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Introduction
n Exploring the QCD Phase diagram

Akihiko Monnai (OIT), HHIQCD 2024, 7th November 2024

QCD has a rich phase structure depending on 
the temperature and chemical potentials

Hadronic phase

Quark-gluon plasma 
(QGP) phase

(Color superconductor)

(Critical point)
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Introduction
n How to make the quark-gluon plasma (QGP)

BNL RelaDvisDc Heavy Ion Collider (RHIC) 
CERN Large Hadron Collider (LHC)
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The QGP can be created in nuclear collisions at relativistic energies 

nucleons

QGP
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Introduction
n A more precise view of nuclear collisions

BNL RelaDvisDc Heavy Ion Collider (RHIC) 
CERN Large Hadron Collider (LHC)
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protons

QGP

neutrons

Protons and neutrons should be distinguished for precision analyses
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Nuclear collisions
n Conserved charges

The QGP in nuclear collisions are made of light quarks (u, d, s) (𝑇 ~ 200MeV)

Baryon (B) Strangeness (S)Electric charge (Q) are conserved

𝜇!

𝑇

𝜇", 𝜇#

The QCD phase diagram has to be 
extended to 4 dimensions

𝑇: Temeperature
𝜇!: Baryon chemical potential
𝜇": Charge chemical potential
𝜇#: Strangeness chemical potential
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Nuclear collisions
n Relativistic hydrodynamic model

Initial 
condition

Hydro 
evolution

Hadronic 
transport

Observa-
bles

Equation 
of state

We construct a 4-dimensional QCD equation of state at finite chemical 
potentials for nuclear collisions

*A relaAon among state variables 
such as pressure, temperature, etc.
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NEOS-4D
n A lattice QCD-based equation of state model 
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- It has B, Q, S charges without constraints, 
i.e., it is fully 4-dimensional

- Applicable to systems with various nuclei  
and with fluctuations and diffusion

- GeneralizaAon of NEOS BQS, that is tuned 
to                                     for heavy nuclei 
(197Au, 208Pb, etc.)
𝑛" = 0.4 𝑛!, 𝑛# = 0

AM, B. Schenke, C. Shen, Phys. Rev. C 100, 024907 (2019)
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Construction
n QGP phase: Taylor expansion method of lattice QCD

𝑃$%&
𝑇'

=
𝑃(
𝑇'

+ ,
),+,,

𝜒).+.,
!,",#

𝑙!𝑚! 𝑛!
𝜇!
𝑇

) 𝜇"
𝑇

+ 𝜇#
𝑇

, HotQCD Collaboration, PRD 86, 034509 (2012); 
PRD 90, 094503 (2014); PRD 92, 074043 (2015); 
PRD 95, 054504 (2017)

- SuscepAbiliAes up to the 4th order from laIce QCD
- 𝜒.!, 𝜒/,0

!,", 𝜒/,0
!,# parametrized as required by thermodynamic conditions

𝑇

𝜇!,#,$

Calculable
𝑃!, 𝜒".$.%

&,(,) Pro: Ab initio calculation 

Con: not reliable when 
$
%

is too large
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Construction
n Hadronic phase: Hadron resonance gas model

- Hadrons and resonances with u, d, s components with the mass below 
2 GeV are used

𝑃1%2 = ±𝑇,
3

𝑔3𝑑4𝑝
2𝜋 4 ln[1 ± 𝑒

5 6!57! /9] Particle Data Group: PRD 98, 030001 (2018) 

Pro: Consistent with lattice QCD
Con: Describes only the hadronic phase
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Construction
n The crossover-type EoS is obtained by smoothly connect the two EoS
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𝑃 =
1
2
1 − tanh

𝑇 − 𝑇:
∆𝑇:

𝑃1%2 +
1
2
1 + tanh

𝑇 − 𝑇:
∆𝑇:

𝑃$%&

𝑃$%&
𝑇'

=
𝑃(
𝑇'

+ ,
),+,,

𝜒).+.,
!,",#

𝑙!𝑚! 𝑛!
𝜇!
𝑇

) 𝜇"
𝑇

+ 𝜇#
𝑇

,

LaQce QCD with Taylor expansion 

𝑃1%2 = ±𝑇,
3

𝑔3𝑑4𝑝
2𝜋 4 ln[1 ± 𝑒

5 6!57! /9]

