Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model

B. Gao, M. Harada Arxive: <u>2410.16649</u>

B. Gao, Y. Yan, M. Harada *Phys.Rev.C* 109 (2024) 6, 065807

1. Introduction

2. Unified Equation of State & Analysis_{(Phys.Rev.C 109 (2024) 6, 065807)} Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet (Arxive: 2410.16649)

Introduction

QCD phase diagram

High temperature region

Lattice QCD;

Large Hadron Collider;

Color superconductivity

Heavy ion collision

 $\sim 5-10 n_0 \mu_B$

Difficulties in high dense matter

Lattice Monte-Carlo simulation Not possible(sign problem)

Cannot design laboratories, have to wait for signals (unlike heavy ion collision)

Fundamental questions in dense QCD

How does dense matter respond to compression, the EOS?

How hadronic matter dissolves into quark matter?

Correlation between EoS and M-R

Neutron Star	Mass (M _O)	Radius (km)	Source
J0740+6620	2.14 ± 0.10	12.35 ± 0.75	NICER
J0030+0451	1.44 ± 0.15	12.45 ± 0.65	NICER
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/Virgo

11 - 13km

Strange CCO HESS J1731-347

Nature Astronomy volume **6**, 1444–1451 (2022)

Neutron Star	Mass (M \odot)	Radius (km)	Sou
J0740 + 6620	2.14 ± 0.10	12.35 ± 0.75	NIC
J0030 + 0451	1.44 ± 0.15	12.45 ± 0.65	NIC
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/
	1	I	· ·

HESS J1731-347

A Strange light central compact object supernova remnant

16

Outline

2. Unified Equation of State & Analysis Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet

Unified Equation of State

An effective hadron model (Parity doublet model) ($n_B <= 2n_0$, blue curve)

Two baryons with positive and negative-parity are introduced. They have a degenerate chiral **invariant mass** when the chiral symmetry is restored.

Interpolated(red curve)

interpolate w/ polynomial: $P = \sum_{n=1}^{J} c_n \mu_B^n$

An effective quark model (Nambu–Jona-Lasinio(NJL)-type model) $(n_B > = 5n_0, \text{ green curve})$

Parity doublet model

PDM: chiral symmetric nucleon-meson effective model

$$\mathscr{L}_{\text{PDM}} = \mathscr{L}_{\text{Nucleon}}(\psi_1, \psi_2, \dots) + \mathscr{L}_{\text{Nucleon$$

ordinal dirac mass term:

 $m\bar{\psi}\psi = m(\bar{\psi}^L\psi^R + \bar{\psi}^R\psi^L)$ $\rightarrow m(\bar{\psi}^L L^{\dagger} R \psi^R + \bar{\psi}^R R^{\dagger} L \psi^L)$ chiral variant in PDM: $m_0(\bar{\psi}_1\gamma_5\psi_2 - \bar{\psi}_2\gamma_5\psi_1) = m_0(\bar{\psi}_1^L\psi_2^R + \bar{\psi}_1^R\psi_2^L + h.c.)$ $\rightarrow \quad m_0(\bar{\psi}_1^L \chi^\dagger \chi \psi_2^R + \bar{\psi}_1^R R^\dagger R \psi_2^L + h.c.)$

chiral invariant

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

 $\mathscr{L}_{\text{Meson}}(\sigma, \pi, \omega, \rho, \dots)$

vector mesons, with HLS

	$L \in SU(N_f)_L$ left-handed	$R \in SU(N_f)_R$ right-handed
nucleon ψ_1	$\psi_1^L \rightarrow L \psi_1^L$	$\psi_1^R \rightarrow \mathbf{R} \psi_1^R$
nucleon ψ_2	$\psi_2^L \rightarrow \mathbf{R} \psi_2^L$	$\psi_2^R \rightarrow L \psi_2^R$

Parity Doublet Model

mass formula of nucleons N(939) and N*(153

$$M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2} \mp g_- \sigma \xrightarrow{\sigma \to 0}$$

