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finite-volume methods

The Standard Model (QCD, …)

proton nuclei neutron stars

Nuclear structure and dynamics

EFT

Schwinger-Dyson , large-Nc, …

The Big Picture

ChPT

Approximate chiral SU(2)   SU(2)  symmetryL × R

nuclear forces and currents

ChPT  (+ TOPT, method of UT, S-matrix matching, …)
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I: Chiral Perturbation Theory

How to exploit the chiral symmetry of QCD to calculate low-

energy reactions involving pions?

– Classical example of an effective theory 

– Effective Lagrangian for pions and calculation of the S-matrix  

– Inclusion of the nucleons

Outline



 

observer

charge 

distribution
The answer is

A classical example

The goal: compute electric potential generated 

by a localized charge distribution

An effective theory for : The Top-Down approachR ≫ a
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d3r ⇢(~r ), Pi =

Z

d3r ⇢(~r ) ri, Qij =

Z

d3r ⇢(~r ) (3rirj − r2�ij)

✓ ◆

We have just „integrated out“ short-distance physics. For , the only information 

needed about  is hidden in the moments 

R ≫ a

ρ( ⃗r ) q, Pi, Qij, …

What is an effective theory? 



 

An effective theory for : The Bottom-Up approachR ≫ a

What if we cannot „integrate out“ short-distance physics or don’t even now , apart from  the 

fact that it is localized in the volume ?

ρ( ⃗r )

∼ a3

Solution: Write down the most general expression for  using the long-distance DoF (i.e., ) 

compatible with the symmetry principles (rotational invariance)

V ⃗R

V( ⃗R ) = ∑ [gjhgjhgjjgjhgjhgj] ⋅ [gjhgjhgjhgjgjhgjhgjhgjhgjhgj]rotational tensors

constructed from ⃗R
rotational tensors characterizing

the system, independent of  ⃗R

=
1

R
const +

1

R3
Ri Xi +

1

R5
Ri Rj Xij + …

[V] = length-1  (NDA)∼ a  (NDA)∼ a2

symmetric and traceless (otherwise redundant structures)

The  components of  are called in the EFT language LECs and can be determined 

from experimental data.

(2n + 1) Xi1…in

  systematically improvable approximation for  at  without knowing !⇒ V( ⃗R ) R ≫ a ρ( ⃗r )

What is an effective theory? 



 Chiral perturbation theory

 invariantSU(Nf)L × SU(Nf)R small for . Indeed:  MeV,  MeV (MS,  GeV)Nf = 2, (3) mu ∼ 3 md ∼ 5 μ = 2

LQCD = −

1

4
Gµν

a Ga,µν + q̄(iγµDµ −M)q

SSB to         GBsSU(Nf)V ≤ SU(Nf)L × SU(Nf)R ⇒ Nf
2 − 1

q = −

1

4
Gµν

a Ga,µν + q̄LiDqL + q̄RiDqR − qLMqR − qRMqL

Chiral symmetry of QCD

1
2
(1� �5)q

1
2
(1 + �5)q

  expand about the ideal world (ChPT)⇒

Chiral perturbation theory

Ideal world [ ], zero-energy limit:  non-interacting massless GBs  

(+ strongly interacting massive hadrons)

mu = md = 0

Real world [ ], low energy:  weakly interacting light GBs (pions) 

(+ strongly interacting massive hadrons)

mu, md ≪ ΛQCD

Weinberg, Gasser, Leutwyler, Meißner, …
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Chiral perturbation theory

Ideal world [ ], zero-energy limit:  non-interacting massless GBs  

(+ strongly interacting massive hadrons)

mu = md = 0

Real world [ ], low energy:  weakly interacting light GBs (pions) 

(+ strongly interacting massive hadrons)

mu, md ≪ ΛQCD

Weinberg, Gasser, Leutwyler, Meißner, …

„if one writes down the most general possible Lagrangian, including all 

terms consistent with the assumed symmetry principles, and then 

calculates matrix elements with this Lagrangian to any given order of 

perturbation theory, the result will simply be the most general possible 

S-matrix consistent with analyticity, perturbative unitarity, cluster 

decomposition, and the assumed symmetry properties“

S. Weinberg, Physica 96A (1979) 327;   see also H. Leutwyler, Annals Phys. (1994) 165 



 Effective chiral Lagrangian

Pions transform linearly under isospin (iso-triplet) but non-linearly under SU(2)L  SU(2)R, e.g.:×

Chiral rotations: with 

nonlinear realization
U =

1

F
(σ 12⇥2 + iπ · τ ) U =

1

F

�⇧
F 2 � π2 12⇥2 + iπ · τ

⇥

L = exp[−i(θV − θ
A) · τ/2], R = exp[−i(θV + θ

A) · τ/2],

The leading and sub-leading Lagrangian for pions

terms involving 
external sourcesL(2)

π
=

F 2

4
⇧⇧µU⇧

µU † + 2B(MU +MU †)⌃ ,

L(4)
π

=
l1
4
⇧⇧µU⇧

µU †⌃2 + l2
4
⇧⇧µU⇧νU

†⌃⇧⇧µU⇧
νU †⌃+ l3

16
⇧2BM(U + U †)⌃2 + . . .

� l7
16

⇧2BM(U � U †)⌃2 [Gasser, Leutwyler ’84]

low-energy constants

Tree-level connected diagrams from ℒ(2)
π

insertions from   
suppressed by powers of 

remarkable predictive power 

all diagrams scale as  

U(π) = 12�2 + i
τ · π

F
� π

2

2F 2
� i�

π
2
τ · π

F 3
+O(π4)

 2Bmq ⇒ M2
π = 2Bmq + -(m2

q )



 Perturbative expansion of S-matrix

Tree-level diagrams with higher-order vertices are suppressed at low energy. In ChPT, loop cont-

ributions are also suppressed (pions as GBs) Weinberg ’79

Example: pion self energy (using DimReg)

L(2)
⌅ L(4)

⌅

terms vanishing in d = 4

The infinity                                            is cancelled by the c.t. from       :L(µ) =
µd�4

16⌅2

⇤

1

d− 4
+ const

⌅

L(4)
⌅

The bottom line: in DimReg, all momenta flowing through loop graphs are soft, ∼ Q

li ! lri(µ) + c.t.

