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Neutron star physics

MNS ∼ 1 − 2M⊙
RNS ∼ 10−5R⊙

The neutron star equation of state remains unknown.
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Constraining the EOS

Pulsar Observations
NICER and XMM-Newton

PSR J0437−4715

arXiv:2407.06789v1

Gravitational Waves
LIGO-Virgo collaboration GW170817

Strong interactions theory

(X-ray observatories)

Combine these data to 

learn about NS physics 
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Generative machine learning models in NS physics

• Conditional variational autoencoders (cVAE): deep conditional generative 
model for structured output variables using Gaussian latent variables

- Fast prediction using stochastic feed-forward inference 
(efficient and flexible approach to perform Bayesian inference)

• Normalizing flows (NF):  define complex distributions by transforming a simple 
probability density through a series of invertible mappings.

- Both sampling and density evaluation can be efficiently performed

P(EOS |d), d = [(M, R)1, . . . , (M, R)N]

P(d), d = [(M, R)1, . . . , (M, R)N]

Probability of  belonging to a continuous  solution d M(R)
(anomaly detection framework)

MF, Michał Bejger, 2403.14266 [nucl-th]

Valéria Carvalho, MF, et. al, PRD109 (2024) 103032
4



Parameter estimation using simulated-based inference

p(θ |d) ∝ p(d |θ) p(θ)

posterior likelihood prior

• Bayesian Inference:

• Markov Chain Monte Carlo is used to populate the posterior θ ∼ p(θ |d)

• Requires a huge number of likelihood evaluations

• Computationally expensive (namely, high-dimensional  ) θ

• Convergence issues 

• Simulated-based inference: no likelihood evaluation needed but just samples

di ∼ p(d |θi)

Learn the posterior  using the cVAE 

(Neural posterior estimation)

q(θ |d) ≈ p(θ |d)
(θi, di)
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Simulated inference  - dataset

p(d |θ) ∝ exp( − (dEOS(θ) − d)2/(2σ2))

• Dataset construction

Likelihood

θi ∼ p(θ) ∼ {Γ0, Γ1, n1, Γ2, n2, Γ3, n3, Γ4, n4} Sample from the prior

Piecewise polytropes:  p(n) = KinΓi

di = (Mi, Ri)

• Likelihood samples: uniformly select 5 points over the TOV(θi)

• Training dataset: {(θ1, d1), (θ2, d2), . . . , (θ5, d5)}

{(p1, d1), (p2, d2), . . . , (p5, d5)}

Mi ∼ 𝒩(MTOV(θi)
i , σM)

Ri ∼ 𝒩(RTOV(θi)
i , σR)
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Conditional Variational Autoencoders (cVAE) 
• Reconstruct the EOS given a set of noisy observations

Loss function:

x = [p, 𝒪] = [p1, p2, p3, . . . p20, M1, R1, M2, R2, . . . , M5, R5]

Reconstruction term Regularizer
Forces the encoder probability to be 


close to p0(z) = 𝒩(0,1)
Kullback-Leibler 


divergence

z = μz + σz ⊙ ϵ, ϵ = 𝒩(0,1)
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Training - cVAE
• During training a single sample from the latent space is used for each EOS

The encoder/decoder PDFs are Gaussian: 

The loss function has a closed form solution

[(p1, p2, p3, . . . p20), ((M1, R1), (M2, R2), . . . , (M5, R5))]
[(p1, p2, p3, . . . p20), ((M1, R1), (M2, R2), . . . , (M5, R5))]

Reconstruction of two EOS during training:
True EOS

Reconstruction EOS
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Generative block (cVAE) - Inference model

𝒪 = [(M1, R1), . . . , (M5, R5)]

Monte Carlo approximation 

with L=2000

95% Credible Interval (band)

• The generative block as an inference framework: P(EOS |Observation set)

• During inference phase, we must marginalize over the latent space
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cVAE reconstruction of a nuclear model
• Reconstruction of SLy4 model from a set of noisy observations (5 NS)

𝒪 = {(M1, R1), . . . . , (M5, R5)}, 𝒪 = . . . , 𝒪 = . . . .

• High density region is restricted by the presence of massive NS

• Low density region more constrained for  (presence of 5 light NS)

• Good reconstruction (within uncertainty bands)

𝒪
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Conclusions - cVAE
• New generative framework for the equation of state of NS


• Instantaneous inference for any observation set


• The posterior dimension could be easily increased


• The dimension of the conditional vector is flexible (tidal deformability)
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Normalizing flows
• Model  from multiple invertible and differentiable transformations         

of a simple base distribution 


• Capable of generating new samples  and density estimation 

px(x) fθk

pz(z)

x ∼ px(x) px(x)

Loss function: minimizing the negative log-likelihood of the data under the NF 
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Normalizing flows: detecting a phase transition
• Train on continuous  samples 


• Training set: 25287 hadronic models (RMF framework)


• Estimate the likelihood of a non-continuous solutions (two-branch solution)

M(R)

P(d) ≪ P(d)

• Test sets are parametrized by 

MC ΔR

• Low likelihood for any sample that 
deviates considerably from the train 
statistics
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Results: two-branch detection 

MC = 1.5M⊙
Threshold: False Positive Rate at 1%

• Detection rate for a two-branch solution is 100% for N=15 stars if ΔR ≥ 0.8 km
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Results: impact of noise level 

• TPR: lower for , increases with , decreases with noise levelMc = 1.5M⊙ N

• 100% TRP is reached for 15 neutron stars if

 (Set 1) and  (Set 2)ΔR > 0.6 km ΔR > 0.8 km15



• Two-branch solution from microscopic models (DD2+NJL) 

     [S. Benic, et. al., Astron. Astrophys. 577, A40 (2015)]

• Test set with 
(Mc, ΔR) = (1.91 M⊙, 0.77 km)

Test with a microscopic two-branch solution

• Our test sets give a lower bound on the model performance
16



Conclusions - NF
• NF are flexible models for density estimation (and sampling)


• Differentiate the NS composition from the  curve 


• Capable of detecting deviations (anomalies) from a continuous  curve


• For a given observation uncertainty , we can estimate the  below 

which the two-branch solution has a low detection probability

M(R)

M(R)

σR ΔR
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