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Entanglement is quantum world’s most prominent feature:

* It refers to the situation where a measurement on a subsystem will
improve our knowledge on the rest of the system.

* A guantum state of a system is entangled if it cannot be written as a
tensor-product state of its subsystems.

* Consider a bipartite system Ho = H; ® Ho , a state vector
1) € Hia is entangled if there is NO |1)1) € Hiand|ys) € Ha such

that

V) = |11) @ |12)



Consider a system of two spin-1/2 particles.

« ™M)= 1) Q|4 ) is an unentangled state:

Measurement of one spin would not change the outcome of the other.

o (|T™)+ | 1))/V2is an entangled state:

Measurement of the first spin would collapse the state into | ™/ ) or

| & 1), which consequently determines the second spin.



Erwin Schrodinger coined the phrase “entanglement”:

DISCUSSION OF PROBABILITY RELATIONS BETWEEN
SEPARATED SYSTEMS

By E. SCHRODINGER
[Communicated by Mr M. BORN]

[Received 14 August, read 28 October 1935]

1. When two systems, of which we know the states by their respective repre-
sentatives, enter into temporary physical interaction due to known forces between
them, and when after a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before, viz. by endowing each
of them with a representative of its own. I would not call that one but rather the
characteristic trait of quantum mechanics,  the one that enforces its entire
departure from classical lines of thought. By the interaction the two repre-
sentatives (or y-functions) have become entangled. To disentangle them we must




Einstein famously attacked “entanglement” as spooky action at a distance:

MAY 15, 1935 PHYSICAL REVIEW VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsTEIN, B. PopoLsky AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

RINSTRIN ATTACKS
QUANTUM THEORY

Scientist and Two Colleagues
Find It Is Not ‘Complete’
Even Though ‘Correct.’

SEE FULLER ONE POSSIBLE

A. Einstein B. Podolsky N. Rosen

Believe a Whole Description of
‘the Physical Reality’ Can Be
Provided Eventually.
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Outreach Outreach Outreach
Alain Aspect John F. Clauser Anton Zeilinger
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded
jointly to Alain Aspect, John F. Clauser and Anton
Zeilinger "for experiments with entangled photons,
establishing the violation of Bell inequalities and
pioneering quantum information science"



On the other hand, symmetry is among the most fundamental
principles in physics:

Powerful characterization of nature based on invariance under a
specified group of transformations.

Symmetries give rise to conserved quantities: energy, momentum,
angular momentum, etc.

Combining with quantum mechanics, there is a subtle realization of
symmetry — spontaneous symmetry breaking.

All known fundamental interactions are based on symmetry principles.




Chen-Ning Yang famously

coined the phrase:

Symmetry dictates Interaction!

* Lorentz invariance =2
Special Relativity

* General coordinate invariance =2
General Relativity

* Gauge invariance 2
QCD and Electroweak theory.




But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —
As we explore higher and higher energy regimes, we discover

more and more symmetries. The symmetry is usually hidden
or broken in low energies.
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emerges only at large distances, in the infrared. These are
emergent symmetries.




But what is the origin of symmetry?

There are two historical perspectives:

Beauty In, Garbage Out —

As we explore higher and higher energy regimes, we discover
more and more symmetries. The symmetry is usually hidden
or broken in low energies.

Garbage In, Beauty Out —

At high energy level there is no symmetry. Rather symmetry
emerges only at large distances, in the infrared. These are
emergent symmetries.

But neither explain whether symmetry can be the natural
outgrowth of more fundamental principles.



John Wheeler famously coined the phrase:

It from bit : “All things physical are information-theoretic in
origin”

INFORMATION, PHYSICS, QUANTUM: THE
SEARCH FOR LINKS

John Archibald Wheeler * 1

Abstract

This report reviews what quantum physics and information theory have to tell us
about the age-old question, How come existence? No escape is evident from four

R T

winnowing: It from bit. Otherwise put, every it — every particle, every field of
force, even the spacetime continuum itself — derives its function, its meaning, its
very existence entirely — even if in some contexts indirectly — from the apparatus-
elicited answers to yes or no questions, binary choices [52], bits.




Indeed, we have seen remarkable connections between
fundamental physics and information science in the past
decade.

It is natural to ask:

Can symmetry come from qubit?

Bit Qubit

1 1)

Q Q . ) = a0} + A1)

0 |0)



In 2018 a group from Seattle made a fascinating observation regarding
emergent symmetries and entanglement suppression in low-energy QCD:

Entanglement Suppression and Emergent Symmetries of Strong Interactions

Silas R. Beane,! David B. Kaplan,? Natalie Klco,»? and Martin J. Savage?

! Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
2 Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA
(Dated: December 10, 2018 - 1:30)

Entanglement suppression in the strong interaction S-matrix is shown to be correlated with ap-
S —

proximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SU(4) symmetry for two Havors and an SU(16) symmetry for three flavors. We conjecture that
dynamical entanglement suppression is a property of the strong interactions in the infrared, giving
rise to these emergent symmetries and providing powerful constraints on the nature ol nuclear and
hypernuclear forces in dense matter.

This raises the intriguing possibility of understanding symmetry from
guantum entanglement!



In this talk, we will use low-energy QCD as the primary playground to
study:

* Unexpected, emerging (approximate) global symmetries in low-energy
hadronic physics.

* Connection between symmetry and entanglement suppression in non-
relativistic 2-to-2 scattering of fermions.

* Elucidate the connection from an information-theoretic viewpoint.

However, the lessons we learned seem to be quite general — will see
examples ranging from two-Higgs-doublet-model to flavor physics.



Emergent symmetries in low-energy QCD:

* Schrodinger symmetry (non-relativistic conformal invariance)

* Spin-flavor symmetries




In low-energy nuclear physics, Wigner observed the SU(4) spin-flavor
symmetry in 1936:

JANUARY 15, 1937 PHYSICAL REVIEW VOLUME 51
On the Consequences of the Symmetry of the Nuclear Hamiltonian
on the Spectroscopy of Nuclei

E. WIGNER*
Princeton University, Princeton, New Jersey

(Received October 23, 1936)

The structure of the multiplets of nuclear terms is investigated, using as first approximation
a Hamiltonian which does not involve the ordinary spin and corresponds to equal forces
between all nuclear constituents, protons and neutrons. The multiplets turn out to have a

In this case the neutron and proton fill out a “supermultiplet”:

bt

N = fj N 5 UN, UeSU(4)
T

ny



Schrodinger Symmetry (NR conformal symmetry)

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 1S, and 3S; channels.



Schrodinger Symmetry (NR conformal symmetry):

* Unnaturally large scattering lengths in low-energy NN scattering in the
s-wave, which include 1S, and 3S; channels.

In a non-relativistic QFT, the S-matrix is
Mp 47 1

S=e20) =14i—=A4, A =
27 M pcotd —ip

It is long known that it’s p cot 6 which admits an expansion in 1/p, the

Effective Range Expansion (ERE):

2 a 2

1

The scattering length

1 1 1 1 . 2\ "
p00t5=——+—7"0p2+°--=———|——A2Zrn(p—)
a



In NN scattering:
¢ 150 . ao - '237 fm

 35,:a,;=5.4fm > Deuteron, which is a shallow, near-threshold bound

state!

Average binding energy per nucleon (MeV)
SN

3 3
}Hes The deuteron
2
1 +H2
o LH
0 30 60 90 120 150 180 210 240 270

Number of nucleons in nucleus



In the limit the scattering length a diverges, the system has no scale and
exhibits Schrodinger symmetry, also known as the non-relativistic
conformal invariance. Mehen, Stewart, Wise (1999)

At the infinitesimal level,

boosts:
scale:

conformal:

So NN scattering has approximate Schrodinger symmetry.

WHO ORDERED THAT??!



* Nucleons are part of spin-1/2 octet baryons (three-quark bound states):

Y
n(ddu) p(uud) Particle Experimental mass (MeV)

P 938.26

: N 939.55
-/ A s A 11156
- + T 1189.4
¥ "(dds) ®2%uds) /' E*(uus) 50 11025
x- 1197.3
=0 1314.7
= _(ssd) o) 0(ssu) =~ 1321.3

QCD Lagrangian has SU(3) quark-flavor symmetry in limit m,=mgy=m. .

Under this SU(3), the spin-1/2 baryons form an eight-dimensional
irreducible representation -- the octet representation.




