Evgeny Epelbaum, Ruhr University Bochum

YITP, Kyoto, 14th Oct – 15th Nov, 2024

Modern Theory of Nuclear Forces

Concepts

Chiral perturbation theory, pionless and chiral effective field theories for few-N, KSW vs Weinberg, predictive power, renormalization, ...

Methods

S-matrix matching, Method of Unitary Transformation, Path-integral approach ...

Hadrons and Hadron Interactions in QCD 2024 (HHIQCD 2024)

The Big Picture

The Standard Model (QCD, ...)

Schwinger-Dyson , large-N_c, ...

I: Chiral Perturbation Theory

How to exploit the chiral symmetry of QCD to calculate lowenergy reactions involving pions?

Outline

- Classical example of an effective theory
- Effective Lagrangian for pions and calculation of the S-matrix
- Inclusion of the nucleons

Selected review articles

Bernard, Kaiser, Meißner, Int. J. Mod. Phys. E4 (1995) 193 Pich, Rep. Prog. Phys. 58 (1995) 563 Bernard, Prog. Part. Nucl. Phys. 60 (2007) 82 Scherer, Prog. Part. Nucl. Phys. 64 (2010) 1

Lecture notes

Scherer, Adv. Nucl. Phys. 27 (2003) 277 Gasser, Lect. Notes Phys. 629 (2004) 1

Text book

Scherer, Schindler, A Primer for ChPT, Lecture Notes in Physics, 2012

What is an effective theory?

A classical example

The goal: compute electric potential generated by a localized charge distribution $\rho(\vec{r})$

The answer is $V(\vec{R}) \propto \int d^3r \, \frac{\rho(\vec{r})}{|\vec{R}-\vec{r}|}$

An effective theory for $R \gg a$: The Top-Down approach

$$\frac{1}{|\vec{R} - \vec{r}|} = \frac{1}{R} + r_i \left[\frac{\partial}{\partial r_i} \frac{1}{|\vec{R} - \vec{r}|} \right]_{\vec{r}=0} + \frac{1}{2!} r_i r_j \left[\frac{\partial^2}{\partial r_i \partial r_j} \frac{1}{|\vec{R} - \vec{r}|} \right]_{\vec{r}=0} + \dots$$
$$= \frac{1}{R} + \frac{R_i}{R^3} r_i + \frac{1}{2!} \frac{R_i R_j}{R^5} (3r_i r_j - r^2 \delta_{ij}) + \dots$$

$$\Rightarrow V(\vec{R}) = \frac{q}{R} + \frac{R_i}{R^3} P_i + \frac{1}{2} \frac{R_i R_j}{R^5} Q_{ij} + \dots$$

with $q = \int d^3 r \, \rho(\vec{r}), \quad P_i = \int d^3 r \, \rho(\vec{r}) \, r_i, \quad Q_{ij} = \int d^3 r \, \rho(\vec{r}) \, (3r_i r_j - r^2 \delta_{ij})$

We have just "integrated out" short-distance physics. For $R \gg a$, the only information needed about $\rho(\vec{r})$ is hidden in the moments q, P_i, Q_{ij}, \ldots

charge distribution \vec{R} \vec{r} \vec{r}

observer

What is an effective theory?

An effective theory for $R \gg a$: The Bottom-Up approach

What if we cannot "integrate out" short-distance physics or don't even now $\rho(\vec{r})$, apart from the fact that it is localized in the volume ~ a^3 ?

Solution: Write down the most general expression for *V* using the long-distance DoF (i.e., \vec{R}) compatible with the symmetry principles (rotational invariance)

$$V(\vec{R}) = \sum \begin{bmatrix} \text{rotational tensors} \\ \text{constructed from } \vec{R} \end{bmatrix} \cdot \begin{bmatrix} \text{rotational tensors characterizing} \\ \text{the system, independent of } \vec{R} \end{bmatrix}$$
$$= \frac{1}{R} \operatorname{const} + \frac{1}{R^3} R_i X_i + \frac{1}{R^5} R_i R_j X_{ij} + \dots$$
$$[V] = \operatorname{length}^{-1} \qquad \sim a (NDA) \qquad \sim a^2 (NDA)$$

The (2n + 1) components of $X_{i_1...i_n}$ are called in the EFT language LECs and can be determined from experimental data.

 \Rightarrow systematically improvable approximation for $V(\vec{R})$ at $R \gg a$ without knowing $\rho(\vec{r})!$

Chiral perturbation theory

Chiral symmetry of QCD

mass

Chiral perturbation theory Weinberg, Gasser, Leutwyler, Meißner, ...

Ideal world $[m_u = m_d = 0]$, zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)

Real world $[m_u, m_d \ll \Lambda_{OCD}]$, **low energy:** weakly interacting light GBs (pions) (+ strongly interacting massive hadrons)

 \Rightarrow expand about the ideal world (ChPT)

Chiral perturbation theory

Chiral symmetry of QCD

Chiral perturbation theory Weinberg, Gasser, Leutwyler, Meißner, ...

"if one writes down the most general possible Lagrangian, including all terms consistent with the assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition, and the assumed symmetry properties"

S. Weinberg, Physica 96A (1979) 327; see also H. Leutwyler, Annals Phys. (1994) 165

Effective chiral Lagrangian

Pions transform linearly under isospin (iso-triplet) but non-linearly under $SU(2)_L \times SU(2)_R$, e.g.:

$$U = \frac{1}{F} \left(\sigma \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right) \xrightarrow{\text{nonlinear realization}} U = \frac{1}{F} \left(\sqrt{F^2 - \boldsymbol{\pi}^2} \, \mathbf{1}_{2 \times 2} + i \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right)$$

Chiral rotations: $U \longrightarrow U' = LUR^{\dagger}$ with $L = \exp[-i(\theta^V - \theta^A) \cdot \tau/2], \quad R = \exp[-i(\theta^V + \theta^A) \cdot \tau/2]$

The leading and sub-leading Lagrangian for pions

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^{2}}{4} \langle \partial_{\mu}U\partial^{\mu}U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle, \qquad \text{terms involving external sources}$$

$$\mathcal{L}_{\pi}^{(4)} = \frac{l_{1}}{4} \langle \partial_{\mu}U\partial^{\mu}U^{\dagger} \rangle^{2} + \frac{l_{2}}{4} \langle \partial_{\mu}U\partial_{\nu}U^{\dagger} \rangle \langle \partial^{\mu}U\partial^{\nu}U^{\dagger} \rangle + \frac{l_{3}}{16} \langle 2B\mathcal{M}(U + U^{\dagger}) \rangle^{2} + \dots$$

$$- \frac{l_{7}}{16} \langle 2B\mathcal{M}(U - U^{\dagger}) \rangle^{2} \qquad [Gasser, Leutwyler '84]$$

Tree-level connected diagrams from $\mathscr{L}_{\pi}^{(2)}$ $U(\pi) = \mathbf{1}_{2\times 2} + i\frac{\tau \cdot \pi}{F} - \frac{\pi^2}{2F^2} - i\alpha \frac{\pi^2 \tau \cdot \pi}{F^3} + \mathcal{O}(\pi^4) \longrightarrow \mathcal{L}_{\pi}^{(2)} = \frac{\partial_{\mu} \pi \cdot \partial^{\mu} \pi}{2} - \frac{M^2 \pi^2}{2} + \frac{(\partial_{\mu} \pi \cdot \pi)^2}{2F^2} - \frac{M^2 \pi^4}{8F^2} + \dots$ $= \text{ all diagrams scale as } Q^2$ $= \text{ insertions from } \mathcal{L}_{\pi}^{(4)}, \mathcal{L}_{\pi}^{(6)}, \dots$ $= \text{ suppressed by powers of } Q^2$ = remarkable predictive power