I =
M2

F2 ∫
d4l

(2π)4

i

l2 − M2 + iϵ
→ μ4−d

M2

F2 ∫
ddl

(2π)d

i

l2 − M2 + iϵ

= M2
M2

(4πF )2
ln(

M2

μ2 ) +
2M4

F2
L(μ) + …

Power counting (NDA)

It is easy to show that connected diagrams scale as   withQD

# of loops # of vertices from ℒ(d )
π

— loops are suppressed 

— finite number of LECs at any order 

—  at best  (more realistic )Λb ∼ 4πFπ ∼ Mρ

’s as GBsπ



Matter fields (N, Δ,…) can be introduced via the CCWZ realization  Coleman, Callan, Wess, Zumino ’69

known functions of the pion fields

Lowest-order effective Lagrangian for a single nucleon:

 Inclusion of the nucleons

Problem (?): new hard mass scale     power counting ??   m ⇒

Gasser, Sainio, Svarc ’88

Heavy-baryon ChPT (  )pμ = mvμ + kμ, v ⋅ k ≪ m Jenkins, Manohar ’91;  Bernard et al. ’92;  Mannel et al. ’92

Nonrelativistic expansion of     nucleon mass appears only in —correctionsℒπN ⇒ 1/mn

Manifestly Lorentz invariant BChPT:  Infrared regularization Becher, Leutwyler ’99 

Separate infrared-singular parts of the loop integrals 

Manifestly Lorentz invariant BChPT:  EOMS

Restore chiral power counting by using appropriate renormalization conditions 

Gegelia, Japaridze ’99;  Fuchs et al. ’03

for vμ = (1,0,0,0)



 Chiral expansion of  in the HB approachmN

Dressed HB propagator of the nucleon:   
i

v ⋅ k − Σ(k) + iϵ
=

i

v ⋅ p − m − Σ(k) + iϵ

Up to the order Q3, the physical mass (  ) is given by  .p =: mNv mN = m + Σ(0)

Chiral expansion of the nucleon self energy: Σ(k) = + + …
−4c1M2 − ⃗k2 /(2m) Σloop(k) =: − 3g2

A
/(4F2) I (k)

Q2 Q3 Q4

I(0) = − i∫
d4l

(2π)4

⃗l ⋅ ⃗l

(l0 + iϵ)(l2 − M2 + iϵ)
⇒ mN = m − 4c1M2⟶

M3

8π
−

3g2
A

32πF2
M3 + …

DR

not fixed by -symmetryχ ChPT prediction

⟶ αΛ3 + βΛM2 +
M3

8π
+ -(Λ−1)

can be absorbed in 

m(Λ), c1(Λ)

Λ → ∞

How about cutoff regularization?

IΛ(0) = − i∫
d4l

(2π)4

⃗l ⋅ ⃗l e− ⃗l 2/Λ2

(l0 + iϵ)(l2 − M2 + iϵ)

=
1

16π3/2 [Λ3 − 2ΛM2 + 2 πM3 e
M2

Λ2 erfc(
M

Λ )]
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Donoghue, Holstein ’98 



 

L
(1)
⇥N

L

+ L
(2)
⇥N + L

(3)
⇥N

low-energy constants

LπN = N̄

✓

i�µDµ[⇡]−m+
gA

2
�µ�5uµ[⇡]

◆

N +
X

i

ciN̄Ô
(2)
i [⇡]N +

X

i

diN̄Ô
(3)
i [⇡]N +

X

i

eiN̄Ô
(4)
i [⇡]N + . . .

Lπ = L
(2)
π

+ L
(4)
π

+ . . .

Effective chiral Lagrangian:

L
(4)
πN

Pion-nucleon scattering amplitude for                                                      :n πa(q1) + N(p1) → πb(q2) + N(p2)
e pion isospin quantum numbers, tak

T ba
πN =

E +m

2m

✓

�ba
h

g+(!, t) + i~� · ~q2 × ~q1 h
+(!, t)

i

+ i✏bac⌧ c
h

g−(!, t) + i~� · ~q2 × ~q1 h
−(!, t)

i

◆

calculated within the chiral expansion

Pion-nucleon scattering
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Pion-nucleon scattering up to Q4 in heavy-baryon ChPT

Order Q4:

Order Q3:

Order Q2:

Order Q:

ci

ci di

di ei

Q2

Q3 Q4

50 100 150
p

Lab
 [MeV/c]

50 100 150
p

Lab
 [MeV/c]

50 100 150
p

Lab
 [MeV/c]

Fettes, Meißner ’00;  Krebs, Gasparyan, EE ’12
Relevant LECs (in GeV-n) extracted from πN scattering 

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē17

[Q4]HB,NN, GW PWA −1.13 3.69 −5.51 3.71 5.57 −5.35 0.02 −10.26 1.75 −0.58

[Q4]HB,NN, KH PWA −0.75 3.49 −4.77 3.34 6.21 −6.83 0.78 −12.02 1.52 −0.37

[Q4]HB,NN, Roy-Steiner −1.10 3.57 −5.54 4.17 6.18 −8.91 0.86 −12.18 1.18 −0.18

[Q4]covariant, data −0.82 3.56 −4.59 3.44 5.43 −4.58 −0.40 −9.94 −0.63 −0.90

Krebs, Gasparyan, EE,
PRC85 (12) 054006

Siemens et al.,
PRC94 (16) 014620

Hoferichter et al.,
PRL 115 (15) 092301

With the LECs taken from πN, the long-range NN force is completely fixed (parameter-free)



 

Chiral Perturbation Theory Electric potential 

Most general effective Lagrangian for pions [and matter fields], 

chiral symmetry!