* Nucleons are part of spin-1/2 octet baryons:

In the SU(3) flavor-symmetric limit :

20/v2+A/V6 >+

p

B = N ~X0/V24+A/V6  n

— =0

e

(1]

A low-energy effective field theory:

L8 = f2<BTBB’fB> f2<BTB B} B;) — 72
_ %(BTB ){(B!B;) — P<B§Bj><B}Bi>,

e

(BTBTB B;) —

1) =T

< :

y=Tr( )
7 (BTBTB B;)

Savage, Wise (1995)



Lattice QCD could compute the six Wilson coefficients under some special
circumstances:

: ErL‘ ’ ﬁ = INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076
NEEQED

il

5o
Baryon-Baryon Interactions and Spin-Flavor Symmetry

from Lattice Quantum Chromodynamics

Michael L. Wagman,'? Frank Winter,> Emmanuel Chang, Zohreh Davoudi,*
William Detmold,* Kostas Orginos,®*® Martin J. Savage,"? and Phiala E. Shanahan?
(NPLQCD Collaboration)
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Lattice QCD could compute the six Wilson coefficients under some special

circumstances:

INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076

Baryon-Baryon Interactions and Spin-Flavor Symmetry
from Lattice Quantum Chromodynamics

Michael L. Wagman,'? Frank Winter,> Emmanuel Chang, Zohreh Davoudi,*
William Detmold,* Kostas Orginos,>* Martin J. Savage,"? and Phiala E. Shanahan*
(NPLQCD Collaboration)
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m,, = 804 MeV

ICCUB-20-020, UMD-PP-020-7, MIT-CTP /5238, INT-PUB-20-038
FERMILAB-PUB-20-498-T

Low-energy Scattering and Effective Interactions of Two Baryons at
my ~ 450 MeV from Lattice Quantum Chromodynamics

Marc Illa,! Silas R. Beane,2 Emmanuel Chang, Zohreh Davoudi,®*
William Detmold,® David J. Murphy,® Kostas Orginos,®7 Assumpta Parrefio,!
Martin J. Savage,® Phiala E. Shanahan,® Michael L. Wagman,® and Frank Winter”
(NPLQCD Collaboration)
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C1 C2 C3 Cq Cs

m, =450 MeV

m_ = 150 MeV in reality

Ce




In the limit where all coefficients but c; are vanishing:

The remaining operator can be re-written,

B = (nT7n~L7pT7pJ«7"') ) L= —Cx (BTB)z

which is invariant under an SU(16) spin-flavor symmetry
U=16x16

unitary matrix!

B—UB, Ut =1

There is no large N. explanation!



To summarize, in low-energy QCD there exist several emergent global
symmetries that are not symmetries of the fundamental QCD Lagrangian:

1. Wigner’s SU(4) symmetry and approximate SU(16) symmetry as
indicated by lattice simulations.

2. Approximate Schrodinger symmetry in NN scattering.

These are emergent symmetries in low-energy QCD. Our goal is to
understand 3 and 4 from a quantum information-theoretic perspective.



To discuss entanglement suppression, we need to quantify the amount
of entanglement = Entanglement Measure!

Many possibilities for Entanglement Measure. For bipartite systems:

von Neumann entropy: FE(p) = —Tr(p;1np;) = —Tr(py In ps)

Linear entropy: E(p) = —Tr(pi(p1 — 1)) = 1 — Trp?

p = Y)Y p1/2 = Tra/1(p)

The common property is that the entanglement measure vanishes for a
product state |¢¥) = |¢1) ® |¢2), but attains the maximum for maximally
entangled states (such as the Bell states.)



For a system with two spin-1/2 particles, let’s define the “computational

basis:”
{0, 1) 1), O

Then for a general normalized state,

) =a[tt) + BN + NN+, o +BP+ W+ =1,

The reduced density matrix and linear entropy are

] + |8]* ay* + B6*
oy + B Y2 +1612)

p1 = Tra [¢h) (Y] = (

Fasy to check that E(|¢)) = 1 — Trip; = 2|ad — By
1. It vanishes for a product state.
2. Maximal entanglement is 1/2, which is the case for the Bell states:

(1) £ 1)/ V2 (It £ 1)/ v2



For a system with two spin-1/2 particles, let’s define the “computational

basis:”
{0, 1) 1), O

Then for a general normalized state,

Py =a M)+ B + YWD+, P+ I8P+ +0P=1,

The reduced density matrix and linear entropy are

la? + |B* ay* + B6*
oy + B [yE+ 1612 )

p1 = Tra [¢h) (Y] = (

Fasy to check that E(|¢)) = 1 — Trip] = 2|ad — Bv/°.
1. It vanishes for a product state.
2. Maximal entanglement is 1/2, which is the case for the Bell states:

(1) £ 1)/ V2 (It £ 1)/ v2

2|ad -Ly| is the “concurrence” in QIS literature.




Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement
generated by an operator could depend on the initial state.



Entanglement is a property of the quantum state.

But we are more interested in the ability of a quantum-mechanical
operator (i.e. the S-matrix) to entangle.

However, there is a subtlety here, as the amount of entanglement
generated by an operator could depend on the initial state.

