perturbation theory at
the “knee” of those curves. At the temperatures in ques-
tion, this cannot be caused by chiral symmetry breaking.
Rather, when decreasing temperature from the plasma
regime, at the “knee” of the screening masses the chiral
spin symmetric regime is entered, which a perturbative
calculation about partons cannot reproduce to any order.

Conversely, increasing temperature from the hadronic
regime, each meson screening mass m� enters the pertur-
bative regime at some individual screening temperature
Ts(�), which one may define by, e.g., the most negative
curvature of m�/T (the location of the bend),

Ts(�) : min
T

⇢
d2

dT 2

m�

T

�
. (16)

Thus, for T>⇠Ts(�) quark hadron duality is realized in

No quark hadron duality  for T<0.5 GeV in 12 lightest meson channels!  CS symmetry!

Chiral symmetry restoration Resummed pert. theory:

Cannot describe the “bend” 

Heavy chiral partners “come down” 
in all flavour combinations

pressure increases
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Inversion problem ill-defined on a discrete lattice 

Statistical approaches to find “most likely” spectral function: 
 
Maximum entropy, Bayesian, Backus-Gilbert 
methods,…. 
  

Alternative: microcausality + KMS  
 

Contains all information about spectrum and nature of states!

7.2 Spectral function at finite temperature

Finite T : Kubo-Martin-Schwinger condition on two-point function

fW(p) =
⇢(p)

1 � e��!
(106)

fW(p): Fourier transform of the (real-time) thermal 2-point function h�(x0,x)�(0)iT

Euclidean two-point function:

C(⌧,x) = h�(⌧,x) �(0,0)iT =

Z 1

�1

d!

2⇡
e�!|⌧ |

Z
d3p

(2⇡)3
eip·x fW(!,p) (107)

This Laplace transform always makes sense because fW(!,p) is only non-
vanishing for ! � 0 (spectral condition). Using all these relations one finds
that

C(⌧,p) =

Z 1

�1

d!

2⇡
e�!|⌧ | fW(!,p)

=

Z 1

�1

d!

2⇡
e�!|⌧ | ⇢(!,p)

1 � e��!

=

Z 1

0

d!

2⇡
e�!|⌧ | ⇢(!,p)

1 � e��!
+

Z 0

�1

d!

2⇡
e�!|⌧ | ⇢(!,p)

1 � e��!

=

Z 1

0

d!

2⇡

 
e�!|⌧ |

1 � e��!
� e!|⌧ |

1 � e�!

!
⇢(!,p), ⇢(�!,p) = ⇢(!,p)

=

Z 1

0

d!

2⇡

cosh(!(|⌧ | � �/2))

sinh(�!/2)
⇢(!,p) (108)
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General euclidean correlator:

Simulations: on-axis spatial and temporal correlators
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Most direct route to spectral function: spatial correlator!
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Proof for general form of spectral function at finite � = 1/T :
(Bros, Buchholz Ann. Inst. H. Poincare Phys. Theor. 64, 1996)
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Plug into correlator, assuming isotropic medium, D�(x, s) = D�(|x| = R, s)
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Thermoparticle (first term) + continuum (scattering + collective states,
second term) decomposition ansatz:

D�(x, s) =
X

i

Dmi,�(x) �(s � m2
i ) + Dc,�(x, s) (114)
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Thermal spectral density + thermoparticles

 7

● The thermal spectral density Dβ(u,s) holds the key to understanding in-
medium phenomena, but what structure does it have?

● A natural decomposition [Bros, Buchholz, NPB 627 (2002)] is:
 

 

             
“Damping factor” Continuous component 
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Fixes T-dependence 
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Peak broadening 
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Speci&cs: Spectral characteristics
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[slide by P. Lowdon]

Thermoparticle component
(Negligible at low T)



The pion spectral function
[Lowdon, O.P.,  JHEP 22]
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⇡,⇡⇤2-state fits

spectral functions predict temporal correlators, compare with data 

Rohrhofer et al., Phys. Rev. D100 (2019)

Rohrhofer et al., Phys. Lett. B802 (2020)
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Does QCD deconfine across the chiral crossover ?
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Figure 2: l̄�5s channel spectral function extracted from spatial correlator lattice data at 172.3MeV (left), and the

temporal correlator prediction and corresponding lattice data (right). The vertical dashed line in the right plot

indicates the approximate boundary below which knowledge of further excited states is necessary. The e↵ects of the

vacuum mass mi uncertainties are not included in the left plot in order to improve its clarity.

absence of higher-energy spectral function contributions in the prediction. So far we have consid-
ered the form of the non-renormalised spectral functions and corresponding temporal correlator
predictions separately for each lattice setup. In order to compare the spectral functions at the
temperatures below and above Tpc one must choose a renormalisation prescription. By making the

choice: eCPS(⌧ = 0.5 fm, ~p = 0) = 1MeV3 at both T = 36.4MeV and T = 43.1MeV, the renor-
malised spectral function at ~p = 0 has the form in Fig. 3. One can see that as the temperature
increases through the crossover region both the ground and first excited states become collisionally
broadened, with the amplitude of their peaks significantly reduced.
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tainties in the vacuum masses mi on the spectral function are not included in the plot. This explains why the excited

state components at T = 145.6MeV and 172.3MeV appear not to possess the same energy threshold, although the

extracted vacuum masses are consistent within uncertainties.

10

Kaon + Kaon* in full QCD

slightly below and above chiral crossover

[Bala et al., JHEP 24]
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Figure 8: Lattice temporal correlator data and prediction for Ns = 16 with lattice parameters (am0 = 0.15, g0 = 1.5). The

solid lines indicate the two-loop predictions from lattice perturbation theory, and the dashed lines are the predictions using a

thermoparticle (TP) spectral function, the parameters of which are extracted from the corresponding spatial correlators.