Perturbative expansion of S-matrix

Tree-level diagrams with higher-order vertices are suppressed at low energy. In ChPT, loop contributions are also suppressed (pions as GBs) Weinberg '79

Example: pion self energy (using DimReg)

$$I = \frac{M^2}{F^2} \int \frac{d^4l}{(2\pi)^4} \frac{i}{l^2 - M^2 + i\epsilon} \rightarrow \mu^{4-d} \frac{M^2}{F^2} \int \frac{d^dl}{(2\pi)^d} \frac{i}{l^2 - M^2 + i\epsilon}$$

$$= M^2 \frac{M^2}{(4\pi F)^2} \ln\left(\frac{M^2}{\mu^2}\right) + \frac{2M^4}{F^2} L(\mu) + \dots \quad \text{terms vanishing in } d = 4$$
The infinity $L(\mu) = \frac{\mu^{d-4}}{16\pi^2} \left(\frac{1}{d-4} + \text{const}\right)$ is cancelled by the c.t. from $\mathcal{L}_{\pi}^{(4)}$: $l_i \rightarrow l_i^r(\mu) + \text{c.t.}$
The bottom line: in DimReg, all momenta flowing through loop graphs are soft, $\sim Q$

Inclusion of the nucleons

Matter fields (N, Δ ,...) can be introduced via the CCWZ realization coleman, Callan, Wess, Zumino '69

Lowest-order effective Lagrangian for a single nucleon:

known functions of the pion fields

$$\mathcal{L}_{\pi N}^{(1)} = \bar{N} \left(i \gamma^{\mu} D_{\mu}^{\flat} - m + \frac{g_A}{2} \gamma^{\mu} \gamma_5 u_{\mu}^{\flat} \right) N$$

<u>Problem (?)</u>: new hard mass scale $m \Rightarrow$ power counting ??

• Heavy-baryon ChPT ($p^{\mu} = mv^{\mu} + k^{\mu}$, $v \cdot k \ll m$) Jenkins, Manohar '91; Bernard et al. '92; Mannel et al. '92 Nonrelativistic expansion of $\mathscr{L}_{\pi N} \Rightarrow$ nucleon mass appears only in $1/m^n$ —corrections $\mathcal{L}_{\pi N}^{(1)} = N'^{\dagger} \left(iD_0 + \frac{g_A}{2} \vec{\sigma} \cdot \vec{u} \right) N' + \mathcal{O}(1/m) \quad \longleftarrow \quad \text{for } v^{\mu} = (1,0,0,0)$

- Manifestly Lorentz invariant BChPT: Infrared regularization Becher, Leutwyler '99
 Separate infrared-singular parts of the loop integrals
- Manifestly Lorentz invariant BChPT: EOMS Gegelia, Japaridze '99; Fuchs et al. '03
 Restore chiral power counting by using appropriate renormalization conditions

Chiral expansion of m_N in the HB approach

Dressed HB propagator of the nucleon:
$$\frac{i}{v \cdot k - \Sigma(k) + i\epsilon} = \frac{i}{v \cdot p - m - \Sigma(k) + i\epsilon}$$

Up to the order Q³, the physical mass $(p =: m_N v)$ is given by $m_N = m + \Sigma(0)$.

Chiral expansion of the nucleon self energy: $\Sigma(k) =$

$$= \underbrace{-4c_1M^2 - \vec{k}^2/(2m)}_{Q^2} + \underbrace{\sum_{loop}(k) =: -3g_A^2/(4F^2)I(k)}_{Q^3} + \ldots$$

$$I(0) = -i \int \frac{d^4l}{(2\pi)^4} \frac{\vec{l} \cdot \vec{l}}{(l_0 + i\epsilon)(l^2 - M^2 + i\epsilon)} \xrightarrow{\mathsf{DR}} \frac{M^3}{8\pi} \Rightarrow m_N = m - 4c_1 M^2 - \frac{1}{3}$$

not fixed by χ -symmetry

ChPT prediction

How about cutoff regularization? Donoghue, Holstein '98

$$f_{\Lambda}(0) = -i \int \frac{d^4 l}{(2\pi)^4} \frac{\vec{l} \cdot \vec{l} e^{-\vec{l}^2/\Lambda^2}}{(l_0 + i\epsilon)(l^2 - M^2 + i\epsilon)}$$
$$= \frac{1}{16\pi^{3/2}} \left[\Lambda^3 - 2\Lambda M^2 + 2\sqrt{\pi} M^3 e^{\frac{M^2}{\Lambda^2}} \operatorname{erfc}\left(\frac{M}{\Lambda}\right) \right]$$
$$\xrightarrow{\Lambda \to \infty} \alpha \Lambda^3 + \beta \Lambda M^2 + \frac{M^3}{8\pi} + \mathcal{O}(\Lambda^{-1})$$
can be absorbed in $m(\Lambda), c_1(\Lambda)$

Pion-nucleon scattering

Effective chiral Lagrangian:

$$\mathcal{L}_{\pi} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots$$

$$\mathcal{L}_{\pi N} = \underbrace{\bar{N}\left(i\gamma^{\mu}D_{\mu}[\pi] - m + \frac{g_{A}}{2}\gamma^{\mu}\gamma_{5}u_{\mu}[\pi]\right)N}_{\mathcal{L}_{\pi N}^{(1)}} + \underbrace{\sum_{i}c_{i}\bar{N}\hat{O}_{i}^{(2)}[\pi]N}_{\mathcal{L}_{\pi N}^{(2)}} + \underbrace{\sum_{i}d_{i}\bar{N}\hat{O}_{i}^{(3)}[\pi]N}_{\mathcal{L}_{\pi N}^{(3)}} + \underbrace{\sum_{i}e_{i}\bar{N}\hat{O}_{i}^{(4)}[\pi]N}_{\mathcal{L}_{\pi N}^{(4)}} + \dots$$
Pion-nucleon scattering amplitude for $\pi^{a}(q_{1}) + N(p_{1}) \rightarrow \pi^{b}(q_{2}) + N(p_{2})$:

$$T^{ba}_{\pi N} = \frac{E+m}{2m} \left(\delta^{ba} \Big[g^+(\omega,t) + i\vec{\sigma} \cdot \vec{q}_2 \times \vec{q}_1 h^+(\omega,t) \Big] + i\epsilon^{bac} \tau^c \Big[g^-(\omega,t) + i\vec{\sigma} \cdot \vec{q}_2 \times \vec{q}_1 h^-(\omega,t) \Big] \right)$$

calculated within the chiral expansion

Relevant LECs (in GeV⁻ⁿ) extracted from πN scattering

	c_1	c_2	C ₃	c_4	$ar{d_1}+ar{d_2}$	$ar{d}_3$	$ar{d}_5$	$ar{d}_{14}-ar{d}_{15}$	$ar{e}_{14}$	$ar{e}_{17}$	
$[Q^4]_{ m HB,NN},{ m GW}{ m PWA}$	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58	Krebs, Gasparyan, EE
$[Q^4]_{ m HB,NN}, m KH$ PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37	PRC85 (12) 054006
$[Q^4]_{\rm HB, NN}$, Roy-Steiner	-1.10	3.57	-5.54	4.17	6.18	-8.91	0.86	-12.18	1.18	-0.18	Hoferichter et al., PRL 115 (15) 092301
$[Q^4]_{ m covariant},{ m data}$	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90	Siemens et al., PRC94 (16) 014620

With the LECs taken from πN , the long-range NN force is completely fixed (parameter-free)

ChPT versus Multipole Expansion

Chiral Perturbation Theory

• Most general effective Lagrangian for pions [and matter fields], chiral symmetry!

$$\mathcal{L}_{\pi}^{(2)} = \frac{F^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + 2B(\mathcal{M}U + \mathcal{M}U^{\dagger}) \rangle,$$

$$\mathcal{L}_{\pi}^{(4)} = \frac{l_1}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle^2 + \frac{l_2}{4} \langle \partial_{\mu} U \partial_{\nu} U^{\dagger} \rangle \langle \partial^{\mu} U \partial^{\nu} U^{\dagger} \rangle + \dots$$

- The size of (ren.) LECs governed by the hard scale $\Lambda_{\chi} \sim 1$ GeV, LECs can be calculated (lattice-QCD) or fixed from experiment
- Separation of scales: [soft] $Q \sim M_{\pi} \ll \Lambda_{\chi} \sim M_{\rho}$ [hard]

 Chiral expansion of S-matrix elements (Feynman graphs, power counting, renorm.)