Consider the CNOT (controlled NOT) gate in the computational basis:

D 114 ) [}

CNOT =

S O o
S O = O
_o O O
O = O O

CNOT does not entangle any of the basis state. However,

DEAN
V2

ONOT, T + L)

®[1) NG



The “entanglement power” deals with this issue is by averaging over the

initial states:

EU) = EU |11) ®[12)),

For quibts, the average
is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator U to

generate entanglement on product states.




The “entanglement power” deals with this issue is by averaging over the
initial states:

For quibts, the average

E(U) — E(U |¢1> X |¢2>)7 is over the Bloch sphere.

The entanglement power is a measure of the ability of an operator U to
generate entanglement on product states.

A minimally entangling operator has E(U) =0, i.e.,

BEIBEIREIR

There is, however, a notion of equivalent classes in this definition:

U~U if U=UeU)U(Vi®V)

LOCC does not change entanglement!



Modulo the equivalent class, there are two and only two minimally
entangling operators, which in the computational basis,

(10 0 0) (10 0 0)
0100 0010

1= , SWAP =
0 01O0 0100

\0 0 0 1) \0 00 1)

|Identity gate: do nothing.
SWAP gate: interchange the qubits.

SWAP ~ —1 as [SWAP]? =1
In terms of Pauli matrices,
SWAP = (1+0-0)/2, a-azZa“@a“.

Low, Mehen: 2104.10835



In the scattering process the S-matrix acts on the IN-state:

lout) = S |in)

For 2-to-2 scattering of spin-1/2 fermions, the S-matrix can be viewed as a
guantum logic gate acting on the spin-space:

|p1, s1,{a}) S |p/1a81,{al}>

P2, 52, {b}) [P, 52, {b'})

p1, 51, {a}) Uta S Uar P}, s1,{a’})

P2, 52, {b}) Usp Upar [Py, 52, {b'})




The distinction between “entanglement in a state” and “entanglement
power in an operator” cannot be over-emphasized.

A lot of literature computed the entanglement in the final state as a
function of scattering angle, instead of entanglement power:

| |
1%(0) 1%6) 1.6
o8 0.8 10 MeV .
0.6 0.6/
0.4 5 MeV 0.4
0.2 0.2 0.8 -
50 100 150 e 50 00 1s0  e9)
~
S
c c
10 19 = 0.0 —
0.8 0.8 50 MeV o
20 MeV
0.6 0.6
0.4 7 04 —-0.8 |-
0.2 0.2
50 100 10 %9 50 00 1s0 @9 y—
-1.6 |- R T
— A g =1
. . . | | | | 1
FIG. 3. E(C) of Eq. (9) for several lab kinetic energies as a
0 /6 /3 /2 2m/3 5m/6 s

function of center of momentum angles. The state is M| 1).
0

2306.03239 1703.02989




Consider the scattering of two qubits, Alice and Bob, in the low-energy:

* Only the s-wave channel dominates.

* The S-matrix can be decomposed into 1S, and 3S; channels = there
are two phase shifts: 6, and 6, , respectively.

 Rotational invariance and Unitarity then uniquely fix the S-matrix:

G — 2ib0 1=0w0) | 2i6, (3+0-0)

t4 i
Spin-projector Spin-projector
into 1S, channel into 35, channel

Low, Mehen: 2104.10835




In terms of quantum logic gates,

(62'&51 i 627160) 1+ 1 (822'51 . 621150) SWAP,

S = 5

DN | —

Low, Mehen: 2104.10835



This is precisely the observation of the Seattle group:

Le=—1Cs(N'N)? — 1Cp(NT3N)?

1S() . é() = (CS - 3CT)
351 . C_'l = (CS + CT)

£(8) = 5 sin’ (2061~ &)

Conformal fixed points
(zero or infinite scattering

1o lengths, 8i = o, 1/2)

SU(4)wigner symmetry line
(60 - 61)

0.0 0.2 0.4 0.6

Co/C.

e DB Kaplan ACP: “ln Pursuit of New...Paradigms” 3/30/19

&

Slide by D.B. Kaplan







We will consider the spin-1/2 octet baryons:

2-to-2 scattering contains 64 channels, but group theory says:

8R8=27T08sP1P10D 103D 84
\ ' ] |\ ' J

Anti-Symmetric
in flavors in flavors




We will focus on the spin-1/2 octet baryons:

2-to-2 scattering contains 64 channels, but group theory says:

8R8=27T08sP1P10D 103D 84
\ ' ] | ' ]

Anti-Symmetric
Pauli Exclusion in flavors in flavors
Principle!

¥ ¥

Anti-Symmetric

Symmetric in
spins (35,)!

in spins (1S,)!