In Fig. 8 we display the results from applying the procedure set out in steps 1-3. In the left panel
is displayed the form of the zero-momentum thermoparticle spectral function for each non-trivial
temperature, and in the right we compare the predictions from standard two-loop perturbation
theory (solid lines) and those using these spectral functions (dashed lines). The thermoparticle
prediction is consistent with the lattice data within statistical errors, which is clearly an improve-
ment over the two-loop perturbative results, which deviate further away for larger temperatures.
This suggests that similarly to the QCD spectral functions studied in Refs. [42, 43], the lattice �4

theory data is consistent with the presence of a thermoparticle component. However, in the QCD
case higher excited states also provide an important contribution, whereas here the thermoparticle
component entirely dominates the spectral function at all temperatures.

These findings suggest that thermoparticle excitations provide an important non-perturbative con-
tribution to the spectral function in �4 theory at low temperatures. Due to their relative dominance,
these components therefore represent the basic thermal constituents of the medium, and so any
consistent perturbative expansion must ultimately be parametrised in terms of their respective
propagators, as outlined in Sec. 4.1. This question has been explored before in Ref. [28], but it
remains to be seen whether such an expansion possesses all of the correct characteristics, including
renormalisability. These issues will be addressed in a forthcoming work [32]. Although it goes be-
yond the scope of the current work, it would also be interesting to understand how the dominance
of the thermoparticle component changes as the temperature of the system is raised further. Such
an analysis could potentially utilise the techniques developed in Refs. [33,34] and would in principle
be able to establish the relative interplay between the di↵erent components in Eq. (4.2).

5 Conclusions

Finite-temperature QFTs are subject to constraints that are no longer present in the vacuum
formulation of these theories. One of the most consequential such constraints is the inability to
construct interacting thermal states with purely real dispersion relations. This is the implication
of the Narnhofer-Requardt-Thirring theorem. From a perturbative context, this implies that nei-
ther free field, nor resummed quasi-particle-like propagators with real poles, can form the basis

17

Scalar point particle in 

no phase transition, no “melting”, 
only “collisional broadening”
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III. Effective heavy (dense) lattice theory from Wilson action

+ + �! �!

Figure 1. A graphical representation of the contributions in the strong coupling expansion and
the corresponding terms in the e↵ective action. The first term is the interactions of two nearest
neighbour Polyakov lines and the second one corresponds to the interaction of next-to nearest
neighbours with distance

p
2 on the lattice. From [14].

Here Vi is related to the Jacobian when transforming the measure dU0(i) ! dLi. Usually
the e↵ective couplings are exposed in terms of the fundamental character expansion coe�cient
u = u(�) = �/18 + O(�2), which shows better convergence. The relation between u and � can
be computed to arbitrary precision, hence they can be used synonymously. The leading e↵ective
coupling has been computed to high orders,

�(u,N⌧ � 5) = uN⌧ exp
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(6)
Note that the next-to-nearest neighbour coupling starts only at �2 ⇠ u2N⌧+2 while the nearest
neighbour coupling of adjoint loops is �a ⇠ u2N⌧ . Figure 1 illustrates how higher order
contributions arise in terms of additional contributions to the coupling constants of the nearest
neighbour interaction and next to nearest neighbour interactions.

2.2. Numerical results for the one-coupling theory
The e↵ective theory is 3d with complex scalars left as dynamical degrees of freedom,
corresponding to a 3d continuous spin model. It is obvious that this accounts for a drastic
reduction of numerical e↵ort for the simulation. The e↵ective theory exhibits an order-disorder
phase transition corresponding to the spontaneous breaking of the centre symmetry as a function
of its coupling, as shown in Figure 2 (left), which causes the Polyakov loop to rise. A finite size
analysis shows that this rise develops into a discontinuous jump, signalling the first-order nature
of the transition in the infinite volume limit, Figure 2 (right). This can also be seen in the
distribution of the Polyakov loop variable in the critical region. Figure 3 shows the double-peak
distribution of a first-order transition for SU(3) (left), whereas a single Gaussian distribution
moves smoothly as a function of the coupling for SU(2) (right), which has a second-order
continuous transition. Thus the e↵ective theory in its simplest form correctly describes the
order of the SU(N) transition.

Next the location of the phase transition, i.e. the critical coupling �c can be translated back
to the lattice gauge coupling � by inverting Equation (6) for every given N⌧ . The result is
shown in Figure (4) (left) for di↵erent truncations of the series for the e↵ective coupling. The
computed orders are just about high enough for an appreciable convergence to set in. Note,
that a single simulation of the e↵ective theory provides the critical coupling �c, the predictions
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In this paper we consider the corresponding e�ective theory for general colour gauge
group SU(Nc) in the cold and dense regime. In particular, we analyse the onset transition
to baryon matter as well as the thermodynamic functions for varying and large Nc. This
allows us to establish contact to several conjectures made in the literature regarding the
phase diagram at large Nc [3], with various phenomenological consequences for physical
QCD.

2 QCD with heavy quarks

2.1 E�ective lattice theory
Consider the partition function of lattice QCD with the standard Wilson action at finite
temperature, T = 1/(aN· ), realised by a compact euclidean time dimension with N· slices
and (anti-)periodic boundary conditions for (fermions) bosons. An e�ective theory in terms
of temporal lattice links only is obtained after performing the Gauss integral over the quark
fields and integrating the gauge links in spatial directions,

Z =
⁄

DU0DUi det Q e≠Sg [U ]
©

⁄
DU0 e≠Se� [U0] =

⁄
DW e≠Se� [W ] . (2.1)

With the spatial links gone, the e�ective action depends on the temporal links only via
Wilson lines closing through the periodic boundary, or Polyakov loops,

W (x) =
N·Ÿ

·=1
U0(x, ·), L(x) = TrW (x) . (2.2)