 $Q = \frac{\text{momenta of particles or } M_{\pi} \sim 140 \text{ MeV}}{\text{breakdown scale } \Lambda_{b}}$

Electric potential

Most general expression for the electric potential (rotational invariance)

LECs (multipoles) governed by the size *a* of $\rho(\vec{r})$, they can be calculated or determined from exp.

[soft] $1/R \ll 1/a$ [hard]

Multipole expansion for $V(\vec{R})$ in powers of a/R

Take-aways of part I

- chiral symmetry of QCD strongly constrains interactions between pions
- only irrelevant operators \Rightarrow low-energy amplitudes calculable in perturbation theory (ChPT)
- straightforwardly generalizable to single-N processes

II: Pionless EFT for 2 nucleons

Use the simplest (analytically solvable) EFT for NN to clarify the meaning of renormalization, power counting and all that...

Outline

- Lippmann-Schwinger equation from Feynman diagrams
- First naive attempt and the need for fine tuning
- KSW & W power counting schemas
- Implicit renormalization

Further reading

Kaplan, Savage, Wise, NPB 478 (1996) 629 EE, Gegelia, Meißner, NPB 925 (2017) 161 EE, Gegelia, Huesmann, Meißner, FBS 62 (2021) 51

Relevant scales

• Chiral perturbation theory (0,1 nucleons): perturbative expansion of the amplitude in powers of

 $Q \in \Big\{rac{M_\pi}{\Lambda}, \, rac{|ec{p}\,|}{\Lambda}\Big\}, \quad \Lambda \sim m_
ho \sim 4\pi F_\pi \sim 1 \; ext{GeV}$

• >1 nucleons: a new very soft scale $1/a_S \simeq 8.5 \text{ MeV}(36 \text{ MeV})$ in ${}^1S_0 ({}^3S_1)$

has to be generated dynamically \rightarrow need nonperturbative resummations: chiral EFT

Pionless EFT Kaplan, Savage, Wise, Nucl. Phys. B478 (1996) 629

The goal: design an EFT to match ERE (no predictive power for NN beyond ERE) DoF: nonrelativistic nucleons (use the HB formalism) Symmetries: rotational invariance, isospin symmetry, usual discrete symmetries...

Begin with writing down the most general Lagrangian:

$$\mathcal{L} = N^{\dagger} \left(i \partial_0 + \frac{\vec{\nabla}^2}{2m_N} \right) N - \frac{1}{2} C_S (N^{\dagger} N)^2 - \frac{1}{2} C_T (N^{\dagger} \vec{\sigma} N)^2 + \underbrace{\cdots}_{\text{terms with } \ge 2 \text{ derivatives}}$$

Notice: $(N^{\dagger} \vec{\tau} N)^2$, $(N^{\dagger} \vec{\tau} \vec{\sigma} N)^2$ are redundant (Pauli principle). Indeed, in there are only 2 independent s-waves (${}^{1}S_{0}$ and ${}^{3}S_{1}$) in the isospin limit...

Feynman rule (ignore spin for the moment...):

$$i\mathcal{A}^{\text{tree}} = -i \left[C_0 + C_2 (\vec{p}^2 + \vec{p}'^2) + \dots \right]$$

linear combination
of C_S, C_T

$$egin{aligned} &i\mathcal{A}^{1- ext{loop}} &= \int rac{d^4l}{(2\pi)^4} (-i) ig[C_0 + C_2 (ec{p}\,^2 + ec{l}\,^2) + \dots ig] rac{i}{rac{E}{2} + l_0 - rac{ec{l}^2}{2m_N} + i\epsilon} rac{i}{rac{E}{2} - l_0 - rac{ec{l}^2}{2m_N} + i\epsilon} \ & imes (-i) ig[C_0 + C_2 (ec{l}\,^2 + ec{p}\,'\,^2) + \dots ig] \ &= & (-i) \int rac{d^3l}{(2\pi)^3} ig[C_0 + C_2 (ec{p}\,^2 + ec{l}\,^2) + \dots ig] rac{1}{E - rac{ec{l}^2}{m_N} + i\epsilon} ig[C_0 + C_2 (ec{l}\,^2 + ec{p}\,'\,^2) + \dots ig] \end{aligned}$$

Since loop integrals factorize, the results are trivially generalizable to any number of loops. One finds for $E = p^2/m_N$:

$$\mathcal{A}(\vec{p}',\vec{p}) = V(\vec{p}',\vec{p}) - m_N \int \frac{d^3l}{(2\pi)^3} \frac{V(\vec{p}',\vec{l}) \mathcal{A}(\vec{l},\vec{p})}{\vec{p}^2 - \vec{l}^2 + i\epsilon}$$

sign convention for V, \mathcal{A}

with the potential $V(\vec{p}', \vec{p}) = -(C_0 + C_2(\vec{p}^2 + \vec{p}'^2) + ...)$. As expected, the nonrelativistic treatment recovers the quantum mechanical Lippmann-Schwinger equation.

In the following, we focus on S-wave scattering. Utilizing the KSW notation,

$$i\mathcal{A}^{\text{tree}} = iV(p',p) = -i(C_0 + \underbrace{C_2(p^2 + {p'}^2)}_{\text{terms } \sim pp'} + \underbrace{\ldots}_{\geq 4 \text{ derivatives}})$$

The LS equation for the half-shell amplitude in the s-waves:

$$\mathcal{A}(p',p) = V(p',p) - m \int rac{d^3l}{(2\pi)^3} rac{V(p',l) \ \mathcal{A}(l,p)}{p^2 - l^2 + i\epsilon}$$
, and $S_0 = 1 + i rac{mp}{2\pi} \mathcal{A}$

Loop integrals are UV divergent \Rightarrow need regularization and renormalization...

$$m \int \frac{d^3l}{(2\pi)^3} \frac{l^{2n}}{p^2 - l^2 + i\epsilon} = -m \int \frac{d^3l}{(2\pi)^3} l^{2n-2} - \dots - mp^{2n-2} \int \frac{d^3l}{(2\pi)^3} + mp^{2n} \int \frac{d^3l}{(2\pi)^3} \frac{1}{p^2 - l^2 + i\epsilon}$$
$$=: p^{2n-2}I_3 = :p^{2n}I(p)$$

Cutoff regularization (DimReg + PDS correspond to $\mu \rightarrow \mu \pi/2$, $\mu_i = 0$):

$$I_n \rightarrow I_n^{\Lambda} = \frac{-m}{2\pi^2} \int_0^{\Lambda} dl \, l^{n-1} = \frac{-m}{2\pi^2} \int_{\mu_n}^{\Lambda} dl \, l^{n-1} + \frac{-m}{2\pi^2} \int_0^{\mu_n} dl \, l^{n-1} \equiv \Delta_n(\mu_n) + I_n^R(\mu_n)$$

$$I(p) \rightarrow I^{\Lambda}(p) = \frac{m}{2\pi^2} \int_0^{\Lambda} dl \, \frac{l^2}{p^2 - l^2 + i\epsilon} = \Delta_1(\mu) + I_1^R(\mu) - \frac{i \, m \, p}{4\pi} - \frac{mp}{4\pi^2} \ln \frac{\Lambda - p}{\Lambda + p}$$

We still need to specify renormalization conditions (= choice of subtraction scales).