Recall strong interaction preserves charge (Q) and strangeness (S)

— Classify the scattering channel into sectors with definitive (Q, S).

Q S Q S Q S
nn 0 0 XX | =2 | =2 ) —2 -3
np 1 0 YA »-=0
pp 2 0 %0 | -1 | =2 =30 | -1 | -3
ny- -1 -1 n=" = A
nA YT =Xt
n30 0 ~1 »0370 =0A 0 -3
o AX0 =00
pA AA 0 | —2 =%t 1 | =3
pX° 1 | -1 n=° EE | -2 | —4
nyt pE~ ==Y -1 —4
Pt 2 | -1 SFA =0=0 | 0 | —4
»+30 1 —2
pZE’
Yyt 2 —2

The S-matrix is block-diagonal among different (Q,S) sectors.

Liu, Low, Mehen: 2210.12085



Recall strong interaction preserves charge (Q) and strangeness (S)

— Classify the scattering channel into sectors with definitive (Q, S).

Q| S Q [ S Q [ S
1-d sector an | 0 | 0 Sy | —2 | =2 Y= | —2 | -3 <4=mm
) P 1 0 YA y—=0
op 2 0 20 | -1 | =2 =30 | -1 | -3
) nX- -1 | -1 n=" =E7A
nA Do ==+
ny? 0 | —1 »0%0 =Z0A 0 | -3
Y- AX =030
pA AA 0 | —2 205t |1 | -3 <4umm
pX° 1 | -1 n=° EE | -2 | —4
n3t pE" E20 | -1 | -4 <
) Pyt 2 | -1 SFA =0=0 | 0 | —4
Y0 | 1 | =2
pZE’
STt 2 [ =2

The S-matrix is block-diagonal among different (Q,S) sectors.

Liu, Low, Mehen: 2210.12085



Recall strong interaction preserves charge (Q) and strangeness (S)

— Classify the scattering channel into sectors with definitive (Q, S).

3-d sector

|

Q[ S Q[ S Q[ S

nn 0 0 XX —2 —2 Y =" —2 -3
np 1 0 YA »-=0 ]
pp 2 0 {220 -1 | =2 =30 | -1 | -3
ne- | -1 | -1 | nE- =-A I
nA yTE- =2t =
nX0 0 | —1 »0%0 =ZOA 0o | -3 L
Y- AX? =Z0y0
pA AA 0 | -2 =7 S N R
pX° 1 | -1 n=° EE | -2 | —4
nxt pE~ =20 [ -1 | —4
pt 2 | -1 XA =020 [0 | —4

Y0 |1 | =2

{ pE’
STt 2 | =2

The S-matrix is block-diagonal among different (Q,S) sectors.

Liu, Low, Mehen: 2210.12085



Recall strong interaction preserves charge (Q) and strangeness (S)

— Classify the scattering channel into sectors with definitive (Q, S).

Q| S Q [ S Q[ S
6-d sector an | 0 | 0 sy | —2 | =2y = | -2 | -3
np 1 0 YA »-=0
op 2 0 580 | -1 | =2 =30 | -1 | -3
ny— -1 —1 n=" ="A
nA — - =+
n30 0 —1 »0%0 =0A 0 -3
o AX =030
—
pA AA 0 | —2 =5t [ 1 | =3
pX° 1 | -1 n=° EE | -2 | —4
nut — pE~ =20 | -1 | —4
Pt 2 | -1 YA =020 | 0 | —4
SEY0 | 1 | =2
pE’
SR 2 [ =2

The S-matrix is block-diagonal among different (Q,S) sectors.

Liu, Low, Mehen: 2210.12085



A summary table on possible emerging symmetries:

Flavor Subspace

Symmetry of Lagrangian

np

YTET SU(6) spin-flavor symmetry

y+=0 or conformal symmetry in 27 and 10 irrep channels
ny-

pXTt conjugate of SU(6) spin-flavor symmetry

—=—=0
e

or conformal symmetry in 27 and 10 irrep channels

(pA, pX°, nXT)
(nA, nX°, p¥~)
(2-A, %0, nE")
(ZFA, +E0, p=9)
(220, =-x0, =-x9)
(E-+,Z0A, 20%9)

SO(8) flavor symmetry -
or conformal symmetry in 27, 85, 8 4, 10 and 10
irrep channels

(ZT=-, 2050, AX0, = p, =0, AA)

SU(16) symmetry
or SU(8) and conformal symmetry

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.