This e�ective action is unique and exact. The integration over spatial links causes long-
range interactions of Polyakov loops at all distances and to all powers so that in practice
truncations are necessary. For non-perturbative ways to define and determine truncated
theories, see [5–8]. Here, we use an e�ective theory based on expanding the path integral
in a combined character and hopping parameter series, with interaction terms ordered
according to their leading powers in the coe�cient of the fundamental character u and the
hopping parameter Ÿ,

u(—) = —

18 + —2

216 + . . . < 1, Ÿ = 1
2amq + 8 . (2.3)

The dependence of u on the lattice gauge coupling — = 2Nc/g2 is known to arbitrary
precision, and u is always smaller than one for finite —-values. Since the hopping expan-
sion is in inverse quark mass, the e�ective theory to low orders is valid for heavy quarks
only. Both expansions result in convergent series within a finite radius of convergence [].
Truncating these at some finite order, the integration over the spatial gauge links can be
performed analytically to provide a closed expression for the e�ective theory. Going via an
e�ective action results in a resummation to all powers with better convergence properties
compared to a direct series expansion of thermodynamic observables as in [11, 12]. Since
the Polyakov loop L(x) contains the length N· of the temporal lattice extent implicitly, the
e�ective theory is three-dimensional. Note that in the case of 4d Yang-Mills theory, this

– 2 –
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⇠ 0
s

mass, the e�ective theory to low orders is valid for heavy quarks only. For a derivation

of the e�ective theory to order O(Ÿ4
) in spatial hops, see [? ]. In this case the relevant

integrals for the fermionic contributions are

⁄

SU(Nc)

dU UijU †
kl =

1

Nc
”il”jk, (1.15)

⁄

SU(Nc)

dU Ui1j1Ui2j2U †
k1l1

U †
k2l2

=
1

N2
c ≠ 1

Ë
”i1l1”i2l2”j1k1”j2k2 + ”i1l2”i2l1”j1k2”j2k1

È

≠
1

Nc(N2
c ≠ 1)

Ë
”i1l2”i2l1”j1k1”j2k2 + ”i1l1”i2l2”j1k2”j2k1

È
.

(1.16)

Generically, the e�ective action obtained in this way has the following form:

≠Se� =

Œÿ

i=1

⁄i(u, Ÿ, N· )Ss
i ≠ 2Nf

Œÿ

i=1

Ë
hi(u, Ÿ, µ, N· )Sa

i + h̄i(u, Ÿ, µ, N· )Sa,†
i

È
. (1.17)

The ⁄i are defined as the e�ective couplings of the Z(Nc)-symmetric terms Ss
i , whereas

the hi multiply the asymmetric terms Sa
i . In particular, h1, h̄1 are the coe�cients of L, Lú

,

respectively, and to leading order correspond to the fugacity of the quarks and anti-quarks,

h1 = (2Ÿ)
N· eaµN· (1 + . . .) = hLO

1 (1 + . . .) = e
µ≠m

T (1 + . . .) , (1.18)

h̄1 = (2Ÿ)
N· e≠aµ

(1 + . . .) = h̄LO

1 (1 + . . .) = e≠ µ+m
T (1 + . . .) . (1.19)

Here,

am = ln(2Ÿ) =
amLO

B

Nc
(1.20)

is the constituent quark mass in lattice units of a baryon computed to leading order in the

hopping expansion [? ], while

h2 = Ÿ2N· /Nc(1 + . . .) (1.21)

is the e�ective coupling of a nearest neighbour LxLy interaction.

The partition function for SU(3), including just these simplest interactions, reads

Z =

⁄
DW

Ÿ

<x,y>

Ë
1 + ⁄1(LxLú

y + Lú
xLy)

È

◊

Ÿ

x
[1 + h1Lx + h2

1Lú
x + h3

1]
2Nf [1 + h̄1Lú

x + h̄2

1Lx + h̄3

1]
2Nf

◊

Ÿ

<x,y>

C

1 ≠ 2Nf h2

A

Tr
h1Wx

1 + h1Wx
≠ Tr

h̄1W †
x

1 + h̄1W †
x

B A

Tr
h1Wy

1 + h1Wy
≠ Tr

h̄1W †
y

1 + h̄1W †
y

BD

◊ . . .

3
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(no continuum limit yet)

Zero density agrees within 10% with full lattice simulations on Nt=6!
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of n

sat
B = 2Nf

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 

4 action at two values of µ > µc, i.e. beyond the nuclear
onset transition, and compares it with the new 

8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-

– 7 –

Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition: lattice saturation!

Finer lattice necessary for larger densities! 

[Fromm, Langelage, Lottini, Neuman, O.P. , PRL 13, Glesaaen, Neuman, O.P. , JHEP 15] 
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The large      QCD phase diagram
[McLerran, Pisarski NPA (2007), …]

Fig. 2. Possible phase diagram for QCD in the plane of temperature and baryon
chemical potential. The blue line in the quarkyonic phase indicates the chiral phase
transition. There is a critical end point for deconfinement.

A possible phase diagram is drawn in fig. (2); following phenomenology
[14], we plot this as as a function of the temperature and the baryon chemical
potential, µB. If large Nc is a reasonable guide to Nc = 3, this should look
something like fig. (1), except that the sharp edges are smoothed out. For
example, below the mass threshold, Td should change little with µ; this appears
to be true from numerical simulations on the lattice [18]. Similarly, at large
Nc nuclear matter rapidly goes from a dilute phase, to one which is dense and
quarkyonic. We indicate this in the figure by drawing the quarkyonic phase
slightly above MN , the nucleon mass.

We expect that the chiral phase transition occurs in the quarkyonic phase,
well above the mass threshold. For QCD, at present numerical simulations
on the lattice indicate that for small µ, the deconfining and chiral transitions
coincide, and are crossover. A chiral critical end point may exist in the plane
of T and µB [13]. One might conjecture that if such a critical end point
exists, that the deconfining and chiral transitions split from one another at
that point.