Most general expression 

for the electric potential  

(rotational invariance) 
L

(2)
π

=
F 2

4
⇧⌅µU⌅µU † + 2B(MU +MU †)⌃ ,

L
(4)
π

=
l1

4
⇧⌅µU⌅µU †⌃2 +

l2

4
⇧⌅µU⌅νU

†⌃⇧⌅µU⌅νU †⌃+ . . .

The size of (ren.) LECs governed by the hard scale                   , 

LECs can be calculated (lattice-QCD) or fixed from experiment 

Λχ ⇤ 1 GeV

LECs (multipoles) gover-

ned by the size    of        , 

they can be calculated or 

determined from exp. 

⌅ a

1/R ⌅ 1/a[soft] [hard]Separation of scales: [soft] Q ⇤ Mπ ⌅ Λχ ⇤ Mρ [hard]

M
π

hard scales 

soft scales 

mass gap 

Mρ

Mω

ChPT versus Multipole Expansion

Multipole expansion for  

         in powers of        a/R

Chiral expansion of S-matrix elements  

(Feynman graphs, power counting, renorm.)

Q = 
momenta of particles or Mπ  ~ 140 MeV

breakdown scale Λb



Take-aways of part I

— chiral symmetry of QCD strongly constrains interactions

     between pions

— only irrelevant operators  low-energy amplitudes cal-

     culable in perturbation theory (ChPT)

⇒

— straightforwardly generalizable to single-N processes



Use the simplest (analytically solvable) EFT for NN to clarify 

the meaning of renormalization, power counting and all that…

II: Pionless EFT for 2 nucleons

– Lippmann-Schwinger equation from Feynman diagrams 

– First naive attempt and the need for fine tuning 

– KSW & W power counting schemas    

– Implicit renormalization

Outline

Further reading

Kaplan, Savage, Wise, NPB 478 (1996) 629

EE, Gegelia, Meißner, NPB 925 (2017) 161

EE, Gegelia, Huesmann, Meißner, FBS 62 (2021) 51



 Relevant scales

M
π

m∆ −mN

mρ,ω

−mN

soft scales

hard scales 

Chiral perturbation theory (0,1 nucleons):

perturbative expansion of the amplitude in 

powers of 

Q 2

⇢Mπ

Λ
,
|~p |

Λ

�

Λ ⇠ mρ ⇠ 4⇡Fπ ⇠ 1 GeV,

>1 nucleons: a new very soft scale

in 1S0 (3S1)⇤ 1/aS ⌅ 8.5 MeV(36 MeV)

has to be generated dynamically        need 

nonperturbative resummations: chiral EFT

⇤ 1/aS

Both ERE & π-EFT yield an expansion of 

the amplitude in            ,  have the same 

validity range and incorporate the 

same physics ERE  ~ π-EFT

|~p |/Mπ

Pionless EFT:

expansion of the amplitude in powers of 

                  over|~p | ⇠ 1/aS Λ ⇠ Mπ

soft scales

hard scales 

Elab Elab 

3S1 1S0



Pionless EFT

The goal: design an EFT to match ERE (no predictive power for NN beyond ERE)

DoF: nonrelativistic nucleons (use the HB formalism)

Symmetries: rotational invariance, isospin symmetry, usual discrete symmetries…

Kaplan, Savage, Wise, Nucl. Phys. B478 (1996) 629

Begin with writing down the most general Lagrangian:

terms with ≥ 2 derivatives

Notice:                                        are redundant (Pauli principle). Indeed, in there are 

only 2 independent s-waves (1S0 and 3S1) in the isospin limit…

(N †
~⌧N)2, (N †

~⌧~�N)2

L = N †

 

i@0 +
~r2

2mN

!

N �
1

2
CS(N

†N)2 �
1

2
CT (N

†
~�N)2 + . . .

 Pionless EFT

Feynman rule (ignore spin for the moment…):

iAtree = �i
h

C0 + C2(~p
2 + ~p 0 2) + . . .

i

Z

linear combination 

of CS, CT



= x

⇥ (�i)
h

C0 + C2(~l
2 + ~p 0 2) + . . .

i

Z

A −

h i

iA1�loop =
Z d4l

(2⇡)4
(−i)

h

C0 + C2(~p
2 +~l 2) + . . .

i i

E

2
+ l0 −

~l2

2mN

+ i✏

i

E

2
− l0 −

~l2

2mN

+ i✏

× −

h i

= (−i)
Z d3l

(2⇡)3

h

C0 + C2(~p
2 +~l 2) + . . .

i 1

E −
~l2

mN

+ i✏

h

C0 + C2(~l
2 + ~p 0 2) + . . .

i

with the potential                                                            .  As expected, the nonrela-

tivistic treatment recovers the quantum mechanical Lippmann-Schwinger equation. 

V (~p 0, ~p ) = −(C0 + C2(~p
2 + ~p 02) + . . .)

Since loop integrals factorize, the results are trivially generalizable to any number of 

loops. One finds for                   :E = p2/mN

A(~p 0, ~p ) = V (~p 0, ~p ) − mN

Z d3l

(2⇡)3
V (~p 0,~l ) A(~l, ~p )

~p 2
−~l 2 + i✏

sign convention for    , A() = V (

 Pionless EFT



 Pionless EFT

In the following, we focus on S-wave scattering. Utilizing the KSW notation,

= �i(C0 + C2(p
2 + p02) + . . .)