Conventional wisdom suggests: μ , $\mu_i \sim \text{soft scale} \sim p \ll M_{\pi}$ [i.e., all loop momenta are of the order of the soft scale <u>after renormalization</u>...]

The amplitude at 2 loops assuming NDA scaling of LECs:

Recall:
$$I(p) = \lim_{\Lambda \to \infty} \left(\frac{m}{2\pi^2} (\mu - \Lambda) \right) - \frac{m}{4\pi} \left(ip + \frac{2}{\pi} \mu \right)$$
$$= \Delta(\mu) = I^{\mathrm{R}}(\mu, p)$$

Renormalization: $C_0 = C_0^{\mathrm{R}}(\mu) + \hbar \underbrace{\delta C_{0,1}}_{-(C_0^{\mathrm{R}})^2} \Delta + \underbrace{\hbar^2 \underbrace{\delta C_{0,2}}_{-(C_0^{\mathrm{R}})^3} \Delta^2}_{-(C_0^{\mathrm{R}})^3}$

Thus, finally: $\mathcal{A} = -C_0^{\mathbb{R}}(\mu) - (C_0^{\mathbb{R}}(\mu))^2 I^{\mathbb{R}}(\mu, p) - (C_0^{\mathbb{R}}(\mu))^3 (I^{\mathbb{R}}(\mu, p))^2 - 2C_2 p^2 + \dots$

[If all c.t. are included, renormalization amounts to replacing $C_i \to C_i^{\mathrm{R}}(\mu), I_{[n]} \to I_{[n]}^{\mathrm{R}}(\mu)$.]

To determine LECs, we have to match the amplitude to the ERE:

$${\cal A} \;=\; rac{4\pi}{m} rac{1}{p \cot \delta - i p} \;=\; rac{4\pi}{m} rac{1}{\left[-rac{1}{a} + rac{1}{2} r p^2 + v_2 p^4 + \ldots
ight] - i p}$$

Such matching is possible provided $a, r, v_i \sim \mathcal{O}(1)$. One then has:

However, in reality, the scattering lengths are large:

$$a_{^{1}S_{0}} = -23.714 \; {
m fm} \sim -16.6 \, M_{\pi}^{-1} \,, \qquad a_{^{3}S_{1}} = 5.42 \; {
m fm} \sim 3.8 \, M_{\pi}^{-1}$$

Thus, it seems more appropriate to count $a \sim p^{-1}$. This leads to the expansion:

$$\mathcal{A} = -\frac{4\pi}{m} \left[\underbrace{\frac{1}{a^{-1} + ip}}_{\text{order } p^{-1}} + \underbrace{\frac{rp^2}{2(a^{-1} + ip)^2}}_{\text{order } p^0} + \underbrace{\frac{r^2p^4}{4(a^{-1} + ip)^3}}_{\text{order } p} + \ldots \right]$$

The large scattering length signals non-perturbative physics. In order to accommodate for it, some fine tuning must be built in to the EFT.

The resulting power counting depends on the choice of renormalization conditions! [for details see EE, Gegelia, Meißner, Nucl. Phys. B925 (2017) 161]

Consider a general expansion for the potential: $V = V^{\text{LO}} + V^{\text{NLO}} + V^{N^2\text{LO}} + \cdots$ Want to assign powers of p to match: $\mathcal{A} = \mathcal{A}^{(-1)} + \mathcal{A}^{(0)} + \mathcal{A}^{(1)} + \cdots$

LS equation: $\hat{\mathcal{A}}^{(-1)} = \hat{V}^{\text{LO}} - \hat{V}^{\text{LO}} \hat{G}_0 \hat{\mathcal{A}}^{(-1)} \rightarrow 1 + \hat{V}^{\text{LO}} \hat{G}_0 = \hat{V}^{\text{LO}} [\hat{\mathcal{A}}^{(-1)}]^{-1}$

Let:
$$\hat{V}^{\text{LO}} \sim \mathcal{O}(p^x) \longrightarrow 1 + \hat{V}^{\text{LO}} \hat{G}_0 \sim \mathcal{O}(p^{1+x}) \longrightarrow \begin{cases} \hat{G}_0 \sim \mathcal{O}(p), & x \leq -1 \\ \hat{G}_0 \sim \mathcal{O}(p^{-x}), & x > -1 \end{cases}$$

A desired scaling of \hat{G}_0 can be realized by choosing the renormalization conditions:

• Weinberg: $\mu \sim \mathcal{O}(1), \ \mu_i \sim \mathcal{O}(p) \longrightarrow x = 0 \longrightarrow V_{\text{Weinberg}}^{\text{LO}} \sim \mathcal{O}(1)$ • KSW: $\mu, \mu_i \sim \mathcal{O}(p) \longrightarrow x = -1 \longrightarrow V_{\text{KSW}}^{\text{LO}} \sim \mathcal{O}(p^{-1})$

Scaling of V^{NLO} can be read off from: $\hat{\mathcal{A}}^{(0)} = \hat{V}^{\text{NLO}} - \hat{V}^{\text{NLO}} \hat{G}_0 \hat{\mathcal{A}}^{(-1)} - \hat{\mathcal{A}}^{(-1)} \hat{G}_0 \hat{V}^{\text{NLO}} + \hat{\mathcal{A}}^{(-1)} \hat{G}_0 \hat{V}^{\text{NLO}} \hat{G}_0 \hat{\mathcal{A}}^{(-1)} \rightarrow \begin{cases} V_{\text{Weinberg}}^{\text{NLO}} \sim \mathcal{O}(p^2) \\ V_{\text{KSW}}^{\text{NLO}} \sim \mathcal{O}(1) \end{cases}$

Both choices of the renormalization conditions

- lead to self-consistent approaches
- are equivalent for pionless EFT but lead to different EFTs with pions
- involve some fine tuning beyond NDA [see: EE, Gegelia, Meißner, NPB 925 (2017) 161]

Leading order (p⁻¹):

One recovers the Weinberg/KSW scaling of $C_0^{\mathbb{R}}$ depending on the choice of μ : $C_0^{\mathbb{R}} \sim \mathcal{O}(1)$ for $\mu \sim \mathcal{O}(1)$; $C_0^{\mathbb{R}} \sim \mathcal{O}(p^{-1})$ for $\mu \sim \mathcal{O}(p)$.

Subleading order (p⁰):

The subleading amplitude (including terms suppressed in W. scheme) reads:

$$egin{array}{rcl} \mathcal{A}^{(0)} &=& -2C_2p^2 \; -2ig(-C_2(p^2I(p)+J_1(p))ig)\mathcal{A}^{(-1)} \; - \; 2C_2J_1(p)I(p)ig(\mathcal{A}^{(-1)}ig)^2 \ &=& -I_3+p^2I(p) \end{array}$$

For the sake of simplicity, choose $\mu_3 = 0$ (so that $I_3^{\rm R} = 0$).