Hadron resonance gas model

𝑇'(𝜇!) = 0.16 − 0.4 0.139𝜇!( + 0.053𝜇!) GeV, ∆𝑇'= 0.1𝑇*(0)
J. Cleymans et. al., PRC 73, 
034905 (2006)
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Numerical results
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Results
n Pressure
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The dimensionless pressure on the 2D slices of temperature and 
chemical potentials in the 4D phase space
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Phase diagram
n Regions explored in nuclear collisions 

The QGP phase has straight lines because 𝑠/𝑛! ≈ 𝑇/𝜇!
Larger μB is required in hadronic phase because protons are heavy

s/nB is constant when entropy and net 
baryon number are conserved
s/nB = 420

s/nB = 144

s/nB = 51
s/nB = 30

√sNN = 200 GeV

√sNN = 62.4 GeV

√sNN = 19.6 GeV
√sNN = 14.5 GeV

J. Gunther et. al., Nucl. Phys. A 967, 720 (2017)
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𝑓 ~ 𝑒$
%.&'. $(

)
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Results
n Trajectories in the phase diagram
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𝑛! = 0.4𝑛"
𝑛# = 0

The estimated region explored in nuclear collisions is narrow in 𝜇)
with the “nucleon” approximation of 𝑛"/𝑛! = 0.4

𝜇! =
1
3
𝜇" −

1
3
𝜇# − 𝜇$ = 0

𝜇% =
1
3𝜇" −

1
3𝜇# > 𝜇& =

1
3𝜇" +

2
3𝜇#
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Nuclear collisions
n The charge-to-baryon ratio in nuclear collisions

15 / 23

⚠ Addi.onal dynamics (e.g. fluctua.on, diffusion) can lead to 
,"
,#
> 1 or 

,"
,#
< 0

𝑛"
𝑛!

≈ 0.4 on average for heavy nuclei (197Au, 208Pb) and 𝑛" = 0

𝑛"
𝑛!

= 1 in proton-rich regions and                in neutron-rich regions
𝑛"
𝑛!

= 0
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Results
n Trajectories in the phase diagram
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𝑛! = 0.4𝑛"
𝑛# = 0



Akihiko Monnai (OIT), HHIQCD 2024, 7th November 2024

Results
n Trajectories in the phase diagram
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Bands denote the regions between 𝑛"/𝑛! = 1 and 0; Wide regions of 
the phase diagram will be explored in colliders
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Application to hydrodynamic model
n Hydrodynamic model require 𝑃, 𝑇, 𝜇!, 𝜇#, 𝜇" as functions of 𝑒, 𝑛!, 𝑛#, 𝑛"

𝜕7𝑁!
7 = 0, 𝜕7𝑁"

7 = 0, 𝜕7𝑁#
7 = 0𝜕7𝑇7D = 0,

One oPen prepares pre-calculated tables of the EoS for efficient 
numerical simulaAons
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However, a grid with equal spacing in 𝑒, 𝑛!, 𝑛#, 𝑛"
results in a warped grid in 𝑇, 𝜇!, 𝜇#, 𝜇"

Covering it leads to a huge redundancy in the 4D 
case, making hydro simulations difficult
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ApplicaDon
n We introduce +𝑇, ,𝜇!, ,𝜇#, ,𝜇", defined as the temperature and chemical potentials 

of a parton gas with the given 𝑒, 𝑛!, 𝑛#, 𝑛", for tabulation

1𝑇(𝑒, 𝑛! , 𝑛# , 𝑛$) =
12
19𝜋( 𝑒

+/)

7𝜇!(𝑒, 𝑛! , 𝑛# , 𝑛$) =
5𝑛! − 𝑛# + 2𝑛$

1𝑇(

7𝜇#(𝑒, 𝑛! , 𝑛# , 𝑛$) =
−𝑛! + 2𝑛# − 𝑛$

1𝑇(

7𝜇$(𝑒, 𝑛! , 𝑛# , 𝑛$) =
2𝑛! − 𝑛# + 2𝑛$

1𝑇(  0.1
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A grids with equal spacing in +𝑇, ,𝜇!, ,𝜇#, ,𝜇" is relatively straight in 𝑇, 𝜇!, 𝜇#, 𝜇"
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Application
n Schematic of EoS implementation to hydrodynamic model of nuclear collisions

Hydro model EoS table
𝑃(,𝑇, -𝜇!, -𝜇", -𝜇#)