Speculating in this manner, in the quarkyonic phase, the latent heat asso-
ciated with the chiral transition might be relatively small. Certainly at large
Nc, the large increase in pressure, ∼ Nc, is not tied to the chiral transition.
The behavior of the chiral transition is very sensitive to the number of flavors,
and possible restoration of the axial U(1) symmetry, though.

Consider the deconfining phase transition, after it splits from the chiral
transition. At fixed µ, as T increases, one goes from a confined phase of
parity doubled baryons, to one of quarks and gluons. Deconfinement could
either remain crossover, or perhaps become first order again (from the splitting
point?). If it does turn first order, it will then have to end in a critical end
point, now for deconfinement. Alternately, a first order deconfining transition
could perist down to zero temperature. We indicate this uncertainty by the

16

To illustrate how quarks enter at large Nc, consider the gluon self energy
at nonzero T and µ. To lowest order in g2, at zero momentum this is gauge
independent, equal to the square of the Debye mass. For Nf massless flavors,
its trace equals

Πµµ(0) = g2

((
Nc +

Nf

2

)
T 2

3
+

Nfµ2

2π2

)
, (1)

Taking Nc → ∞, holding g2Nc fixed, we see that the gluon contribution,
∼ g2NcT 2 ∼ T 2, survives. This is the first in an infinite series of planar, gluon
diagrams at infinite Nc. In contrast, whether for T ̸= 0 and µ ̸= 0, the quark
contribution is only ∼ g2, and so suppressed by ∼ 1/Nc.

This is true order by order in perturbation theory, both in vacuum and
for all T and µ ∼ 1: holding Nf fixed as Nc → ∞, the effects of quarks
loops are suppressed by ∼ 1/Nc [1,2]. This is simply because there are ∼ N2

c

gluons in the adjoint representation, but only ∼ Nc quarks in the fundamental
representation. Since the quark contribution, relative to that of gluons, is
∼ Nf/Nc, it is essential to hold Nf fixed as Nc → ∞; i.e., to take of limit of
large Nc, but small Nf .

In this limit, we can immediately make some broad conclusions about the
phase diagram in the T −µ plane. At µ = 0, one expects that the deconfining
transition temperature Td ∼ ΛQCD [4], which appears to be confirmed by
numerical simulations on the lattice [5]. Since quarks don’t affect the gluons,
the deconfining transition temperature is then independent of µ, Td(µ) = Td(0)
for values of µ ∼ 1. This is illustrated in fig. (1): in the plane of T and µ,
the phase boundary for deconfinement is a straight line. The theory is in a
deconfined phase when T > Td, and in a confined phase for T < Td.

Fig. 1. Phase diagram at infinite Nc in the plane of temperature and quark chemical
potential. The blue line in the quarkyonic phase indicates a guess for the position
of the chiral phase transition.

In fact, consider the “box” in the lower, left hand corner of the T − µ

4

p ⇠ N0
c

p ⇠ N2
c

p ⇠ Nc

Quarkyonic matter in momentum space:

Fermi sea of quarks, surrounded by Fermi shell of baryons;
                
               can interpolate from purely baryonic to quark matter
              
pF ⇠ µ

large Nc Nc = 3
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Table 1: Large Nc behaviour of the thermodynamic functions and the interaction energy
per baryon, order by order in the hopping expansion, on both sides of the onset transition
for Nf = 2.

For higher Nf and higher orders the terms become more complicated, but the general
behaviour stays the same. For Nf = 2 our findings on both sides of the onset transition
are summarised in Table 1. A clear picture emerges: for h1 < 1 all terms, due to the
static determinant as well as the corrections, come with a factor hNc

1
to some power. Since

the fugacity contains mLO

B
/(NcT ) in the exponential, this factor will for low temperatures

always dominate the powers of Nc and result in a stronger exponential suppression before
the onset transition. In other words, the curves for all quantities will be squeezed ever
more tightly against the chemical potential axis as Nc gets large. Since we do not know the
hopping expansion of the baryon mass for general Nc, we expressed our results in units of
the leading order expression (2.20), which is responsible for onset happening at mLO

B
= µB

at large Nc.
The more interesting situation is h1 > 1, where we first focus on the baryon number

density. As explained in Section 2.3, the leading order contribution in the hopping expan-
sion corresponds to the static determinant only, for which the onset to baryon matter is a
first-order step function. This remains true for large Nc, with the lattice quark saturation
density going as a3nsat = 2Nf Nc, i.e. the baryon density behaves as a3nsat

B
≥ const..

The most intriguing result of this section is the Nc-scaling of the pressure beyond
baryon onset, p ≥ Nc. Preliminary results based on leading and next-to-leading order
were reported in [47]. Stability of this finding through three orders suggests it to hold to
any order in the hopping expansion, and thus for all current quark masses. In this case
strongly coupled QCD beyond the onset transition to baryon matter satisfies the definition
of quarkyonic matter [9]. Note that there is a finite interaction energy per baryon in units
of baryon mass also for Nc æ Œ, as was conjectured in [9]. Its value at leading order Ÿ2 is
determined by d(d + 1)/2, where d refers to the number of spatial dimensions.
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Beyond the onset transition:                    definition of quarkyonic matter!p ⇠ Nc
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(µB < mB)

(µB > mB)

Strong coupling limit

From conjecture to calculation: eff. theory for general Nc

[O.P., Scheunert  JHEP (2019)]



The baryon onset transition for growing Nc
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Figure 3: Onset transition to baryon condensation for di�erent values of Nc and N· in
the strong coupling limit.