After renormalization $(I(p) \rightarrow I^{\mathbb{R}}(\mu, p), C_2 \rightarrow C_2^{\mathbb{R}}(\mu))$, one finds:

$$\mathcal{A}^{(0)} \;=\; -2\,C_2^{\mathrm{R}}\,p^2\,rac{\left(a^{-1}-rac{2}{\pi}\mu
ight)^2}{(a^{-1}+ip)^2}\;\stackrel{!}{=}\; -rac{4\pi}{m}\,r\,p^2\,rac{1}{2(a^{-1}+ip)^2}\;
ightarrow\,C_2^{\mathrm{R}}\;=\;rac{\pi}{m}\,rac{\pi}{\left(a^{-1}-rac{2}{\pi}\mu
ight)^2}$$

Again, we recover: $C_2^{\mathbb{R}} \sim \mathcal{O}(1)$ for $\mu \sim \mathcal{O}(1)$; $C_2^{\mathbb{R}} \sim \mathcal{O}(p^{-2})$ for $\mu \sim \mathcal{O}(p)$.

Pionless EFT: Implicit renormalization

In EFT with non-perturbative pions, the amplitude cannot be calculated analytically ⇒ renormalization has to be performed implicitly.

"The theory is fully specified by the values of the bare constants once a suitable regularization procedure is chosen. In principle, the renormalization program is straightforward: one calculates quantities of physical interest in terms of the bare parameters at given, large value of (ultraviolet cutoff) Λ . Once a sufficient number of physical quantities have been determined as functions of the bare parameters one inverts the result and expresses the bare parameters in terms of physical quantities, always working at some given, large value of Λ . Finally, one uses these expressions to eliminate the bare parameters in all other quantities of physical interest."

Gasser, Leutwyler, Phys. Rep. 87 (1982) 77

Let's see how this works in pionless EFT...

Pionless EFT: Implicit renormalization

Define the contact potential; introduce a UV cutoff $\Lambda \sim \Lambda_b \sim M_{\pi}$; solve the LS equation; tune <u>bare</u> LECs $C_0(\Lambda)$, $C_2(\Lambda)$ to a, r.

For a sharp cutoff, one finds at NLO:

$$mC_0 = rac{6\pi^2\left(eta-6\sqrt{3}\sqrt{lpha(\pi-2a\Lambda)^2}
ight)}{5lpha\Lambda}\,,$$

where I have introduced:

 $lpha \equiv 16a^2\Lambda^2 - \pi a\Lambda \left(a\Lambda^2 r + 12
ight) + 3\pi^2\,, \qquad eta \equiv 64a^2\Lambda^2 - \pi a\Lambda \left(3a\Lambda^2 r + 62
ight) + 18\pi^2$

Implicitly renormalized expression for the inverse amplitude:

$$rac{4\pi}{m} \, rac{1}{\mathcal{A}(p)} \, = \, \Big[-rac{1}{a} \, + \, rac{1}{2} r p^2 \, + \, rac{\pi \, (8 - 3 a \Lambda^2 r (\pi \Lambda r - 8)) - 64 a \Lambda}{12 \pi \Lambda^3 (\pi - 2 a \Lambda)} p^4 \, + \, \mathcal{O}(p^6) \Big] \, - \, i p$$

⇒ Well-defined and correct (up to higher-order terms) result for $\Lambda \sim r^{-1} \Delta (\mu) M_{\pi}$. However, things may (and, in general, would) go wrong if choosing $\Lambda \gg r^{-1}$ (complex C_i 's, Wigner bound, peratization...)

Pionless EFT: Implicit renormalization

Define the contact potential; introduce a UV cutoff $\Lambda \sim \Lambda_b \sim M_{\pi}$; solve the LS equation; tune <u>bare</u> LECs $C_0(\Lambda)$, $C_2(\Lambda)$ to a, r.

For a sharp cutoff, one finds at NLO:

$$mC_0 = rac{6\pi^2\left(eta-6\sqrt{3}\sqrt{lpha(\pi-2a\Lambda)^2}
ight)}{5lpha\Lambda}\,,$$

where I have introduced:

$$\alpha \equiv 16a^2\Lambda^2 - \pi a\Lambda \left(a\Lambda^2r + 12\right) + 3\pi^2, \qquad \beta \equiv 64a^2\Lambda^2 - \pi a\Lambda \left(3a\Lambda^2r + 62\right) + 18\pi^2$$

 $mC_2 = rac{6\pi^2 \left(\sqrt{3} \sqrt{lpha (\pi - 2 a \Lambda)^2 - lpha
ight)}}{lpha \Lambda^3}$

To summarize:

- Contrary to the previous cases, not all c.t. needed to remove UV divergences are included \Rightarrow it is not legitimate to take the limit $\Lambda \rightarrow \infty$.
- Higher-order terms are indeed small provided $\Lambda \sim$ hard scale (NDA...).
- Implicit renormalization (i.e. no explicit splitting of C_i into $C_i^{\rm R}(\mu)$ and $\Delta(\mu)$).
- Bare LECs $C_i(\Lambda)$ must be re-fitted at every order.

Take-aways of part II

- the appearance of shallow NN states signals fine tuning (non-perturbative physics) that must be built in to an EFT
- different choices of renormalization conditions in pionless
 EFT lead to different power countings (KSW vs W)
- renormalization can also be carried out implicitly by tuning bare LECs to experimental data

III: Inclusion of pions

Are pions perturbative? How to test the long-range dynamics? What is the predictive power of chiral EFT for few N's?

Outline

- Low-energy theorems (LETs) and the modified ERE
- KSW with perturbative pions
- Non-perturbative inclusion of pions

Further reading

van Haeringen, Kok, PRA 26 (1982) 1218 Lepage, *How to renormalize the Schrödinger equation*, nucl-th/9607029 Kaplan, Savage, Wise, NPB 534 (1998) 329 Cohen, Hansen, PRC 59 (1999) 13, 3047 Fleming, Mehen, Stewart, NPA 677 (2000) 313 EE, Gegelia, EPJA 41 (2009) 341 EE, *Nuclear forces from chiral EFT: A primer*, arXiv:1001.3229 [nucl-th]

Edited by MARTIN KLIMKE, REINHILD KREIS, and CHRISTIAN F. OSTERMANN

Modified Effective Range Expansion (MERE)

LETs and the MERE

What are the low-energy theorems?

Two-range potential: $V(r) = V_L(r) + V_S(r)$ with $M_L^{-1} \gg M_H^{-1}$

• $F_l(k^2)$ is meromorphic in $|k| < M_L/2$

•
$$F_l^M(k^2) \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot\left[\delta_l(k) - \delta_l^L(k)\right]$$

$$\underbrace{f_l^L(k)}_{r \to 0} = \lim_{r \to 0} \left(\frac{l!}{(2l)!} (-2ikr)^l f_l^L(k,r) \right)$$

Jost function for $V_L(r)$

Jost solution for $V_L(r)$

$$M_{l}^{L}(k) = Re\left[\frac{(-ik/2)^{l}}{l!}\lim_{r \to 0} \left(\frac{d^{2l+1}}{dr^{2l+1}}\frac{r^{l}f_{l}^{L}(k,r)}{f_{l}^{L}(k)}\right)\right]$$