A summary table on possible emerging symmetries:

Flavor Subspace

Symmetry of Lagrangian

np

YTET SU(6) spin-flavor symmetry

y+=0 or conformal symmetry in 27 and 10 irrep channels
ny-

pXTt conjugate of SU(6) spin-flavor symmetry

—=—=0
e

or conformal symmetry in 27 and 10 irrep channels

(pA, pX°, nXT)
(nA, nX°, p¥~)
(2-A, 2750, n=")
(ZFA, +E0, p=9)
(220, =-x0, =-x9)
(E-+,Z0A, 20%9)

SO(8) flavor symmetry -
or conformal symmetry in 27, 85, 8 4, 10 and 10
irrep channels

(ZT=-, 2050, AX0, = p, =0, AA)

SU(16) symmetry
or SU(8) and conformal symmetry

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.

What does the data say?
Let’s look at hyperon-nucleon interactions!



Understanding YN interactions has broad implications:

* Understand hypernuclear structures and hyperon matters

* NN and YN interactions together give a unified understanding of baryon-
baryon interactions.

* The formation of heavy neutron star is not supported by current
theory/modeling of the core = The hyperon puzzle



* [t turns out there are global fits of scattering phases using YN data,
based on the meson-exchange potential models and xEFT.

* E40 collaboration at J-PARC also fitted the scattering phases in
(Sigma+, p) scattering:

A arXiv: 2203.08393 5oc0
T sof = A 8150 g 30f _ = A >0
7Y C —+ B 35<0 o - —4— B &5 <0
S 60F B &0 S 20 B &5>0
5 C -o-C 83s‘<0 = o -o-C 5as‘<0
oom 40:_ o C Sas‘>0 o 10 C o C 5:s‘>0
20F ----ESC16 - ----ESC16
- — NSC97f - — NSCo7f
0:.,,,'. - fss2 0 e fss2
- e, C %
-20 :_ .................... — r
- el %Eﬂfﬁf‘ -10 —
-40= e T e C
-0 e 20
80 -
111 1 I 1111 | 1111 l 1111 I 11 11 | 1111 | 1111 l 1111 I 1 111 | 1111 _30 1111 I 1111 l 1111 I 1111 I 1111 l 1111 I 1111 I 1111 l 1111 I 1111
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
>* momentum [GeV/c] >* momentum [GeV/c]
(a) 53 Sl (b) 61 P

Fig. 28. Obtained phase shifts ds5, and 81 p as a function of the incident momentum. The black dashed,
green solid, and blue dotted lines represent the calculated phase shifts of ESC16 [16], NSC97f [8], and
fss2 [6], respectively.



* [t turns out there are global fits of scattering phases using YN data,
based on the meson-exchange potential models and xEFT.

* E40 collaboration at J-PARC also fitted the scattering phases in
(Sigma+, p) scattering:

" arXiv: 2203.08393 5
§ 80:_ § : ) o A&s‘>0
20 C s : —+— B 85 <0
S 60 S 200 B 550
7 C = C +C5cs‘<0
& A0 < 10 - C 350
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s - — NSC97f
O oF .- fss2
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Fig. 28. Obtained phase shifts s,
green solid, and blue dotted lines r
fss2 [6], respectively.

81p, as a function of the incident momentum. The black dashed,
sent the calculated phase shifts of ESC16 [16], NSC97f [8], and

Data do not yet have the discriminating power to
break the sign degeneracy in 3S1 channel!
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. Q -1 0 1 2
We considered the S=-1 Flavor > n|An,>n,% p|Ap, 200, 5 n | 2T p
: Total 2137 An : 2055 Ap: 2054 |2128
hyperons: Mass (MeV) $0n:2132 | £n:2129
Y p:2136 | X% :2131

Entanglement power in /Ap scattering We stay below the pion production
¥ j Threshold:
045t% i 0 st NEo
' i+ ; K o _ NSC97 ] Pion production process | pcnm (MeV/c) | pias (MeV/c)
= | An — Apr— 382.8 893.9
= ESC16 _ Stp o St 390.3 943.4
DO_ L EE .......... np
= 0.10-52 1
£ |i
% Recall (Lambda, p) and
5 R (Lambda, n) are related
+< 0050 : : o :
5 HE by isospin invariance.
They share similar features.
S
0.001«%

Q. Liu and IL: 2312.02289




One outlier is (Sigma+, p) channel, where differing global fits give
different results:

Entanglement power in Z'p scattering
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One outlier is (Sigma+, p) channel, where differing global fits give
different results:

Entanglement power in Z'p scattering
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One outlier is (Sigma+, p) channel, where differing global fits give
different results:

Entanglement power in 'p scattering

0'15_"53 NO entanglement
= suppression
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For (Lambda+, p), we proposed a “qguantum observable” which could
break the degeneracy among different global fits:

polarization
polarization

Pcm (MeVic)

FIG. 4. Predicted polarizations of the recoiling X+ (recoil)
and the recoiling p (target) in X1 p scattering, assuming an
unpolarized proton target and a 25% polarized hyperon beam.