3.4 Thermodynamic functions for large Nc

Since we have an explicit formula for the free energy for general Nc, one can easily ob-
tain the asymptotic behaviour of thermodynamic observables for large Nc. We study the
behaviour of the di�erent orders in the hopping expansion separately. This is necessary be-
cause, beyond the onset of baryon condensation, the leading static term represents lattice
saturation, which is an unphysical artefact of discretisation. As discussed in section 2.3,
correction terms do not contribute to saturation, but modify the shape of the curves as they
enter their low and high density asymptotes. These e�ects will remain after continuum
extrapolation and thus are physically significant.

The general strategy for the asymptotic analysis is most easily illustrated for the
leading order contribution to the pressure at Nf = 1

a4pLO = 1
N·

ln
1
1 + (Nc + 1)hNc

1
+ h2Nc

1

2
. (3.26)

Note that, just like in the SU(3) case in (2.23), the prefactors before hNc

1
can be under-

stood from spin-degeneracy. Specifically, a colour neutral state consisting of Nc fermions
is antisymmetric in colour space under particle exchange. The only completely symmetric
spin state of Nc spin 1/2-particles is that with s = Nc/2 . States with this spin and spin
components ≠Nc/2 Æ s3 Æ Nc/2 are degenerate, explaining the Nc + 1 prefactor.

When h1 < 1 then the term hNc

1
is strongly suppressed (stronger than Nk

c can grow
for any k) and a Taylor expansion around hNc

1
= 0 gives

a4pLO = 1
N·

(Nc + 1)hNc

1
+ O(h2Nc

1
) (3.27)

≥
1

N·

Nch
Nc

1
for Nc æ Œ. (3.28)

For h1 > 1 the term with the highest power of hNc

1
determines the asymptotic behaviour

and one obtains

a4pLO ≥
1

N·

ln
1
h2Nc

1

2
(3.29)

≥
2

N·

ln(h1)Nc. (3.30)
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Nc
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Transition becomes more strongly first-order for every T!

12

So far strong coupling limit,  not consistent with ’t Hooft scaling!

Here: jump to lattice saturation, unphysical

Take continuum limit first! 1+1D: [Gross, Witten PRD (1980)]

Scaling of the pressure at onset
Continuum approach, pressure
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Pressure scaling right after onset

Scaling of the pressure at onset
Continuum approach, pressure

p ≥ Nc(1 + const.N≠1
c ) when varying lattice spacing, before saturation.
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Altogether:

large Nc�!

µB�mB

T
[Me

V
]

1

200

< 10

Large       phase diagram emerges smoothly      

Varying       :  dense QCD is consistent with quarkyonic matter 

Should also hold for light quarks,       -scaling is property of expansion coefficients! 
 

Nc
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If so: physical baryon matter is special case of quarkyonic matter!

 See also phenomenological evidence: [Koch, McLerran, Miller, Vovchenko, PRC 24]



Implications for physical QCD? 

One viable scenario (more possibilities):

CS symmetric

QGP

baryon parity 

doublets

HRG

nuclear

matter

quark

matter

quarkyonic

stringy fluid

[L. Glozman, R. Pisarski, O.P., EJPA 22]

resonance-like states

Consistent with neutron star data analysis in Wolfram Weise’s talk! 

- 1st order transition in neutron star “unlikely”, consistent with quark-hadron continuity
- Ordinary nuclear matter (a few times nucl. density) consistent with mass-radius relations
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µ ̄�0 is CS symmetric



Conclusions

Chiral transition at zero density is likely 2nd order for Nf=2-7 
massless quark flavours

Imaginary chemical potential has no effect on the order  
of the chiral transition 

There is an intermediate T-regime with chiral-spin symmetry 
and predominantly resonance-like degrees of freedom:          
correlator multiplets, screening masses, spectral functions

 Heavy mass LQCD consistent with quarkyonic matter and 
quark-hadron continuity
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Bare parameter space of unimproved staggered LQCD

Data points implicitly labeled by Nf

Tricritical scaling observed in lattice bare parameter space

 Tricritical extrapolation always possible!        

[Cuteri, O.P., Sciarra JHEP 21]
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N⌧ = 10

   New                result on predicted scaling curve!
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[preliminary]

progressing to finer lattices



Meson screening masses at high temperatures

[Dalla Brida et al., JHEP 22]

competes with the quadratic one to bend down the pseudoscalar mass as shown in Fig. 5.
Toward the lower end of the range, the competition between this term and the leading one
results in an e↵ective slope of opposite sign with respect to the analytically known one. At
T ⇠ 1 GeV, the various terms cancel each other and the mass turns out to be very close to
free-value 2⇡T .

7.2 Vector mass

The mass di↵erence (mV�mP )/(2⇡T ) is an interesting quantity to investigate the magnitude
of the spin-dependent contributions. We plot our results for this quantity (last column of
Table 1) as a function of ĝ4 on the right panel of Fig. 4. The data turn out to lie on a straight
line with a vanishing intercept. By fitting them to

(mV �mP )

2⇡T
= s4 ĝ

4 , (18)

we obtain s4 = 0.00704(14) with �2/dof = 0.79. It turns out that the spin-dependent contri-
bution can be parameterized by a single O(ĝ4) term in the entire range of temperatures ex-
plored. Furthermore, it remains clearly visible up to the highest temperature, where the pseu-
doscalar and the vector masses are still significantly di↵erent within our numerical precision,

1
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ĝ2
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Figure 5: Pseudoscalar (red) and vector
(blue) screening masses versus ĝ2. The
bands represent the best fits in Eqs. (17) and
(19), while the dashed line is the analytically
known contribution.

see Fig. 5. The best polynomial that parame-
terizes our results for the vector mass (fourth
column of Table 1) is therefore

mV

2⇡T
= p0 + p2 ĝ

2 + p3 ĝ
3 + (p4 + s4) ĝ

4 , (19)

where p0, . . . , p4 are those in Eq. (17) while
s4 is taken from Eq. (18). The covari-
ances of the coe�cients p3 and p4 with
s4 are cov(p3, s4)/[�(p3)�(s4)] = 0.08 and
cov(p4, s4)/[�(p4)�(s4)] = �0.07.