Per construction, F_l^M reduces to F_l for $V_L = 0$ and is meromorphic in $|k| < M_H/2$

 modified effective range function van Haeringen, Kok '82

MERE and low-energy theorems

Example: proton-proton scattering

$$F_{C}(k^{2}) = C_{0}^{2}(\eta) k \operatorname{cot}[\delta(k) - \delta^{C}(k)] + 2k \eta h(\eta) = -\frac{1}{a^{M}} + \frac{1}{2}r^{M}k^{2} + v_{2}^{M}k^{4} + \dots$$
where $\delta^{C} \equiv \arg \Gamma(1 + i\eta)$, $\eta = \frac{m}{2k}\alpha$, $C_{0}^{2}(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$, $h(\eta) = \operatorname{Re}\left[\Psi(i\eta)\right] - \ln(\eta)$
Coulomb phase shift Sommerfeld factor Digamma function $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) Cohen, Hansen '99; Steele, Furnstahl '00

The emergence of the LETs can be understood in the framework of MERE:

$$F_l^M(k^2) \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot \left[\delta_l(k) - \delta_l^L(k)\right]$$
meromorphic for
$$k^2 < (M_H/2)^2$$
can be computed if the long-range force is known

- approximate $F_l^M(k^2)$ by first 1,2,3,... terms in the Taylor expansion in k^2
- calculate all "soft" quantities
- reconstruct $\delta_l^L(k)$ and predict all coefficients in the ERE

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_H e^{-M_H r} f(r)}_{V_H}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$, $M_H = 3.75$, $v_H = 7.5$ (all in fm⁻¹)

ERE and MERE

	a	r	v_2	v_3	v_4
$ \begin{array}{c} F_0 \; [\mathrm{fm}^n] \\ F_0^M \; [M_S^{-n}] \end{array} $	$5.458 \\ 1.710$	$2.432 \\ -1.063$	$\begin{array}{c} 0.113 \\ -0.434 \end{array}$	$\begin{array}{c} 0.515 \\ -0.680 \end{array}$	-0.993 2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
r				2.432197161
v_2				0.112815751
v_3				0.51529
v_4				-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
$ \begin{array}{c} F_0 \; [\mathrm{fm}^n] \\ F_0^M \; [M_S^{-n}] \end{array} $	5.458 1.710	$2.432 \\ -1.063$	0.113	$0.515 \\ -0.680$	-0.993 2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
r	2.447(38)			2.432197161
v_2	0.12(11)			0.112815751
v_3	0.61(12)			0.51529
v_4	-0.95(5)			-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M \left[M_S^{-n} \right]$	1.710	-1.063	-0.434	-0.680	2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
r	2.447(38) 0.12(11)	2.432197161 0.1132(20)		2.432197161 0.112815751
$v_2 \\ v_3$	0.12(11) 0.61(12)	0.517(16)		0.51529
v_4	-0.95(5)	-0.991(14)		-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
$ \begin{bmatrix} F_0 \; [\mathrm{fm}^n] \\ F_0^M \; [M_S^{-n}] \end{bmatrix} $	5.458 1.710	2.432 -1.063	0.113 -0.434	$\begin{array}{c} 0.515 \\ -0.680 \end{array}$	-0.993 2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
$\begin{matrix} r \\ v_2 \\ v_3 \end{matrix}$	$2.447(38) \\ 0.12(11) \\ 0.61(12)$	$\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \end{array}$	$\begin{array}{c} 2.432197161 \\ 0.112815751 \\ 0.51533(20) \end{array}$	$\begin{array}{c} 2.432197161 \\ 0.112815751 \\ 0.51529 \end{array}$
v_4	-0.95(5)	-0.991(14)	-0.9925(11)	-0.9928

Chiral EFT for NN scattering

KSW with perturbative pions

Recall the differences between the W and KSW counting schemes:

• Weinberg: $\mu \sim \mathcal{O}(1), \ \mu_i \sim \mathcal{O}(p) \longrightarrow V_{\text{Weinberg}}^{\text{LO}} \sim \mathcal{O}(1), \ V_{\text{Weinberg}}^{\text{NLO}} \sim \mathcal{O}(p^2)$ [i.e. scaling of C_{2n} according to NDA (~ O(1))] • KSW: $\mu, \mu_i \sim \mathcal{O}(p) \longrightarrow V_{\text{KSW}}^{\text{LO}} \sim \mathcal{O}(p^{-1}), \ V_{\text{KSW}}^{\text{NLO}} \sim \mathcal{O}(1)$ [i.e. scaling of C_{2n} as C_{2n} ~ O(p^{-1-n})]

While the two schemes are equivalent for pionless theory, they suggest different scenarios for pionful (chiral) EFT:

$$V_{1\pi} \;=\; - \Bigl(rac{g_A}{2F_\pi} \Bigr)^2 \; rac{ec{\sigma}_1 \cdot ec{q} \; ec{\sigma}_2 \cdot ec{q}}{q^2 + M_\pi^2} \; ec{ au_1} \cdot ec{ au_2} \; au \; \mathcal{O}(1)$$

OPE is expected to be:

- LO contribution (nonperturbative) in the Weinberg scheme,
- NLO contribution (perturbative) in the KSW scheme.

Chiral EFT for NN: The KSW approach

For more details see: Kaplan, Savage, Wise, Nucl. Phys. B534 (1998) 329

LETs for S-waves: KSW approach

Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13]

$$p \cot \delta_0(p) = rac{4\pi}{m} \left[rac{1}{\mathcal{A}_{-1}} - rac{\mathcal{A}_0}{(\mathcal{A}_{-1})^2} + \ldots
ight] + ip \stackrel{!}{=} -rac{1}{a} + rac{1}{2}rp^2 + v_2p^4 + v_3p^6 + v_4p^8 + \ldots$$

Express the LECs C₀, C₂, in terms of a and r to predict the shape parameters, e.g.:

 $v_2 = rac{g_A^2 m}{16\pi F_\pi^2} \Big(-rac{16}{3a^2 M_\pi^4} + rac{32}{5a M_\pi^3} - rac{2}{M_\pi^2} \Big), \quad v_3 = rac{g_A^2 m}{16\pi F_\pi^2} \Big(rac{16}{a^2 M_\pi^6} - rac{128}{7a M_\pi^5} + rac{16}{3M_\pi^4} \Big), \ldots$

1S_0 partial wave	<i>a</i> [fm]	<i>r</i> [fm]	$v_2 [\mathrm{fm}^3]$	$v_3 [\mathrm{fm}^5]$	$v_4 [\mathrm{fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-3.3	18	-108
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

3S_1 partial wave	<i>a</i> [fm]	<i>r</i> [fm]	$v_2 [\mathrm{fm}^3]$	$v_3 [\mathrm{fm}^5]$	$v_4 [{\rm fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-0.95	4.6	-25
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

→ large deviations suggest that pions should be treated nonperturbatively... [even stronger evidence comes from phase shifts at N²LO, see: Fleming, Mehen, Stewart, NPA 677 (2000) 313]

Nonperturbative inclusion of pions

LO scattering amplitude:

$$T(ec{p}\,',ec{p}\,) \;=\; \left[V_{
m cont}(ec{p}\,',ec{p}\,) + V_{1\pi}(ec{p}\,',ec{p}\,)
ight] + m \int rac{d^3l}{(2\pi)^3} rac{\left[V_{
m cont}(ec{p}\,',ec{l}\,) + V_{1\pi}(ec{p}\,',ec{l}\,)
ight] \,T(ec{l},ec{p}\,)}{p^2 - l^2 + i\epsilon}$$

Complications (as compared to pionless theory):

 $-V_{1\pi}$ is not separable, no analytic results beyond 2 loops are available,

— $1/r^3$ singularity of $V_{1\pi}$

Static OPEP in coordinate space:

$$V_{1\pi}(\vec{r}\,) = \left(\frac{g_A}{2F_{\pi}}\right)^2 \tau_1 \cdot \tau_2 \left[M_{\pi}^2 \frac{e^{-M_{\pi}r}}{12\pi r} \left(S_{12}(\hat{r}) \left(1 + \frac{3}{M_{\pi}r} + \frac{3}{(M_{\pi}r)^2} \right) + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) - \frac{1}{3} \vec{\sigma}_1 \cdot \vec{\sigma}_2 \,\delta^3(r) \right]$$

singular potential in all S=1 channels (solutions to the Schröd./LS equation still exist in repulsive cases)

 \Rightarrow Need ∞ many c.t.'s in all spin-triplet channel to remove UV divergences from iterations...