Two parameters mo, L (density dependence of the nuclear symmetry energy around the saturation density)

35)	Parameters in the model are determined by the saturation properties				
\mathcal{M}_{\circ}	$n_0 [{\rm fm}^{-3}]$	B_0 [MeV]	K_0 [MeV]	<i>S</i> ₀ [M	
<i>~~</i> 0	0.16	16	240	31	

NJL-type quark model

$$\mathscr{L} = \mathscr{L}_{\text{NJL}} - H(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + g_V(\bar{q} \gamma^0 q)^2 + \sum_i \mu_i Q_i$$

- U(1) axial anomaly $-K \det(\overline{\psi}\psi)$

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

(H,gV): not well-constrained before → survey wide range for given nuclear EOS + NS constraints

- Original NJL-type model(Hatsuda and Kunihiro) includes four point interaction $+G(\psi\psi)^2$

 $G\Lambda^2 = 1.835, \quad K\Lambda^5 = 9.29$ HK parameters: $\Lambda = 631.4 \mathrm{MeV}$

The hadronic matter EoS (From soft to stiff)

The hadronic matter EoS is crucial to determine the radius of a NS.

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

 $(m_0, L) \leftrightarrow (H,gV)$ constrain each other

Slope parameter L = 40 MeV

Causality + Mmax

Check for the ambiguity from the interpolation range:

At
$$M \sim 1 M_{\odot}$$

Radius only change around 0.3 km

At $M \sim 1.4 M_{\odot}$

Radius only change around 0.6 km

Our approach is robust!

15

Outline

2. Unified Equation of State & Analysis Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet

Chiral invariant mass in the constituent quark

mass of a nucleon mass of constituent quarks ~300 MeV ~1000 MeV

In constituent quark model, hadrons are composed of constituent quarks (quasi-particles)

Constituent quarks also retain a non-zero mass even if the chiral symmetry is restored

> Gluon condensates; topological structure?

Quarkyonic matter

At sufficiently high baryon chemical potential, the degrees of freedom inside the Fermi sea can be treated as quarks; Confining forces remain important only near the Fermi surface

Color-superconductivity

Quarkyonic matter (McLerran-Pisarski 07; Hidaka, Toru Kojo et)

Motivation: Investigate the impacts of the invariant mass in the constituent quark

Model construction

The thermodynamic potential in PDM with Nf = 2 is

$$\Omega_{\rm PDM} = V(\sigma) - V_0 - \frac{1}{2} m_{\omega}^2 \omega^2 - \frac{1}{2} m_{\rho}^2 \rho^2 - \lambda_{\omega\rho} (g_{\omega} \omega)^2 (g_{\rho} \rho)^2 + \Omega_F \Omega_F = -2 \sum_{i=+,-} \sum_{\alpha=p,n} \int^{k_f} \frac{d^3 \mathbf{p}}{(2\pi)^3} (\mu_{\alpha}^* - E_{\rm p}^i).$$

Parity of nucleons

Conventionally, new degrees of freedom enter when chemical potential surpasses their mass threshold

Quark state saturation shifts the onset of heavier degrees of freedom due to the Pauli blocking of quarks

Validity of quarkyonic picture:

$$\Lambda_{QCD} < \mu_q < \sqrt{N_c} \Lambda_{QCD}$$

$$\mu_B = 3\mu_q \approx 1558 \,\mathrm{MeV} \qquad \mathrm{No} \,\mathrm{N}(1535)$$

$$f_{\pi} = 92.4 \,\mathrm{MeV}$$
 $E_{p}^{i} = \sqrt{p^{2} + m_{i}^{2}}$

 $\bar{\mu}^2, \lambda_4, \lambda_6$ are parameters to be determined

 $V(\sigma) = -\frac{1}{2}\bar{\mu}^2\sigma^2 + \frac{1}{4}\lambda_4\sigma^4 - \frac{1}{6}\lambda_6\sigma^6 - m_\pi^2 f_\pi\sigma ,$