≥ 4 derivatives       terms  ~ 
contribute to p-waves

The LS equation for the half-shell amplitude in the s-waves:

iAtree = iV (p0, p) =

A(p0, p) = V (p0, p) � m

Z d3l

(2⇡)3
V (p0, l) A(l, p)

p2 � l2 + i✏
,   and S0 = 1 + i

mp

2⇡
A

pp0

Loop integrals are UV divergent    need regularization and renormalization…⇒

+ mp2n

Z d3l

(2⇡)3
1

p2
� l2 + i✏

=: I2n+1 =: p2nI(p)

m

Z d3l

(2⇡)3
l2n

p2
− l2 + i✏

= −m

Z d3l

(2⇡)3
l2n−2

− . . . − mp2n−2

Z d3l

(2⇡)3

=: p2n−2I3

Cutoff regularization (DimReg + PDS correspond to , ):μ → μπ /2 μi = 0

In ! IΛ

n
=

�m

2⇡2

Z

Λ

0

dl ln−1 =
�m

2⇡2

Z

Λ

µn

dl ln−1 +
�m

2⇡2

Z µn

0

dl ln−1
⌘ ∆n(µn) + IR

n
(µn)

I(p) ! IΛ(p) =
m

2⇡2

Z

Λ

0

dl
l2

p2
� l2 + i✏

= ∆1(µ) + IR
1
(µ) �

imp

4⇡
�

mp

4⇡2
ln

Λ � p

Λ + p



We still need to specify renormalization conditions (= choice of subtraction scales). 

Conventional wisdom suggests:          ~ soft scale                 [i.e., all loop momenta are of the 

order of the soft scale after renormalization…]

µ, µi ⇠ p ⌧ Mπ

Recall: I(p) = lim
Λ!1

✓ m

2⇡2
(µ � Λ)

◆

�
m

4⇡

✓

ip +
2

⇡
µ
◆

= ∆(µ) = IR(µ, p)

Renormalization: C0 = CR

0
(µ) + h̄ �C0, 1 + h̄2 �C0, 2 + O(h̄3)

= (CR

0
)2 ∆ = (CR

0
)3 ∆

2

Thus, finally: A = �

[If all c.t. are included, renormalization amounts to replacing                    ,                    .]Ci ! CR
i
(µ) I[n] ! IR

[n](µ)

−CR
0 (µ) −

⇣

CR
0 (µ)

⌘2
IR(µ, p) −

⇣

CR
0 (µ)

⌘3⇣

IR(µ, p)
⌘2

− 2C2p
2 + . . .

(�

 Pionless EFT

ℏ ℏ2

The amplitude at 2 loops assuming NDA scaling of LECs:

order p0 order p1 order p2

−C0 (−C0)
2 I(p) (�C0)

3
⇣

I(p)
⌘2

(�C2)2p
2



To determine LECs, we have to match the amplitude to the ERE: 

A =
4⇡

m

1

p cot � � ip
=

4⇡

m

1
h

�
1
a
+ 1

2
rp2 + v2p4 + . . .

i

� ip

However, in reality, the scattering lengths are large: 

, a3S1
= 5.42 fm ⇠ 3.8M−1

π
a1S0

= �23.714 fm ⇠ �16.6M−1
π

, a

Thus, it seems more appropriate to count             .  This leads to the expansion:a ⇠ p−1

order p0 order porder p-1

A = �

4⇡

m

"

1

a−1 + ip
+

rp2

2(a−1 + ip)2
+

r2p4

4(a−1 + ip)3
+ . . .

#

Such matching is possible provided                        .  One then has:a, r, vi ⇠ O(1)

CR
0 =

4⇡a

m

h

1 + O(aµ)
i

C2 =
⇡a2

m
r

[Choosing           , one reproduces 

exactly the first four terms in the 

expansion of     …]

µ = 0

A

A =
4π

m

✓

−a + ia2p + a3p2
−

a2r

2
p2+. . .

◆

!
= −CR

0 −CR
0

2
IR(µ, p)−CR

0

3
⇣

IR(µ, p)
⌘2

− 2C2p
2 +. . .

�m/(4⇡)(2µ/⇡ + ip)

 Pionless EFT



The large scattering length signals non-perturbative physics. In order to accommo-

date for it, some fine tuning must be built in to the EFT.

The resulting power counting depends on the choice of renormalization conditions! 

V = V LO + V NLO + V N2LO + . . .Consider a general expansion for the potential:

Want to assign powers of     to match: A = A
(−1) + A

(0) + A
(1) + . . .µ, p)

A desired scaling of      can be realized by choosing the renormalization conditions:LOĜ0

KSW: µ, µi ⇠ O(p) x = �1

Weinberg: µ ⇠ O(1), µi ⇠ O(p) x = 0 V LO
Weinberg ⇠ O(1)

V LO
KSW ⇠ O(p−1)

[for details see EE, Gegelia, Meißner, Nucl. Phys. B925 (2017) 161]

Scaling of          can be read off from:+ V NLO +

Â
(0) = V̂ NLO � V̂ NLOĜ0Â

(−1) � Â
(−1)Ĝ0V̂

NLO + Â
(−1)Ĝ0V̂

NLOĜ0Â
(−1)

V NLO
Weinberg ∼ O(p2)

V NLO
KSW ∼ O(1)

Â
(−1) = V̂ LO

� V̂ LOĜ0Â
(−1)LS equation:

Let: V̂ LO
⇠ O(px) 1 + V̂ LOĜ0 ⇠ O(p1+x)

Ĝ0 ⇠ O(p), x  �1

Ĝ0 ⇠ O(p−x), x � �1

1 + V̂ LOĜ0 = V̂ LO [Â(−1)]−1

 Pionless EFT



Both choices of the renormalization conditions

— lead to self-consistent approaches 

— are equivalent for pionless EFT but lead to different EFTs with pions 

— involve some fine tuning beyond NDA [see: EE, Gegelia, Meißner,  NPB 925 (2017) 161]

Leading order (p-1):

A
(−1) = �C0 � C2

0I(p) � C3
0(I(p))

2 + . . . = �
1

C
−1
0 � I(p)

= �
1

(CR
0 (µ))−1 � IR(µ, p)

= �
4⇡

m

1
4π
m
(CR

0 (µ))−1 + 2
π
µ + ip

!
= �

4⇡

m

1

a−1 + ip
CR

0 =
4⇡

m

1

a−1 � 2
π
µ

One recovers the Weinberg/KSW scaling of       depending on the choice of    :CR
0

2
π
µ

CR
0 ∼ O(1) µ ∼ O(p)for                ;                           for                 .(1) µ ∼ O(1) CR

