Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model

B. Gao, M. Harada Arxive: [2410.16649](https://arxiv.org/abs/2410.16649)

B. Gao, Y. Yan, M. Harada *Phys.Rev.C* 109 (2024) 6, 065807

Outline

1. Introduction

2. Unified Equation of State & Analysis(*Phys.Rev.C* ¹⁰⁹ (2024) 6, 065807) Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet(Arxive: [2410.16649\)](https://arxiv.org/abs/2410.16649)

Introduction

QCD phase diagram

High temperature region

Lattice QCD;

Large Hadron Collider;

superconductivity

Heavy ion collision

4

Difficulties in high dense matter

Lattice Monte-Carlo simulation Not possible(sign problem)

Cannot design laboratories, have to wait for signals (unlike heavy ion collision)

……

Fundamental questions in dense QCD

How does dense matter respond to compression, the EOS?

How hadronic matter dissolves into quark matter?

…..

Correlation between EoS and M-R

 $11 - 13km$

Strange CCO HESS J1731-347

Nature Astronomy volume **6**, 1444–1451 (2022)

HESS J1731-347

A Strange light central compact object supernova remnant

16

Outline

2. Unified Equation of State & Analysis Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet

Unified Equation of State

An effective hadron model (Parity doublet model) (nB <= 2no, blue curve)

 \rightarrow removes unphysical curves

Two baryons with positive and negative-parity are introduced. They have a **degenerate chiral invariant mass** when the chiral symmetry is restored.

interpolate w/ polynomial: *P* = 5 ∑ *n*=0 $c_n \mu_B^n$

Interpolated(red curve)

An effective quark model (Nambu–Jona-Lasinio(NJL)-type model) (nB>=5n0, green curve)

ε

Parity doublet model

DeTar, Kunihiro, 1989; Jido, Oka, Hosaka, 2001

 $\mathscr{L}_{\text{Meson}}(\sigma, \pi, \omega, \rho, \dots)$

 $m\bar{\psi}\psi = m(\bar{\psi}^L\psi^R + \bar{\psi}^R\psi^L)$ \rightarrow $m(\bar{\psi}^L L^{\dagger} R \psi^R + \bar{\psi}^R R^{\dagger} L \psi^L)$ chiral variant in PDM:

 $m_0(\bar{\psi}_1 \gamma_5 \psi_2 - \bar{\psi}_2 \gamma_5 \psi_1) = m_0(\bar{\psi}_1^L \psi_2^R + \bar{\psi}_1^R \psi_2^L + \text{h.c.})$ \rightarrow $m_0(\bar{\psi}_1^L \bar{\chi}_1^T \bar{\chi}_2^R + \bar{\psi}_1^R \bar{\chi}_1^T \bar{\chi}_2^R)$ $\frac{L}{2} + h.c.$

ordinal dirac mass term:

chiral invariant

vector mesons, with HLS

PDM: chiral symmetric nucleon-meson effective model

$$
\mathscr{L}_{\rm PDM} = \mathscr{L}_{\rm Nucleon}(\psi_1, \psi_2, \dots) + \mathscr{L}_{\rm Nucleon}(\psi_1, \psi_2, \dots)
$$

Parity Doublet Model

mass formula of nucleons $N(939)$ and $N^*(153)$

$$
M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2 \mp g_- \sigma} \stackrel{\sigma \to 0}{\rightarrow} m_0
$$

Two parameters m0 , *L (*density dependence of the nuclear symmetry energy around the saturation density)

NJL-type quark model

$$
\mathcal{L} = \mathcal{L}_{\text{NJL}} - H(q^T \Gamma_A q) (\bar{q} \Gamma^A \bar{q}^T) + g_V (\bar{q} \gamma^0 q)^2 + \sum_i \mu_i Q_i
$$

-
- U(1) axial anomaly $-K \text{det}(\bar{\psi}\psi)$

(H,gV): not well-constrained before \rightarrow survey wide range for given nuclear EOS + NS constraints

• Original NJL-type model(Hatsuda and Kunihiro) includes four point interaction $-G(\psi\psi)^2$

 $G\Lambda^2 = 1.835, \quad K\Lambda^5 = 9.29$ HK parameters: $\Lambda = 631.4 \text{MeV}$

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

The hadronic matter EoS is crucial to determine the radius of a NS.