As shown in Fig. 5, the quartic contribu-
tion is necessary to explain the data over the
entire temperature range. In particular at the
electroweak scale, it is still approximately 15%
of the total contribution due to the interac-
tions. Also for the vector mass, the coe�cient
of the quartic term in Eq. (19) has an opposite
sign with respect to p2, but it is approximately
half of the analogous one for the pseudoscalar.
When the mass is plotted as a function of ĝ2,
see Fig. 5, the quartic contribution competes
with the quadratic one but is not large enough
to push down the vector mass, at least in the
range considered. At the lower end of our range, T ⇠ 1 GeV, it is the spin-dependent term
that is responsible for the deviation of the vector mass from 2⇡T , given the cancellation
among the other terms.

12

Nf=3,  T=1 GeV -160 GeV

Highly non-trivial technically:
shifted b.c. + step-scaling techniques

5

invariant operators [47], lattice evaluations at T ⇡ 2Tch

give mgi
D

⇡ 7.5T [46, 48, 49], which amounts to a Debye
radius of rD ⇡ 0.09 fm. Defining the Debye mass instead
as the matching coefficient of the A2

0-term in EQCD,
which to leading order corresponds to the propagator
pole mass, one obtains mpole

D
⇡ 2.5T [50] or rD ⇡ 0.27 fm.

While rather different, both definitions result in a screen-
ing length smaller than a typical hadron size. A chiral
spin symmetric regime composed of hadron-like objects
thus appears to contradict the common picture of Debye
screening [51], as was also pointed out in [52].

However, both definitions of the Debye mass are based
on pure gauge quantities and related to the screening
of static charges. Even for heavy quarks the dynami-
cal picture is more complicated, with mass values differ-
ing widely between quantum number channels, and the
precise connection between the Debye mass and the dis-
sociation of bound states remains far from clear, for a
review see [53]. In the context of chiral spin symme-
try we are interested in the fate of the light quarks and
mesons, which also give the dominant contribution to
the equation of state. But relativistic quarks have no
associated potentials in the first place, and chromoelec-
tric flux distributions within light mesons will depend on
all quantum numbers and behave quite differently from
those between static quarks.

Moreover, restricting QCD to Nf = 2+1 light flavors,
as is done in most lattice sumulations at the physical
point, neither propagator poles nor heavy quarkonium
screening masses enter the partition function Eq. (14)
at all. Only mgi

D
can possibly appear as screening mass

pertaining to the purely gluonic JPC = 0�+ operator
Tr(FijA0) [46]. This represents one single term, which is
subdominant since its screening mass value is larger than
those of all twelve flavor non-singlet J = 0, 1 mesons to
be discussed below. The Debye mass therefore has little
influence on the thermodynamics of light quarks.

C. Meson screening masses

What we need to do instead is to study meson screen-
ing masses in the light quark sector. A lot of progress has
been made, both analytically and numerically, towards
an increasingly precise evaluation over a wide temper-
ature range. In Fig. 3 we reprint a recent lattice de-
termination of the scalar and vector screening masses
composed of ūd quarks [33]. Also shown is the leading
perturbative result ⇠ 2⇡T , corresponding to the Mat-
subara modes of two free quarks, and the first correction
⇠ g2 evaluated within EQCD [54]. Note that this in-
cludes an all-loop-order HTL resummation of soft contri-
butions from the scale ⇠ gT . One observes the screening
masses in both vector and scalar channels to overshoot
the ⇠ 2⇡T level and to slowly approach the O(g2) pre-
diction, while spin dependence enters the perturbative
series at O(g4) only [55, 56].

Lattice calculations of pseudo-scalar and vector me-

son screening masses have recently been extended with
unprecedented precision to the high temperature range
T = 1 � 160 GeV [57], permitting a detailed analysis of
their perturbative behavior. In particular, over all three
orders of magnitude in temperature, the lattice data are
perfectly parametrized by

mPS

2⇡T
= 1 + p2 ĝ

2(T ) + p3 ĝ
3(T ) + p4 ĝ

4(T ) ,

mV

2⇡T
=

mPS

2⇡T
+ s4 ĝ

4(T ) , (15)

where ĝ2(T ) denotes the temperature-dependent running
coupling renormalized in the MS-scheme at µ = 2⇡T .
The perturbative value of p2 from [54] is fully confirmed,
while p3, p4, s4 are not yet computed analytically, but fit-
ted to the lattice data. Note that all coefficients are num-
bers, and the only temperature dependence of Eq. (15)
resides in the coupling, whose logarithmically slow run-
ning is responsible for the flat behavior observed for
T>⇠1 GeV in Fig. 3. The spin dependence is found to
be consistent with a single O(ĝ4) term s4 over the entire
temperature range down to 1 GeV, and vanishes only for
T ! 1 with the running coupling. Thus, (neglecting
the wiggles within errors) all structure of the lattice data
above T>⇠1 GeV in Fig. 3 can be desribed by a sufficiently
deep, resummed perturbative expansion about partonic
degrees of freedom, and is therefore characteristic of a
quark gluon plasma.

What has remained entirely uncommented in the liter-
ature so far is the rapid bending of the curves within
T ⇡ 0.5 � 0.7 GeV, from a steep increase with tem-
perature to an entirely flat behavior. The nearly ver-
tical portions of the plot cannot possibly be accounted
for by series like Eqs. (15), since their temperature de-
pendence resides in the coupling only. The same fea-
ture is observed in the same temperature range for all
J = 0, 1 mesons composed of ūs and s̄s quarks as well
[33]. That is, altogether this abruptly bending structure
is present across 12 different quantum number channels!
Since these constitute the dominant contributions to the
partition function Eq. (14), an apparent change of dy-
namics takes place for the entire system, signalled by the
complete breakdown of resummed perturbation theory at
the “knee” of those curves. At the temperatures in ques-
tion, this cannot be caused by chiral symmetry breaking.
Rather, when decreasing temperature from the plasma
regime, at the “knee” of the screening masses the chiral
spin symmetric regime is entered, which a perturbative
calculation about partons cannot reproduce to any order.