0 ∼ O(p−1)

 Pionless EFT



Subleading order (p0):

suppressed in W. scheme…

For the sake of simplicity, choose             (so that             ). µ3 = 0 IR
3 = 0

After renormalization (                                               ), one finds:I(p) ! IR(µ, p), C2 ! CR
2 (µ)

A
(0) = �2CR

2 p2

⇣

a−1 � 2
π
µ
⌘2

(a−1 + ip)2
!
= �

4⇡

m
r p2

1

2(a−1 + ip)2
CR

2 =
⇡

m

r
⇣

a−1 � 2
π
µ
⌘2

Again, we recover:                      for                 ;                             for                 .CR
2 ∼ O(1)(1) µ ∼ O(1) CR

2 ∼ O(p−2) µ ∼ O(p)

The subleading amplitude (including terms suppressed in W. scheme) reads:

= �I3 + p2I(p)

A
(0) = �2C2p

2 � 2
⇣

� C2(p
2I(p) + J1(p))

⌘

A
(−1) � 2C2J1(p)I(p)

⇣

A
(−1)

⌘2

 Pionless EFT



In EFT with non-perturbative pions, the amplitude cannot be calculated analytically 

 renormalization has to be performed implicitly.⇒

„The theory is fully specified by the values of the bare constants once a suitable 

regularization procedure is chosen. In principle, the renormalization program is 

straightforward: one calculates quantities of physical interest in terms of the 

bare parameters at given, large value of (ultraviolet cutoff) Λ. Once a sufficient 

number of physical quantities have been determined as functions of the bare 

parameters one inverts the result and expresses the bare parameters in terms 

of physical quantities, always working at some given, large value of Λ. Finally, 

one uses these expressions to eliminate the bare parameters in all other 

quantities of physical interest.“

Gasser, Leutwyler, Phys. Rep. 87 (1982) 77

 Pionless EFT: Implicit renormalization

Let’s see how this works in pionless EFT…



Define the contact potential; introduce a UV 

cutoff ;  solve the LS equation; 

tune bare LECs  to . 

Λ ∼ Λb ∼ Mπ

C0(Λ), C2(Λ) a, r

Implicitly renormalized expression for the inverse amplitude:

4⇡

m

1

A(p)
=



�

1

a
+

1

2
rp2 +

⇡ (8 � 3aΛ2r(⇡Λr � 8)) � 64aΛ

12⇡Λ3(⇡ � 2aΛ)
p4 + O(p6)

�

� ip

For a sharp cutoff, one finds at NLO:

where I have introduced:

mC0 =
6⇡2

⇣

� � 6
p
3
q

↵(⇡ � 2aΛ)2
⌘

5↵Λ
, mC2 =

6⇡2
⇣p

3
q

↵(⇡ � 2aΛ)2 � ↵
⌘

↵Λ3

↵ ⌘ 16a2
Λ

2 � ⇡aΛ
⇣

aΛ2r + 12
⌘

+ 3⇡2 , � ⌘ 64a2
Λ

2 � ⇡aΛ
⇣

3aΛ2r + 62
⌘

+ 18⇡2

 Pionless EFT: Implicit renormalization

Well-defined and correct (up to higher-order terms) result for                         .  

However, things may (and, in general, would) go wrong if choosing                     

(complex ’s, Wigner bound, peratization…)   Ci

Λ ⇠ r−1 ⇠ Mπ

Λ � r−1

⇒
∆(µ)



Define the contact potential; introduce a UV 

cutoff ;  solve the LS equation; 

tune bare LECs  to . 

Λ ∼ Λb ∼ Mπ

C0(Λ), C2(Λ) a, r

Implicitly renormalized expression for the inverse amplitude:

4⇡

m

1

A(p)
=



�

1

a
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1

2
rp2 +

⇡ (8 � 3aΛ2r(⇡Λr � 8)) � 64aΛ

12⇡Λ3(⇡ � 2aΛ)
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� ip

For a sharp cutoff, one finds at NLO:

where I have introduced:

mC0 =
6⇡2
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p
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+ 18⇡2

 Pionless EFT: Implicit renormalization

Well-defined and correct (up to higher-order terms) result for                         .  

However, things may (and, in general, would) go wrong if choosing                     

(complex ’s, Wigner bound, peratization…)   Ci

Λ ⇠ r−1 ⇠ Mπ

Λ � r−1

⇒

To summarize:

Contrary to the previous cases, not all c.t. needed to remove UV divergences are 

included    it is not legitimate to take the limit               .⇒

Higher-order terms are indeed small provided Λ ~ hard scale (NDA…).

Implicit renormalization (i.e. no explicit splitting of        into             and          ).

Bare LECs             must be re-fitted at every order.

Ci CR

i
(µ)

Ci(Λ)

Λ ! 1

∆(µ)



Take-aways of part II

— the appearance of shallow NN states signals fine tuning 

     (non-perturbative physics) that must be built in to an EFT 

— different choices of renormalization conditions in pionless 

     EFT lead to different power countings (KSW vs W) 

— renormalization can also be carried out implicitly by tuning

     bare LECs to experimental data



III: Inclusion of pions

Further reading

van Haeringen, Kok, PRA 26 (1982) 1218

Lepage, How to renormalize the Schrödinger equation, nucl-th/9607029

Kaplan, Savage, Wise, NPB 534 (1998) 329

Cohen, Hansen, PRC 59 (1999) 13, 3047

Fleming, Mehen, Stewart, NPA 677 (2000) 313

EE, Gegelia, EPJA 41 (2009) 341

EE, Nuclear forces from chiral EFT: A primer, arXiv:1001.3229 [nucl-th] 

Are pions perturbative? How to test the long-range dynamics?

What is the predictive power of chiral EFT for few N’s?