E.g.:
$$\propto \frac{1}{d-4} \vec{p}^6 m_N^6$$
 (spin-triplet)

Chiral EFT for nuclear systems

Ladder graphs are responsible for the failure of perturbation theory and must be re-summed:

Nuclear forces and currents = irreducible parts of the amplitude (scheme-dependent)

Divergent integrals in the Lippmann-Schwinger equation are regularized using a cutoff Λ :

- the "RG invariant" approach with $\Lambda \gg \Lambda_b$: $T \sim 1 + \Lambda + \Lambda^2 + \ldots = (1 \Lambda)^{-1}$ van Kolck, Long, Yang, ...
 - Criticized in EE, Gegelia, EPJA 41 (09) 341; EE, Gasparyan, Gegelia, Meißner, EPJA 54 (18) 186
 - not cutoff-independent RG-invariant beyond LO Gasparyan, EE, PRC 107 (23) 034001
- finite- Λ EFT with $\Lambda \lesssim \Lambda_b \sim 600$ MeV Lepage, EE, Gegelia, Meißner, Reinert, Entem, Machleidt, ...
 - phenomenologically successful; approximate A-independence verified a posteriori
 - renormalizability (in the EFT sense) has been rigorously proven to NLO using the BPHZ subtraction method (forest formula) Gasparyan, EE, PRC 105 (22) 024001; PRC 107 (23) 044002

LETs for S-waves: KSW vs Weinberg

LETs for neutron-proton scattering: nonperturbative vs perturbative OPEP

a	[fm]	r [fm]	$v_2 \; [{ m fm^3}]$	$v_3 \; [{ m fm}^5]$	$v_4 \; [{ m fm}^7]$
${}^{1}S_{0}$ partial wave					
${ m LO}~$ EE, Gegelia, PLB617 (12) 338	fit	1.50	-1.9	8.6(8)	-37(10)
NLO EE et al., EPJA51 (15) 71	fit	fit	$-0.61\ldots-0.55$	$5.1 \dots 5.5$	$-30.8\ldots-29.6$
$\operatorname{NLO}\mathrm{KSW}$ Cohen, Hansen '98	fit	fit	-3.3	18	-108
Empirical values -2	23.7	2.67	-0.5	4.0	-20

$^{3}\mathrm{S}_{1}$ partial wave					
${ m LO}$ EE, Gegelia, PLB617 (12) 338	fit	1.60	-0.05	0.82	-5.0
NLO Baru et al., PRC94 (16) 014001	ı fit	fit	0.06	0.70	-4.0
$\operatorname{NLO}\operatorname{KSW}$ Cohen, Hansen '98	fit	fit	-0.95	4.6	-25
Empirical values	5.42	1.75	0.04	0.67	-4.0

- perturbative inclusion of pions (KSW approach) fails
- ¹S₀ channel: limited predictive power of the LETs due to the weakness of the OPEP; taking into account the range correction (NLO) leads to improvement
- ³S₁ channel: LETs work as advertised (strong tensor part of the OPEP)

Take-aways of part III

- long-range interactions govern energy dependence of the amplitude and lead to correlations between coefficients in the ERE (LETs) that can be tested
- the failure of the LETs in the KSW approach suggests that pion exchange should be treated non-perturbatively
- iterations of the 1π -exchange are non-renormalizable (in the usual sense) \Rightarrow finite-cutoff formulation of chiral EFT

IV: From $\mathscr{L}_{\mathrm{eff}}$ to nuclear forces

How to derive nuclear forces from the effective Lagrangian? What is the current state-of-the-art?

Outline

- Methods: S-matrix matching, TOPT, MUT, a path integral approach
- Example: chiral expansion of the 2π -exchange 3N force
- State-of-the-art for nuclear forces

Further reading

EE, PPNP 57 (2006) 654 EE, Hammer, Meißner, RMP 81 (2009) 1773 Entem, Machleidt, Phys. Rept. 503 (2011) 1 EE, Krebs, Reinert, Front. In Phys. 8 (2020) 98 Krebs, EE, PRC 110 (2024) 044003

Chiral EFT for nuclear systems

Ladder graphs are responsible for the failure of perturbation theory and must be re-summed:

Nuclear forces and currents = irreducible parts of the amplitude (scheme-dependent)

They can be derived using a variety of methods including [In all cases, utilize a perturba-tive expansion within ChPT]:

- S-matrix matching Kaiser et al.
- time-ordered perturbation theory Pastore, Baroni, Schiavilla et al.
- method of unitary transformations (UTs) EE, Glöckle, Meißner, Krebs, Kölling
- path integral approach кrebs, EE

More demanding than just calculating Feynman diagrams:

- need to subtract reducible pieces in order to avoid double counting
- have to deal with non-uniqueness of nuclear potentials
- maintaining renormalizability non-trivial...

S-matrix matching

Matching to the amplitude Kaiser et al.

⇒ higher-order terms in the Hamiltonian "know" about the choice made for the offshell extension (consistency...)

S-matrix in ChPT is renormalizable (in the EFT sense). But this should not be taken for granted for the potentials...

Renormalization can be enforced by systematically exploiting unitary ambiguities...

Time-ordered perturbation theory

- has been used by Weinberg in his original publications
- leads to energy-dependent potentials which are inconvenient for many-body calculations (the energy dependence can be eliminated)
- changes the normalization of few-nucleon states

Method of Unitary Transformation

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, Kölling, ...

• Decouple pions via a suitable UT:
$$\tilde{H} \equiv U^{\dagger} \begin{pmatrix} \eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda \end{pmatrix} U = \begin{pmatrix} \eta \tilde{H} \eta & 0 \\ 0 & \lambda \tilde{H} \lambda \end{pmatrix}$$

 $\begin{array}{ll} \text{Minimal parametrization of the UT:} & U = \left(\begin{array}{cc} \eta (1 + A^{\dagger} A)^{-1/2} & -A^{\dagger} (1 + AA^{\dagger})^{-1/2} \\ A(1 + A^{\dagger} A)^{-1/2} & \lambda (1 + AA^{\dagger})^{-1/2} \end{array} \right), \quad A = \lambda A \eta$

Require:
$$\eta \tilde{H}\lambda = \lambda \tilde{H}\eta = 0 \implies \lambda (H - [A, H] - AHA) \eta = 0$$

The solution of the nonlinear decoupling equation, calculation of the UT and of the nuclear potentials is carried out in perturbation theory (chiral expansion) EE, EPJA 34 (2007) 197

Notice: Similar methods are widely used in nuclear and many-body physics (Lee-Suzuki)

Path-integral approach

Krebs, EE, PRC 110 (2024) 044003

Pion-less EFT:

$$\mathcal{L} = N^{\dagger} \left[i\partial_0 + \frac{\vec{\nabla}^2}{2m_N} \right] N - \frac{C_S}{2} (N^{\dagger}N)^2 + \dots$$
$$\Rightarrow \quad \mathcal{A}_{\text{tree}} = \left[C_0 + C_2 (\vec{p}^2 + \vec{p}'^2) + \dots \right]$$