(From soft to stiff)

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

> $(m_0, L) \longleftrightarrow (H, gV)$ Causality + Mmax constrain each other

Slope parameter *L* =40 MeV

Results

Check for the ambiguity from the interpolation range:

At
$$
M \sim 1M_{\odot}
$$

Radius only change around 0.3 km

At $M \sim 1.4 M_{\odot}$

Radius only change around 0.6 km

Our approach is robust!

15

Outline

2. Unified Equation of State & Analysis Parity doublet model NJL-type quark model

3. Quarkyonic matter with parity doublet

Chiral invariant mass in the constituent quark

mass of a nucleon ~1000 MeV mass of constituent quarks ~300 MeV

In constituent quark model, hadrons are composed of constituent quarks (quasi-particles)

Gluon condensates; topological structure?

Quarkyonic matter

Color-superconductivity

At sufficiently high baryon chemical potential, **the degrees of freedom inside the Fermi sea can be treated as quarks; Confining forces remain important only near the Fermi surface**

Motivation: Investigate the impacts of the invariant mass in the constituent quark

Quarkyonic matter (McLerran-Pisarski 07; Hidaka, Toru Kojo et)

Model construction

The thermodynamic potential in PDM with $Nf = 2$ is

$$
\begin{aligned} \Omega_{\rm PDM}=&V(\sigma)-V_0-\frac{1}{2}m_\omega^2\omega^2\\&-\frac{1}{2}m_\rho^2\rho^2-\lambda_{\omega\rho}\left(g_\omega\omega\right)^2\left(g_\rho\rho\right)^2+\Omega_F\\ \Omega_F=&-2\sum_{i=+,-}\sum_{\alpha=p,n}\int^{k_f}\frac{\mathrm{d}^3\mathbf{p}}{(2\pi)^3}\left(\mu^*_\alpha-E^i_\mathrm{p}\right). \end{aligned}
$$

With

 $\bar\mu^2$, λ_4 , λ_6 are parameters to be determined

Parity of nucleons

$$
f_{\pi} = 92.4 \text{ MeV}
$$
 $E_p^i = \sqrt{p^2 + m_i^2}$

Conventionally, new degrees of freedom enter when chemical potential surpasses their mass threshold

Quark state saturation shifts the onset of heavier degrees of freedom due to the Pauli blocking of quarks

Validity of quarkyonic picture: $\Lambda_{QCD} < \mu_q < \sqrt{N_c \Lambda_{QCD}}$

$$
\Lambda_{QCD} < \mu_q < \sqrt{N_c}
$$

$$
\mu_B = 3\mu_q \approx 1558 \text{ MeV}
$$
 No N(1535)!!

Model construction

Confining forces remain only near the Fermi surface and nucleons appear in the **momentum shell** defined as

$$
\Delta = \frac{\Lambda_{\rm QCD}^3}{k_{FB}^2},
$$

Since $P = -\Omega$

$$
P_F = P_H + P_Q,
$$

\n
$$
P_H = 2 \sum_{\alpha = p,n} \int_{N_c k_{FQ}}^{k_{FB}} \frac{d^3 \mathbf{p}}{(2\pi)^3} \left(\mu_{\alpha}^* - E_{\mathbf{p}}^i\right),
$$