– Low-energy theorems (LETs) and the modified ERE 

– KSW with perturbative pions 

– Non-perturbative inclusion of pions

Outline



 Modified Effective Range Expansion (MERE)

is meromorphic in

Two-range potential:     

modified effective range function

Jost function for Jost solution for 

Per construction,       reduces to     for  

and is meromorphic in 

van Haeringen, Kok ’82

What are the low-energy theorems?

with

LETs and the MERE



Example: proton-proton scattering

where                             ,                ,                            ,

Coulomb phase shift Sommerfeld factor Digamma function

 MERE and low-energy theorems

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen ’99; Steele, Furnstahl ’00

The emergence of the LETs can be understood in the framework of MERE:

meromorphic  for
can be computed if the  
long-range force is known

− approximate              by first 1,2,3,…  terms in the Taylor expansion in  

− calculate all “soft” quantities 

− reconstruct           and predict all coefficients in the ERE



Low-Energy Theorems

where

and (all in fm-1)

 Toy model: Low-energy theorems
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 Chiral EFT for NN scattering

KSW with perturbative pions

KSW: µ, µi ⇠ O(p)

Weinberg: µ ⇠ O(1), µi ⇠ O(p) V LO
Weinberg ⇠ O(1)

V LO
KSW ⇠ O(p−1)

Recall the differences between the W and KSW counting schemes:

[i.e. scaling of C2n according to NDA (~ O(1))]

V NLO
Weinberg ∼ O(p2)

V NLO
KSW ∼ O(1)

[i.e. scaling of C2n as C2n ~ O(p-1-n)]

,

,

While the two schemes are equivalent for pionless theory, they suggest different 

scenarios for pionful (chiral) EFT:

V1π = �
✓

gA

2Fπ

◆2 ~�1 · ~q ~�2 · ~q

q2 + M2
π

~⌧1 · ~⌧2 ⇠ O(1)

OPE is expected to be:

— LO contribution (nonperturbative) in the Weinberg scheme, 

— NLO contribution (perturbative) in the KSW scheme.



 Chiral EFT for NN: The KSW approach

A
(III)
0 =

g2
A

f 2

(

m
π
MA

−1

4π

)

(

−

(µ + ip)

m
π

+
m

π

2p

[

tan−1
(

2p

m
π

)

+
i

2
ln

(

1 +
4p2

m2
π

)] )

A
(I)
0 = −C

(1S0)
2 p2

[

A
−1

C
(1S0)
0

]2
0

A
(II)
0 =

(

g2
A

2f 2

) (

−1 +
m2

π

4p2
ln

(

1 +
4p2

m2
π

))

( ) ( )

A
(IV )
0 =

g2
A

2f 2

(

m
π
MA

−1

4π

)2
(

−

(

µ + ip

m
π

)2

+

[

i tan−1
(

2p

m
π

)

−

1

2
ln

(

m2
π

+ 4p2

µ2

)

+ 1

] )

,
( )

A
(V )
0 = −D

(1S0)
2 m2

π

[

A
−1

C
(1S0)
0

]2

,

p2
2+ +

2

m
π

2

+ +

+ + +
...

=

+

=

LO amplitude 

Leading order:

NLO:

For more details see:

Kaplan, Savage, Wise, Nucl. Phys. B534 (1998) 329 

p
2Fπ



 LETs for S-waves: KSW approach

) = p cot �0(p) =
4⇡

m

 1

A
−1

�
A0

(A
−1)2

+ . . .

�

+ ip
!
= �

1

a
+

1

2
rp2+v2p

4+v3p
6+v4p

8+ . . .

Use these results to test the LETs for S-waves:

Express the LECs C0, C2, in terms of     and    to predict the shape parameters, e.g.:
�
a

1

2
rp

v2 =
g2
A
m

16⇡F 2
π

✓

�
16

3a2M4
π

+
32

5aM3
π

�
2

M2
π

◆

v3 =
g2
A
m

16⇡F 2
π

✓ 16

a2M6
π

�
128

7aM5
π

+
16

3M4
π

◆

, , …

[Cohen, Hansen, PRC 59 (1999) 13] 

1S0 partial wave a [fm] r [fm] v2 [fm
3] v3 [fm

5] v4 [fm
7]

NLO KSW from Ref. [23] fit fit −3.3 18 −108− −

Nijmegen PWA −23.7 2.67 −0.5 4.0 −20

Cohen, Hansen ’99 

3S1 partial wave a [fm] r [fm] v2 [fm
3] v3 [fm

5] v4 [fm
7]

NLO KSW from Ref. [23] fit fit −0.95 4.6 −25

LO Weinberg fit

Cohen, Hansen ’99 − −

Nijmegen PWA 5.42 1.75 0.04 0.67 −4.0

large deviations suggest that pions should be treated nonperturbatively…
[even stronger evidence comes from phase shifts at N2LO, see: Fleming, Mehen, Stewart, NPA 677 (2000) 313] 



Static OPEP in coordinate space: 

tensor operator:

singular potential in all S=1 channels
(solutions to the Schröd./LS equation still exist in repulsive cases)

 Nonperturbative inclusion of pions

LO scattering amplitude:

T (~p 0, ~p ) =
h

Vcont(~p
0, ~p ) + V1π(~p

0, ~p )
i

+ m

Z d3l

(2⇡)3

h

Vcont(~p
0,~l ) + V1π(~p

0,~l )
i

T (~l, ~p )

p2 � l2 + i✏

V1π(~r ) =
✓

gA

2Fπ

◆2

⌧ 1 · ⌧ 2

"

M2

π

e−Mπr

12⇡r

 

S12(r̂)

 

1 +
3

Mπr
+

3

(Mπr)2

!

+ ~�1 · ~�2

!