Model construction

Confining forces remain only near the Fermi surface and nucleons appear in the **momentum shell** defined as

$$\Delta = \frac{\Lambda_{\rm QCD}^3}{k_{FB}^2},$$

Since
$$P = -\Omega$$

$$\begin{split} P_{F} = & P_{H} + P_{Q}, \\ P_{H} = & 2 \sum_{\alpha = p, n} \int_{N_{c}k_{FQ}}^{k_{FB}} \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \left(\mu_{\alpha}^{*} - E_{\mathbf{p}}^{i}\right), \\ P_{Q} = & 4 N_{c} \int_{0}^{k_{FQ}} \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} (\mu_{q}^{*} - E_{\mathbf{q}}), \end{split}$$
 with

$$k_{FQ} = \frac{k_{FB} - \Delta}{N_c} \Theta(k_{FB} - \Delta),$$
$$E_{\mathbf{q}} = \sqrt{\mathbf{q}^2 + M_Q^2}.$$

Constituent quark mass

The quarkyonic phase is signaled by the non-zero quark Fermi momentum

Model construction

From the thermodynamic relation: $n_B = \partial P / \partial \mu_B$

Baryon
number density
$$n_B = \frac{1}{3\pi^2} \sum \left[k_{FB}^3 - (N_c k_{FQ})^3\right]$$

Quarkyonic phase

$$k_{\rm FQ} = rac{(k_{\rm FB} - \Delta)}{N_c} \Theta(k_{\rm FB} - \Delta)$$
. The contribution nucleons is since the second statement of the second

For simplicity, in this work we consider the **symmetric matter**

$$M_Q=rac{m_+}{3},$$
 As a first step, we define $m_\pm=\sqrt{m_0^2+}$

Parameters in the model are determined by the saturation properties

$q_1 - q_2$	$n_0 [{\rm fm}^{-3}]$	B_0 [MeV]	K_0 [MeV]	S
$\mp \frac{\sigma_1 \sigma_2}{2} \sigma.$	0.16	16	240	

 $g_1 + g_2$

2

nucleons is suppressed

The contribution from the quarks relative to

For larger values of m0, the quarkyonic matter appears at lower µB

Stiffening of the EOS after entering the quarkyonic phase

$$4N_c \int_0^{k_{FQ}} \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} (\mu_q^* - E_\mathbf{q})$$

= $4N_c^4 \int_0^{N_c k_{FQ}} \frac{\mathrm{d}^3 \mathbf{q}'}{(2\pi)^3} \left(\mu_q^* - N_c \sqrt{(q')^2 + (\frac{M_Q}{N_c})^2}\right)$

Enhanced by a factor of approximately Nc^3

Rapid increase of the pressure

dP de c_s^2

Non-monotonic behavior of sound velocity

Invariant mass in the constituent quark

To examine the impact of including an invariant mass component in the constituent quark

$$M_Q=m_+/w(\sigma), \ w(\sigma)=w_0-(w_0-3)rac{\sigma}{f_\pi}.$$
 $^{\omega_0}$ is a cons

$$M_Q = m_+ / \omega_0$$

stant parameter

Invariant mass in the constituent quark

Smaller invariant mass component in the constituent quark leads to larger values in the sound velocity

Yukawa interaction of σ to the constituent quark becomes weaker!

The reduced interaction strength manifests as a smaller maximum value in the sound velocity.

Summary & Future

- the unified EoS.
- the quarkyonic matter framework with the PDM
- smooth transition between hadronic and quark degrees of freedom

Non-monotonic behavior in the sound velocity

Future work:

Extend the model to neutron star matter; Compare with the recent neutron star observations

• We use the parity double model together with the NJL-type quark model to construct

• We successfully reconcile with the multi-messenger constraints at the same time

We have presented a novel approach to describe dense nuclear matter by integrating

• We introduced chiral invariant mass for both baryons and quarks, allowing for a

Thank you for your attention!