Q. Liu and IL: 2312.02289



Very recently there’s a study on entanglement suppression in the

scattering of charmed mesons and the associated exotic mesons X(3872)
and T..(3875)":

* X(3872) can be described as a shallow bound state (hadronic molecule)
of D and Dbar* mesons.

Myx — Mpo — Mp. = 0.007092 MeV

* T.(3875)*is conjectured to be a bound state of D*D mesons.

M+ — Mp«+ — Mpo = (—0.36 = 0.04) MeV

ccC

 Entanglement suppression predicts the existence of a new symmetry —
the light-quark spin symmetry.

This symmetry predicts 5 and 1 isoscalar partners of X(3872) and
T..(3875)%, respectively. (HQSS predicts 3 and 1 partners.)

Hu, Chen, Guo: 2404.05958



TABLE II. Partners of the X (3872) predicted by HQSS or the two solutions of entanglement
suppression given in Egs. (53) and (54). The symbol “®” denotes the input X (3872), “®” represents
its predicted partners, “©” indicates no near-threshold state is allowed, and “—” signifies that no
prediction can be made without further inputs. Moreover, “®” means that the corresponding meson

pair needs to be mixed with another one to get a spin partner of X (3872), see Egs. (57) and (58).

HQSS Eq. (53) predictions Eq. (54) predictions
Channel
I=0 I=1 I=0 I=1 I=0 I=1
DD(0*) &® — ® @ ® ®
DD*(1*7) O - © @ © ®
DD*(1*7) @ —~ ® % ® ®
D*D* (0++) D — R @ & X
D*D*(1*7) D — ® @ & X
D*D*(2*7) ® - ® %) ® ®

Predictions of entanglement suppression!

Hu, Chen, Guo: 2404.05958



Next we will consider a very different physical system...

The Great Success of the Higgs Boson!

Mass m = 125.09 &+ 0.24 GeV
Full width T < 1.7 GeV, CL = 95%

HO Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States = 1.10 & 0.11
w1
= 1297073
vy = 1.16 + 0.18
bb=082+030 (S=1.1)
ptp~ < 7.0, CL = 95%
rtr— =1.12 £ 0.23
Zy < 9.5, CL =95%
ttHO Production = 2.3f8:g




The LHC data favors a SM-like Higgs boson

CMS 138 fb™! (13 TeV)
T
E>|F3 1 F m,=125.38 GeV wZ e
A TL AS R u n 2 I Data (Total uncertainty) B2 Syst. uncertainty B sM prediction E [ Pgy=375% o’ 1
5 0 5 10
T T

I I I I | | I I | I I I LI = 10-1,
tH e © ]
Lm n%* HB— gl |

ttH HeH v b . '
102F :’ ) E

ggF+be ‘ 3 “..'.' Leptons and neutrinos Quarks E
I, ? L - niin

t+ -
: ."' ’ Force camiers Higgs boson E

WH e e e ‘ ]
i H&— O

ZH ¢ —&Z— H8H 0%, il R B
1 1 L1 1 ] | [ 1 1 1 L1 S 140+ T ——TTTTTT — —

0o 1 2 1 2 3 4 0o 1 2 1 2 3 0 1 2 0123 4 % 1.2F 108k 3

bb ww TT V4 YY uu p= K1 ] }} .................... 100-“*—

o x B normalized to SM prediction 3 g:g:'“, T s R

107" 1 10 102

Particle mass (GeV)
Nature 607, no. 7917, 52-59; 60-68 (2022) [arXiv:2207.00092]; [arXiv:2207.00043]



The SM does not explain the origins of electroweak symmetry
breaking

We put by hand the condition for EWSB Al ek

« The SM does not explain how the Higgs mass parameter and self-coupling are
determined

« Furthermore, once you include the effects of the Higgs coupling to fermions
(especially to the top quark), the Higgs potential shows an instability

200 J Instability
Energy m Higgs potential /,/@/
3 150 [ g
= RC2
(,/ L L . Higgs field strength é 100 1 . waﬂity
2 4 6 10 12
: are A \ é- il
b
\ Catastrophic “runaway”
instability {_’/
0 b= 1 S—— ;

0 50 100 150 200

What is behind the EWSB mechanism? Higgs mass M, in GeV



A prototype of models for electroweak symmetry breaking is the two-
Higgs-doublet model:

YV =m?,81®; + m2, 8, — [m2,8®, + h.c)]
+20 (@101)% + LAa(@]82)2 + As(@]01) (2]®2) + Aa(®]@,) (@] 1)
+ {%A5(<I>{<I>2)2 + [e(B]01) + A (D58,)] @10, + h.c.} .
After minimization of the potential: (®;) = v;/v2,  with v2 =02+ 02 = 246 GeV?

tan 8 = vy /11 0<B<7/2, cg = cos B =v1/v sg = sin ff = vy /v.