�
1

3
~�1 · ~�2 �

3(r)

#

Complications (as compared to pionless theory): 

—        is not separable, no analytic results beyond 2 loops are available, 

— 1/r3 singularity of

V1π(

V1π(

S12 = 3 ~�1 · r̂ ~�2 · r̂ � ~�1 · ~�2

Need  many c.t.’s in all spin-triplet channel to remove UV divergences from iterations…  ∞⇒

(spin-triplet)  ⌃
1

d� 4
⇧p 6 m6

NE.g.:



 Chiral EFT for nuclear systems

Ladder graphs are responsible for the failure of perturbation theory and must be re-summed:

Lippmann-Schwinger equation derived in ChPT

Nuclear forces and currents    irreducible parts of the amplitude  (scheme-dependent)=

V
2

V
0

V
0

V
0

V
0

V
0

V
0

V
0

Divergent integrals in the Lippmann-Schwinger equation are regularized using a cutoff Λ:

the „RG invariant“ approach with :  Λ ≫ Λb T ∼ 1 + Λ + Λ2 + … = (1 − Λ)−1

— criticized in EE, Gegelia, EPJA 41 (09) 341; EE, Gasparyan, Gegelia, Meißner, EPJA 54 (18) 186

— not cutoff-independent RG-invariant beyond LO Gasparyan, EE, PRC 107 (23) 034001

finite-Λ EFT with  MeV  Lepage, EE, Gegelia, Meißner, Reinert, Entem, Machleidt, … Λ ≲ Λb ∼ 600

van Kolck, Long, Yang, …

— phenomenologically successful; approximate Λ-independence verified a posteriori

— renormalizability  (in the EFT sense)  has 

     been  rigorously proven to NLO using the  

     BPHZ subtraction method (forest formula)
Gasparyan, EE, PRC 105 (22) 024001; PRC 107 (23) 044002



a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

1S0 partial wave

LO fit 1.50 �1.9 8.6(8) �37(10)

NLO fit fit �0.61 . . . � 0.55 5.1 . . . 5.5 �30.8 . . . � 29.6

NLO KSW fit fit �3.3 18 �108

Empirical values �23.7 2.67 �0.5 4.0 �20

3S1 partial wave

LO fit 1.60 �0.05 0.82 �5.0

NLO fit fit 0.06 0.70 �4.0

NLO KSW fit fit �0.95 4.6 �25

Empirical values 5.42 1.75 0.04 0.67 �4.0

EE, Gegelia, PLB617 (12) 338

EE, Gegelia, PLB617 (12) 338

EE et al., EPJA51 (15) 71

Baru et al., PRC94 (16) 014001

Cohen, Hansen ’98

Cohen, Hansen ’98

LETs for neutron-proton scattering: nonperturbative vs perturbative OPEP 

perturbative inclusion of pions (KSW approach) fails

1S0 channel: limited predictive power of the LETs due to the weakness of the OPEP; 
                     taking into account the range correction (NLO) leads to improvement

3S1 channel: LETs work as advertised (strong tensor part of the OPEP)

 LETs for S-waves: KSW vs Weinberg



Take-aways of part III

— long-range interactions govern energy dependence of the

     amplitude and lead to correlations between coefficients 

     in the ERE (LETs) that can be tested

— the failure of the LETs in the KSW approach suggests that 

     pion exchange should be treated non-perturbatively 

— iterations of the 1π-exchange are non-renormalizable (in

     the usual sense)  finite-cutoff formulation of chiral EFT⇒



IV: From    to nuclear forcesℒeff

Further reading

EE, PPNP 57 (2006) 654

EE, Hammer, Meißner, RMP 81 (2009) 1773 

Entem, Machleidt, Phys. Rept. 503 (2011) 1

EE, Krebs, Reinert, Front. In Phys. 8 (2020) 98

Krebs, EE, PRC 110 (2024) 044003

– Methods: S-matrix matching, TOPT, MUT, a path integral approach 

– Example: chiral expansion of the 2π-exchange 3N force 

– State-of-the-art for nuclear forces

Outline

How to derive nuclear forces from the effective Lagrangian?

What is the current state-of-the-art?



 Chiral EFT for nuclear systems

Ladder graphs are responsible for the failure of perturbation theory and must be re-summed:

Lippmann-Schwinger equation derived in ChPT

Nuclear forces and currents    irreducible parts of the amplitude  (scheme-dependent)=

They can be derived using a variety of methods including [In all cases, utilize a perturba-tive 

expansion within ChPT]:

— S-matrix matching Kaiser et al.  

— time-ordered perturbation theory Pastore, Baroni, Schiavilla et al. 

— method of unitary transformations (UTs) EE, Glöckle, Meißner, Krebs, Kölling

— path integral approach Krebs, EE

More demanding than just calculating Feynman diagrams:

— need to subtract reducible pieces in order to avoid double counting  

— have to deal with non-uniqueness of nuclear potentials 

— maintaining renormalizability non-trivial…



Matching to the amplitude Kaiser et al.

uniquely defined 
on-the-energy 

shell

(arbitrary) off-shell 
extension

 higher-order terms in the Hamiltonian „know“ about the choice made for the off-

shell extension (consistency...)

⇒

ChPT

define via matching

S-matrix in ChPT is renormalizable (in the EFT sense). But this should not be taken for gran-

ted for the potentials…

UV finite

not necessarily 
UV finite

 S-matrix matching

⇒

⇒

Renormalization can be enforced by systematically exploiting unitary ambiguities…



V1π G0 V1π

genuine two-pion exchange potential

 Time-ordered perturbation theory

4-dim integrals  
(Feynman diagrams)

3-dim integrals over spatial momenta 
(Time-ordered diagrams)

— has been used by Weinberg in his original publications

— leads to energy-dependent potentials which are inconvenient for many-body calcula- 

     tions  (the energy dependence can be eliminated)

— changes the normalization of few-nucleon states

=

=

+ + + + +

+ + + + +



• Canonical transformation and quantization:

projectors states with mesons

nucleonic states

can not solve
(infinite-dimensional eq.)

EOM:

 Method of Unitary Transformation

,Minimal parametrization of the UT:           
Okubo ’54

Require:

Notice: Similar methods are widely used in nuclear and many-body physics (Lee-Suzuki)

The solution of the nonlinear decoupling equation, calculation of the UT and of the nuclear 

potentials is carried out in perturbation theory (chiral expansion)  EE, EPJA 34 (2007) 197

• Decouple pions via a suitable UT:

⇒

Taketani, Mashida, Ohnuma’52;  Okubo ’54;  EE, Glöckle, Meißner, Krebs, Kölling, ... 