𝑒, 𝑛!, 𝑛", 𝑛#

𝜇!( ,𝑇, -𝜇!, -𝜇", -𝜇#)
𝜇"( ,𝑇, -𝜇!, -𝜇", -𝜇#)

𝜇#( ,𝑇, -𝜇!, -𝜇", -𝜇#)

,𝑇(𝑒, 𝑛!, 𝑛", 𝑛#)
-𝜇!(𝑒, 𝑛!, 𝑛", 𝑛#)

-𝜇"(𝑒, 𝑛!, 𝑛", 𝑛#)

-𝜇#(𝑒, 𝑛!, 𝑛", 𝑛#)

𝑃, 𝑇, 𝜇!, 𝜇", 𝜇#

𝑇(,𝑇, -𝜇!, -𝜇", -𝜇#)𝜕7𝑁!
7 = 0

𝜕7𝑁"
7 = 0

𝜕7𝑁#
7 = 0

𝜕7𝑇7D = 0
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Calculations become efficient; see our recent analyses of isobar collisions for 
successful applications  G. Pihan, AM, B. Schenke, C. Shen, Phys. Rev. Lett. 133, 182301 (2024)
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Summary and outlook
n We have constructed a crossover-type QCD EoS model, NEOS-4D, with net 

baryon (B), electric charge (Q) and strangeness (S) 

Lattice QCD results from Taylor expansion method 
is utilized 

One can distinguish protons and neutrons; wide 
ranges in the 𝑇-𝜇!-𝜇"-𝜇# space are explored
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It is smoothly matched to the hadron resonance 
gas model at lower temperatures 
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Summary and outlook

n Outlook 

An efficient method of numerical implementaDon 
of the 4D EoS to the hydrodynamic model is 
developed using H𝑇, I𝜇!, I𝜇", I𝜇# variables

Introduction of higher order susceptibilities from Lattice QCD
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ApplicaDon to the hydrodynamic analyses of nuclear collisions at 
beam energy scan energies and of different nuclear species
Estimation of the effects of fluctuations and diffusions
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Summary and outlook
n The results of our equation of state model NEOS-4D are publicly available:

h]ps://sites.google.com/view/qcdneos4d/home

Thank you for listening!
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Backup slides
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Results
n Net baryon, charge, and strangeness densities

The dimensionless conserved charges on 2D slices of the 
temperature and chemical potenDals in the 4D phase space
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Results
n Effects of chemical potentials on the pressure
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𝜇" has the largest effect followed by 𝜇# and 𝜇!
because the lightest hadrons to carry the charges 
are ordered in mass as 𝑚E > 𝑚F > 𝑚G

𝜇# has the largest effect followed by 𝜇" and 𝜇!
Can be interpreted in the parton picture as 
𝜒(! = 1/3, 𝜒(

# = 2/3, 𝜒($ = 1 hold

Hadronic phase

QGP phase
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Results
n Sound velocity

 0

 0.1

 0.2

 0.3

 0.05  0.1  0.15  0.2  0.25  0.3  0.35

c s
2

T (GeV)

cs
2(T,0,0,0)

cs
2(T,µB=0.2 GeV,0,0)

cs
2(T,0,µQ=0.2 GeV,0)

cs
2(T,0,0,µS=0.2 GeV)

𝜇" has the largest effect in the hadronic phase and 
𝜇# has the largest effect in the QGP phase

The chemical potentials have non-trivial effects on 
the sound velocity

𝑐$( = ;
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𝜕𝑒 -',-(,-)

+
𝑛!
𝑒 + 𝑃 ;

𝜕𝑃
𝜕𝑛! .,-(,-)

+
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𝑒 + 𝑃 >

𝜕𝑃
𝜕𝑛# .,-',-)

+
𝑛$

𝑒 + 𝑃 ;
𝜕𝑃
𝜕𝑛$ .,-',-(
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Particlization
n Hydrodynamic flow needs to be converted into particles using kinetic theory 
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Dependence on the particlization energy density 𝑒

1 − I
I$%&

< 1% for 𝑒 = 0.16, 0.26 GeV/fm3

1 − I
I$%&

< 3% for 𝑒 = 0.36 GeV/fm3



Akihiko Monnai (OIT), HHIQCD 2024, 7th November 2024

Application
n Effects of neutron skin and baryon juncAon in isobar collisions (''J. Ru, '(J. Zr)
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Application
n The equation of state for Nf = 3 parton gas model and the derivation of the 

expressions of +𝑇, ,𝜇!, ,𝜇#, ,𝜇"
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