\n
$$
P_Q = 4N_c \int_0^{k_{FQ}} \frac{d^3 \mathbf{q}}{(2\pi)^3} (\mu_q^* - E_{\mathbf{q}}),
$$

$$
k_{FQ} = \frac{k_{FB} - \Delta}{N_c} \Theta(k_{FB} - \Delta),
$$

$$
E_{\mathbf{q}} = \sqrt{\mathbf{q}^2 + M_Q^2}.
$$

Constituent quark mass

the non-zero quark Fermi momentum

Model construction

From the thermodynamic relation: $n_B = \partial P/\partial \mu_B$

 ${g_1+g_2}$

 $\overline{2}$

Bayon number density

\n
$$
n = \frac{1}{3\pi^2} \sum \left[k_{FB}^3 - (N_c k_{FQ})^3 \right] + \frac{2k_{FQ}^3}{3\pi^2}.
$$
\nAnswer

\n2. $n_B =$

\n4. $n_B =$

\n4. $n_B =$

\n5. $n_B =$

\n6. $n_B =$

\n7. $n_B =$

\n8. $n_B =$

\n9. $n_B =$

\n10. $n_B =$

\n11. $n_B =$

\n12. $n_B =$

\n13. $n_B =$

\n14. $n_B =$

\n15. $n_B =$

\n16. $n_B =$

\n17. $n_B =$

\n18. $n_B =$

\n19. $n_B =$

\n10. $n_B =$

\n11. $n_B =$

\n12. $n_B =$

\n13. $n_B =$

\n14. $n_B =$

\n15. $n_B =$

\n16. $n_B =$

\n17. $n_B =$

\n18. $n_B =$

\n19. $n_B =$

\n10. $n_B =$

\n11. $n_B =$

\n12. $n_B =$

\n13. $n_B =$

\n14. $n_B =$

\n15. $n_B =$

\n16. $n_B =$

\n17. $n_B =$

\n18. $n_B =$

\n19. $n_B =$

\n10. $n_B =$

\n11. $n_B =$

\n12. $n_B =$

\n13. $n_B =$

\n14. $n_B =$

\n

$$
k_{\rm FQ} = \frac{(k_{\rm FB} - \Delta)}{N_c} \Theta(k_{\rm FB} - \Delta).
$$
 The contributions is s

For simplicity, in this work we consider the **symmetric matter**

$$
M_Q = \frac{m_+}{3},
$$

As a first step, we define

$$
m_{\pm} = \sqrt{m_0^2 + m_1^2}
$$

Parameters in the model are determined by the saturation properties

The contribution from the quarks relative to nucleons is suppressed

For larger values of m0, the quarkyonic matter appears at lower μB

Stiffening of the EOS after entering the quarkyonic phase

$$
4N_c \int_0^{k_{FQ}} \frac{d^3 \mathbf{q}}{(2\pi)^3} (\mu_q^* - E_{\mathbf{q}})
$$

= $4N_c^4 \int_0^{N_c k_{FQ}} \frac{d^3 \mathbf{q}'}{(2\pi)^3} \left(\mu_q^* - N_c \sqrt{(q')^2 + (\frac{M_Q}{N_c})^2} \right)$

 c_s^2 = *dP dε*

Enhanced by a factor of approximately Nc^3

Rapid increase of the pressure

Non-monotonic behavior of sound velocity

Invariant mass in the constituent quark

To examine the impact of including an invariant mass component in the constituent quark

$$
M_Q=m_+/w(\sigma),\\ w(\sigma)=w_0-(w_0-3)\frac{\sigma}{f_\pi}.
$$

ustant parameter

Invariant mass in the constituent quark

Smaller invariant mass component in the constituent quark leads to **larger values in the sound velocity**

Yukawa interaction of σ to the constituent quark becomes weaker!

The reduced interaction strength manifests as a smaller maximum value in the sound velocity.

Summary & Future

• We introduced **chiral invariant mass for both baryons and quarks**, allowing for a

Non-monotonic behavior in the sound velocity

Future work:

Extend the model to neutron star matter; Compare with the recent neutron star observations

• We use the parity double model together with the NJL-type quark model to construct

- the unified EoS.
-
- the quarkyonic matter framework with the PDM
- smooth transition between hadronic and quark degrees of freedom

• We successfully reconcile with the multi-messenger constraints at the same time

• We have presented a novel approach to describe dense nuclear matter by integrating

Thank you for your attention!