 Path-integral approach
Krebs, EE, PRC 110 (2024) 044003

Pion-less EFT:

)2 + . . .

But -integrals do not factorize for pions  

due to -dependence of -propagators…

l0
l0 π

Z[η†, η] = A∫ 3N† 3N 3π exp(iSΛ
eff + i∫ d4x[η†N + N†η])

A∫ 3Ñ† 3Ñ exp(iSΛ
eff, N + i∫ d4x[η†Ñ + Ñ†η])

nonlocal redefinitions of N, N†

SΛ
eff, N

instantaneous
Idea:
Hermann Krebs, EE, 2311.10893

loops from functional determinant

L = N †
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Scattering amplitude to 1 loop:

All -integrals factorize    Lippmann-Schwinger eq.                            with l0 ⇒ A = V + V G0 A VA V = �Lint
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 Example: -exchange 3NF2π

V3N =
~�1 · ~q1 ~�3 · ~q3

(q21 +M2
π
) (q23 +M2

π
)

h

τ 1 · τ 3τ 3 A(q2) +) + τ 1 ⇥ τ 3 · τ 2 ~q1 ⇥ ~q3 · ~�2 B~�2 B(q2))
ih

+ short-range terms + permutations
⃗q1 ⃗q2 ⃗q3

A(5) =
g2A

�

M2
π
+ 2q22

�

4608⇡2F 6
π

n

⇥

6c1 � 2c2 � 3c3 � 2(6c1 � c2 � 3c3)L(q2)
⇤

12M2
π

� q22
⇥

5c2 + 18c3 � 6L(q2)(c2 + 6c3)
⇤

o

+
g2Aē14

2F 4
π

�

2M2
π
+ q22

�2

B(5) =
g2Aē17

2F 4
π

�

2M2
π
+ q22

�

�
g2Ac4

2304⇡2F 6
π

n

q22
⇥

5� 6L(q2)
⇤

+ 12M2
π

⇥

2 + 9g2A � 2L(q2)
⇤

o

N2LO (Q3)

N3LO (Q4)
A(4) =

g4A
256⇡F 6

π

h

�

4g2A + 1
�

M3
π
+ 2

�

g2A + 1
�

M
π
q22 + A(q2)

�

2M4
π
+ 5M2

π
q22 + 2q42

�

i

B(4) = �
g4A

256⇡F 6
π

⇥

A(q2)
�

4M2
π
+ q22

�

+ (2g2A + 1)M
π

⇤

N4LO (Q5)

Bernard, EE, Krebs, Meißner ’08

Krebs, Gasparyan, EE ’12

ci

ci

ei

A(3) =
g2A
8F 4

π

h

(2c3 � 4c1)M
2
π
+ c3q

2
2

i

, B(3) =
g2Ac4

8F 4
π

) =
1

2q2

arctan
q2

2Mπ

.

) =

p

q2
2 + 4M2

π

q2

log

p

q2
2 + 4M2

π
+ q2

2Mπ

,

calculated using DimReg

calculated using DimReg
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— all LECs  and  are known from the Roy-Steiner-equation analysis of the N systemci ēi π

— the results are only meaningful (converged) at small momenta    cutoff needed⇒

Example: -exchange 3NF2π



 Chiral expansion of nuclear forces

Zwei-Nukleon-Kraft Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

Chiral dynamics:  Long-range interactions are predicted in terms of on-shell amplitudes

Short-range few-N interactions are tuned to experimental data

LO:

NLO:

N2LO:

N3LO:

N4LO:



 Chiral expansion of nuclear forces

Zwei-Nukleon-Kraft Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

Semi-local regularization in momentum space  Reinert, Krebs, EE, EPJA 54 (2018) 86;  PRL 126 (2021) 092501

V1π(q) =
α

⃗q2 + M2
π

V2π(q) =
2

π ∫
∞

2Mπ

dμμ
ρ(μ)

⃗q2 + μ2
e

−
⃗q2 + M2

π

Λ2 + subtraction, e
−

⃗q2 + μ2

2Λ2 + subtractions

+ nonlocal (Gaussian) cutoff for contacts

χEFT as a precision tool in the 2N sector

Proton-proton,


 MeVElab = 143

3

3.5

4

4.5

dσ dΩ [mb/sr]

●●
●
●
●●

●●

●●
●●●●●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●

● ●

●

●
●

● ● ●
●

●

●

● ●

●

●

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

P

●

●

●
●

●

●

●

●

●

●●
●

●

●●●●
●●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

−0.4

−0.2

0.2

0.4

0.6

0.8

0 45 90 135 180

θCM [deg]

0 45 90 135 180

θCM [deg]

— N4LO+: currently most accurate and precise 

     NN interactions on the market 

— clear evidence of the TPEP from NN data

— almost no residual cutoff dependence

— Bayesian truncation-error estimation 

  Reinert, Krebs, EE ’20  

 fm  Filin et al., ’21

gπNN = 13.24 ± 0.04

r
2H
str = 1.9729+0.0015

−0.0012

— Precision calculations for 2 nucleons: 

N2LO

N3LO

N4LO

LO:

NLO:

N2LO:

N3LO:

N4LO:



 Chiral expansion of nuclear forces

Zwei-Nukleon-Kraft Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO:

NLO:

N2LO:

N3LO:

N4LO:

 need to be re-derived using invariant cutoff regulator⇒
mixing DimReg with Cutoff violates χ-symmetry (also for current operators)

have been worked out using dimensional regularization

Krebs, EE, PRC 110 (2024) 044004



Take-aways of part IV

— nuclear forces can be derived from the effective Lagran-

     gian using a variety of methods

— important to maintain consistency (nuclear potentials are 

     scheme dependent) 

— regularization of 3NFs and currents beyond tree level is 

     nontrivial