Conversely, increasing temperature from the hadronic
regime, each meson screening mass m� enters the pertur-
bative regime at some individual screening temperature
Ts(�), which one may define by, e.g., the most negative
curvature of m�/T (the location of the bend),

Ts(�) : min
T

⇢
d2

dT 2

m�

T

�
. (16)

Thus, for T>⇠Ts(�) quark hadron duality is realized in

the data, it is not necessary to model the temperature dependence of the discretization e↵ects
so as to perform a global fit of the data.

T T (GeV)
mP

2⇡T

mV

2⇡T

(mV �mP )

2⇡T

T0 164.6(5.6) 1.0194(25) 1.0261(23) 0.0071(7)
T1 82.3(2.8) 1.0219(15) 1.0291(18) 0.0076(4)
T2 51.4(1.7) 1.0216(16) 1.0312(18) 0.0087(4)
T3 32.8(1.0) 1.0217(15) 1.0302(19) 0.0092(6)
T4 20.63(63) 1.0220(15) 1.0343(17) 0.0105(6)
T5 12.77(37) 1.0185(18) 1.0306(24) 0.0132(10)
T6 8.03(22) 1.0200(18) 1.0341(28) 0.0143(13)
T7 4.91(13) 1.0192(18) 1.037(3) 0.0181(14)
T8 3.040(78) 1.0124(18) 1.0380(25) 0.0252(13)
T9 2.833(68) 1.0147(24) 1.038(3) 0.0244(20)
T10 1.821(39) 1.0122(18) 1.044(4) 0.0305(20)
T11 1.167(23) 1.0039(20) 1.045(6) 0.041(4)

Table 1: Best results for the pseudoscalar, mP , and the vector, mV , non-singlet screening
masses in the continuum limit together with their di↵erence.

7 Discussion and interpretation of the results

The main results of this paper are the non-singlet meson screening masses reported in Table 1.
They have been computed in a wide temperature range starting from T ⇠1 GeV up to 160 GeV
or so with a precision of a few permille.

The first observation is that, as anticipated in section 5, within our rather small statistical
errors we find an excellent agreement between the scalar and pseudoscalar masses and the
vector and axial ones. This is a clear manifestation of the restoration of chiral symmetry
occurring at high temperature. For this reason we do not show explicitly the results for the
other two channels, and we focus on the pseudoscalar and vector masses.

A second observation is that the bulk of the non-singlet meson screening masses is given
by the free-theory value, 2⇡T , plus a few percent positive contribution over the entire range
of temperatures explored.

Thanks to the precision of our results, we can scrutinize in detail the temperature de-
pendence induced by the non-trivial dynamics. We introduce the function ĝ2(T ) defined as

1

ĝ2(T )
⌘

9

8⇡2
ln

2⇡T

⇤MS

+
4

9⇡2
ln

✓
2 ln

2⇡T

⇤MS

◆
, (16)

where ⇤MS = 341 MeV is taken from Ref. [40]. It corresponds to the 2-loop definition
of the strong coupling constant in the MS scheme at the renormalization scale µ = 2⇡T .
For our purposes, however, this is just a function of the temperature T , suggested by the
e↵ective theory analysis, that we use to analyze our results2. The crucial point is the leading
logarithmic dependence on T .

2
One could also use a non-perturbative definition of the coupling constant, such as ḡ

2
SF. In this case,

however, comparing our data with the analytic results in the literature would be more involved.
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Figure 4: Left: the pseudoscalar mass, normalized to 2⇡T , subtracted of the analytically
known contributions versus ĝ4. Right: the vector-pseudoscalar mass di↵erence, normalized
to 2⇡T , versus ĝ4. Red bands represent the best fits of the data as explained in the text.

7.1 Pseudoscalar mass

We start our analysis by fitting the pseudoscalar mass in the third column of Table 1 to a
quartic polynomial in ĝ. The intercept turns out to be compatible with 1, as predicted by the
free theory, within a large error. We have thus enforced it to the free-theory value, p0 = 1,
and we have fitted again the data. The coe�cient of the ĝ2 term turns out to be compatible
with the theoretical expectation in Eq. (9) within again a large uncertainty. We have thus
fixed also this coe�cient to its analytical value, p2 = 0.032739961, and we have performed
again the quartic fit of the form

mP

2⇡T
= p0 + p2 ĝ

2 + p3 ĝ
3 + p4 ĝ

4 . (17)

As a result, for the fit parameters we obtain p3 = 0.0038(22), p4 = �0.0161(17) and
cov(p3, p4)/[�(p3)�(p4)] = �1.0 with the excellent value of �2/dof = 0.75. The quality of the
fit can be appreciated in the left plot of Fig. 4, where mP /(2⇡T ) - subtracted of the analyti-
cally known contributions - is shown as a function of ĝ4 together with the best fit to Eq. (17).
If the cubic coe�cient is enforced to vanish, i.e. p3 = 0, the fit returns p4 = �0.01323(20)
with again an excellent value of �2/dof = 0.96. The subtracted data lie on a straight line
over two orders of magnitude in the temperature. The polynomial in Eq. (17) is our best
parameterization of the results over the entire range of temperatures explored.