We will study qguantum entanglement in the “flavor space” in 2-to-2

scattering:
o of oa LI L2 a7
+ 0 + &0 . Pu
I A B
LY, 8y @Y oy ®a & o
(a) (b) © @



* Demanding the flavor entanglement is minimized, the scalar potential
must have the following form:

7
V =Y(H{H, + H H,) + E(HIHl + HH,)?

VA 2
=2 (Y B P+etG+HYH - =

. 2
1=1,2

* This potential has a maximal SO(8) symmetry, broken down to SO(7) by
the Higgs VEV.

* More importantly, a SM-like Higgs boson follows from this scalar
potential automatically!



Last but not least, there are efforts to explain the flavor pattern of the SM:

* Using a specific limit of tree-level 2-to-2 quark scattering mediated by
gauge bosons, requiring entanglement suppression recovers the
structure of the CKM matrix qualitatively.

* Applying the same logic to the lepton sector, the PMNS matrix is
recovered qualitatively.

1% 14
Ve PMNS Vl
p— . 2
H matrix
Ur V3

J. Thaler and S. Trifinopoulos, to appear
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Outlook

In pursuit of a new paradigm:

Can symmetry be the outgrowth of more

fundamental principles?

The answer appears to be a tantalizing YES!
With the benefit of hindsight:

Entanglement Predictive power Emergent
Suppression for the first time! Symmetry

Presence of
Order
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Outlook

Opens up a new venue to rethink quantum field theory. Some examples:

e Whatis the information-theoretic measure to quantify the amount of
symmetry,, eg SU(2) v.s. SU(3), in a physical system?

* What s the information-theoretic order-parameter for spontaneous
symmetry breaking?

* What s the information-theoretic criterion for other types of
symmetries, such as the conformal symmetry and gauge symmetry?

e The deuteron, as a near-threshold bound state, is often cited as the
prime example that Nature could be unnatural.

Can we understand (un)naturalness through the lens of quantum

information?

Understanding these issues might help us devise more efficient quantum
algorithms for simulating systems exhibiting a particular type of symmetry.
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An example of Wigner’s SU(4) in A=18 isobar § decays:

EMeV) JT| E(MeV) J"I EMeV) JT|

1.98 2,1 3.06 21 1.89 2,1

o \@Qﬁ«)&?
* ﬁj

B

< > =SU(4) multiplet



An example of Wigner’s SU(4) in A=18 isobar § decays:

EMeVv) J7| EMeV) JTI EMeV) J®I
SU(4) allowed matrix 1.98 21 3.06 2*1 1.89 2t1
elements are ~ 10 times
larger than SU(4) disallowed. SU(4) disallowed
+ + +
ety sty 2 pndy
(@) \ [3+ Ne
+ +

B /
F

< > =SU(4) multiplet

In the EFT language, Wigner’s SU(4) is accidental in that,

after imposing the SU(4) quark spin-flavor symmetry, the
only remaining operator has this symmetry.



To investigate what emerging symmetries appear, it’s most convenient to
use the EFT Lagrangian, where the symmetry is manifest:

Ly = f2 °L(B!B; B!B;) - f2
’r TR

These Wilson coefficients can be projected into SU(3)-symmetric Wilson
coefficients:

<EBEB) (FEBB) (EFBB)

f2
S (B!B,)(B!B),

72

_ _ Cor=c1—cy+c5—cs
Relation between scattering phase

and Wilson coefficient: Cg. = —gcl + 202 — §03 + §c4 + 5 — cg
S 3 3 6 6
1 1 8 8
4 Cr=—-za+ 50— 3+ ca+c5—cs
pCO’C(Sz':—(N-l—MC) 3 3 3 3
‘ Cm=c1+Cz+C5+C(5,
For natural scattering Cio=—¢1 —ca+ 5+ ¢
length, set u = 0. 3 3
: CgA=§c3+§c4—|—c5+c6~.

Wagman et. al.: 1706.06550