Scattering amplitude to 1 loop:

$$-i\mathcal{A}_{1-\text{loop}} = \int \frac{d^4l}{(2\pi)^4} \left[C_0 + C_2(\vec{p}^2 + \vec{l}^2) + \ldots \right] \frac{1}{\left(\frac{E}{2} + l_0 - \frac{\vec{l}^2}{2m_N} + i\epsilon\right) \left(\frac{E}{2} - l_0 - \frac{\vec{l}^2}{2m_N} + i\epsilon\right)} \left[C_0 + \ldots \right]$$
$$= -i\int \frac{d^3l}{(2\pi)^3} \left[C_0 + C_2(\vec{p}^2 + \vec{l}^2) + \ldots \right] \frac{1}{E - \frac{\vec{l}^2}{m_N} + i\epsilon} \left[C_0 + (\vec{l}^2 + \vec{p}'^2) \ldots \right]$$

All l_0 -integrals factorize \Rightarrow Lippmann-Schwinger eq. $\mathcal{A} = \mathcal{V} + \mathcal{V} G_0 \mathcal{A}$ with $\mathcal{V} = -\mathcal{L}_{int}$

But l_0 -integrals do not factorize for pions due to l_0 -dependence of π -propagators...

Example: 2π -exchange 3NF

$$V_{3N} = \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3}}{(q_{1}^{2} + M_{\pi}^{2}) (q_{3}^{2} + M_{\pi}^{2})} \left[\tau_{1} \cdot \tau_{3} \mathcal{A}(q_{2}) + \tau_{1} \times \tau_{3} \cdot \tau_{2} \vec{q}_{1} \times \vec{q}_{3} \cdot \vec{\sigma}_{2} \mathcal{B}(q_{2}) \right] \\ + \text{ short-range terms + permutations}$$

$$N^{2}LO(Q^{3}) + \vec{q}_{1}^{2} = \frac{g_{A}^{2}}{(q_{1}^{2} + M_{\pi}^{2}) (q_{3}^{2} + M_{\pi}^{2})} \left[(2c_{3} - 4c_{1})M_{\pi}^{2} + c_{3}q_{2}^{2} \right], \qquad \mathcal{B}^{(3)} = \frac{g_{A}^{2}c_{4}}{8F_{\pi}^{4}}$$

$$N^{3}LO(Q^{4}) = \frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} \left[(4g_{A}^{2} + 1)M_{\pi}^{3} + 2(g_{A}^{2} + 1)M_{\pi}q_{2}^{2} + \mathcal{A}(q_{2}) (2M_{\pi}^{4} + 5M_{\pi}^{2}q_{2}^{2} + 2q_{4}^{2}) \right] \\ \vec{q}_{1} = \vec{q}_{1}^{4} + \vec{q}_{1}^{4} + \cdots$$

$$\mathcal{A}^{(4)} = \frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} \left[(4g_{A}^{2} + 1)M_{\pi}^{3} + 2(g_{A}^{2} + 1)M_{\pi}q_{2}^{2} + \mathcal{A}(q_{2}) (2M_{\pi}^{4} + 5M_{\pi}^{2}q_{2}^{2} + 2q_{4}^{2}) \right] \\ \vec{q}_{2} = \frac{1}{2q_{2}} \arctan \frac{q_{2}}{2M_{\pi}}} \\ \mathcal{B}^{(4)} = -\frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} \left[\mathcal{A}(q_{2}) (4M_{\pi}^{2} + q_{2}^{2}) + (2g_{A}^{2} + 1)M_{\pi} \right]$$

$$calculated using DimReg$$

$$N^{4}LO(Q^{5}) \\ \text{Kobs, Gasparyon, EE 12} \\ \vec{q}_{1} = \frac{q_{A}^{2}}{4608\pi^{2}F_{\pi}^{6}}} \left\{ \left[6c_{1} - 2c_{2} - 3c_{3} - 2(6c_{1} - c_{2} - 3c_{3})L(q_{2}) \right] \frac{12M_{\pi}^{2}}{q_{2}} + \frac{q_{2}^{2}}{2M_{\pi}}} \right\} \\ - q_{2}^{2} \left[5c_{2} + 18c_{3} - 6L(q_{2})(c_{2} + 6c_{3}) \right] \right\} + \frac{g_{A}^{2}\overline{e}_{14}}{2F_{\pi}^{4}} \left(2M_{\pi}^{2} + q_{2}^{2} \right)^{2} \frac{\sqrt{q_{\pi}^{2} + 4M_{\pi}^{2}}}{q_{\pi}^{2} + 2M_{\pi}^{2}} \log \frac{\sqrt{q_{\pi}^{2} + 4M_{\pi}^{2}}{q_{\pi}^{2}}} + q_{2}^{2} \left[5c_{2} + 18c_{3} - 6L(q_{2})(c_{2} + 6c_{3}) \right] \right\} + \frac{g_{A}^{2}\overline{e}_{14}}{2F_{\pi}^{4}} \left(2M_{\pi}^{2} + q_{2}^{2} \right)^{2} \frac{\sqrt{q_{\pi}^{2} + 4M_{\pi}^{2}}}{q_{\pi}^{2} + 2L_{\pi}^{2}} \log \frac{\sqrt{q_{\pi}^{2} + 4M_{\pi}^{2}}}{q_{\pi}^{2} + 2L_{\pi}^{2}} + q_{\pi}^{2} \right] + \frac{q_{\pi}^{2}}{2M_{\pi}^{2}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\} + \frac{1}{2} \frac{2}{q_{\pi}^{2}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\} + \frac{1}{2} \frac{2}{q_{\pi}^{2}}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\} + \frac{1}{2} \frac{2}{q_{\pi}^{2}}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\} + \frac{1}{2} \frac{2}{q_{\pi}^{2}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\} + \frac{1}{2} \frac{2}{q_{\pi}^{2}} \left\{ 2c_{2}^{2} - 6L(q_{2}) \right\}$$

Example: 2π -exchange **3NF**

- all $\Theta C \Omega_i$ and \bar{e}_i are known from the Roy-Steiner-equation analysis of the πN system - the results are only meaningful (converged) at small momenta \Rightarrow cutoff needed

 $\mathbf{\Lambda}$

Chiral expansion of nuclear forces

Chiral dynamics: Long-range interactions are predicted in terms of on-shell amplitudes Short-range few-N interactions are tuned to experimental data

Chiral expansion of nuclear forces

Semi-local regularization in momentum space Reinert, Krebs, EE, EPJA 54 (2018) 86; PRL 126 (2021) 092501 $V_{1\pi}(q) = \frac{\alpha}{\vec{q}^2 + M_{\pi}^2} e^{-\frac{\vec{q}^2 + M_{\pi}^2}{\Lambda^2}} + \text{subtraction}, \qquad V_{2\pi}(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} d\mu \mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} e^{-\frac{\vec{q}^2 + \mu^2}{2\Lambda^2}} + \text{subtractions} + \text{nonlocal (Gaussian) cutoff for contacts}$

Chiral expansion of nuclear forces

	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO:			
NLO:	X04XII		
N²LO:		++++	
N ³ LO:	X A A		
N⁴LO:			

have been worked out using dimensional regularization

mixing DimReg with Cutoff violates χ -symmetry (also for current operators) \Rightarrow need to be re-derived using invariant cutoff regulator

Krebs, EE, PRC 110 (2024) 044004

Take-aways of part IV

- nuclear forces can be derived from the effective Lagrangian using a variety of methods
- important to maintain consistency (nuclear potentials are scheme dependent)
- regularization of 3NFs and currents beyond tree level is nontrivial