The quartic term is necessary to explain the data over the entire temperature range. In
particular at the electroweak scale or so, it is still approximately half of the total contribution
due to the interactions. Notice that the sign of the quartic term is negative, opposite to
the one of the quadratic contribution, and the magnitude turns out to be approximately 2–3
times smaller than p2. When the data are plotted as a function of ĝ2, the quartic contribution

11
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Figure 7: Left: Temporal correlation function predicted by the spectral function Eq. (12), Fig. 6 (red band),
compared to the full lattice data from Fig. 2 [5]. Right: The corresponding prediction based on a Breit-Wigner
ansatz, Eq. (13).

absence of a true phase transition, and propose an ansatz with particle and scattering contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [15]
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p
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For temperatures below the threshold to the scattering states we then expect the first term in
Eq. (10) to dominate. Neglecting the continuum part, the calculation of the spectral function is
straightforward. First, we fit the spatial pseudo-scalar correlators from Fig. 1 by the sum of two
exponentials representing the ⇡, ⇡⇤, which gives an excellent description of the data in the entire
temperature range, cf. Fig. 6 (left). This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|), from which
the spectral function can be reconstructed using Eqs. (9,10) and the vacuum masses m⇡,m⇡⇤ ,
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The result is shown in Fig. 6 (right) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As the temperature increases,
the peaks widen and gradually disappear into a continuum, consistent with sequential hadron
melting, albeit at temperatures significantly above Tpc. This is in accord with the approximately
chiral-spin symmetric window with non-perturbative, hadron-like excitations.

Since we neglected the continuum contribution from Eq. (10), it is crucial to perform a quality
check. This is done in Fig. 7 (left), where we predict the temporal correlator C⌧

PS
using our spectral

function from the spatial correlator at T = 220 MeV, and compare with the lattice result from
Fig. 2. Excellent quantitative agreement is found except for very short distances, which is due to the
neglected higher excited states in the description of the spatial correlator. For higher temperatures
we expect the quality of the prediction to deteriorate, as in this case the neglected continuum part
Dc,� should play an increasing role.
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Figure 7: Left: Temporal correlation function predicted by the spectral function Eq. (12), Fig. 6 (red band),
compared to the full lattice data from Fig. 2 [5]. Right: The corresponding prediction based on a Breit-Wigner
ansatz, Eq. (13).

absence of a true phase transition, and propose an ansatz with particle and scattering contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [15]

Cs

PS
(z) = 1

2

π 1

0
ds

π 1

|z |
dR e�R

p
sD�(R, s). (11)

For temperatures below the threshold to the scattering states we then expect the first term in
Eq. (10) to dominate. Neglecting the continuum part, the calculation of the spectral function is
straightforward. First, we fit the spatial pseudo-scalar correlators from Fig. 1 by the sum of two
exponentials representing the ⇡, ⇡⇤, which gives an excellent description of the data in the entire
temperature range, cf. Fig. 6 (left). This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|), from which
the spectral function can be reconstructed using Eqs. (9,10) and the vacuum masses m⇡,m⇡⇤ ,

⇢PS(!, p = 0) = ✏(!)
2666664
✓(!2 � m2

⇡)
4↵⇡ �⇡

p
!2 � m2

⇡

(!2 � m2
⇡ + �

2
⇡)2
+ ✓(!2 � m2

⇡⇤)
4↵⇡⇤ �⇡⇤

q
!2 � m2

⇡⇤

(!2 � m2
⇡⇤ + �2

⇡⇤)2

3777775
.

(12)

The result is shown in Fig. 6 (right) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As the temperature increases,
the peaks widen and gradually disappear into a continuum, consistent with sequential hadron
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Perturbative plasmon: Breit-Wigner shape
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Figure 8: Possibilities for the QCD phase diagram with a chiral spin and SU(4)-symmetric band.

For comparison, we have also tried a Breit-Wigner ansatz commonly associated with perturba-
tive plasma excitations,

⇢BW
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This ansatz can be fitted equally well to the spatial correlator at T = 220 MeV, but in this case the
predicted temporal correlator is not compatible with the data, Fig. 7 (right).

5. The QCD phase diagram

Having established an e�ectively chiral spin symmetric temperature window at zero density
with non-perturbative dynamics, the question is what happens at finite baryon chemical potential.
This adds µB/3  ̄�0 to the e�ective Lagrangian, and since the generators of chiral spin commute
with �0, Eq. (2), an approximate chiral spin symmetry at zero density must continue to µB , 0. At
least for µB/T<⇠3 we can then infer what happens to the chiral spin symmetric band.

Since full chiral symmetry restoration is necessary for chiral spin symmetry, its lower boundary
Tch(µ)>⇠Tpc(µ). In Sec. 3 we identified the upper crossover Ts by the bending of the screening masses,
which marks the screening of the colour-electric interactions and the onset of perturbative behaviour.
Picking the vector meson screening radius at its bend to define the screening temperature Ts,

r�1
V
(µB = 0,Ts) ⌘ mV (µB = 0,Ts) = C0Ts , (14)

we can use the Taylor expanded screening mass to deduce the line of constant r�1
V

,

mV (µB)
T

= C0 + C2

⇣ µB
T

⌘2
+ . . . ) dTs

dµB
= �2C2

C0

µB
T

�
2C2

2

C2
0

⇣ µB
T

⌘3
+ . . . . (15)

Since C2 > 0 [16, 17], the upper crossover line bends downwards, as indicated in Fig. 8.
As chemical potential increases, further details of the phase diagram remain unknown, and

several options for the continuation of the chiral spin symmetric band are possible. In the cold and
dense regime, baryon parity doublet matter is consistent with chiral spin symmetry, provided it is
decoupled from ⇡,� to leading order, otherwise it is only chirally symmetric. Similarly, quarkyonic
matter with a chirally symmetric confined regime [18, 19] may also be chiral spin symmetric, as
discussed in [20]. This is independent of the question whether or not there is a non-analytic chiral
phase transition. Two possibilities (there are more) for the phase diagram are shown in Fig. 8.
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Bros+Buchholz Ansatz

Both fit spatial correlator

Predicted temporal correlators:


