

Grassmann tensor renormalization group approach to (1+1)-dimensional two-color QCD at finite density

HHIQCD 2024 @ YITP, Kyoto University

1st November 2024

Ho Pai, KWOK

<u>Preprint available</u> arXiv:2410.09485v1 (HPK, Shinichiro Akiyama, Synge Todo)

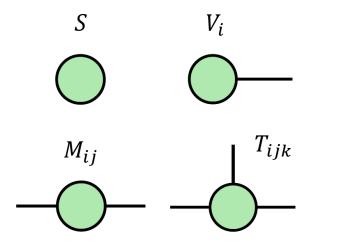
Tensor network methods

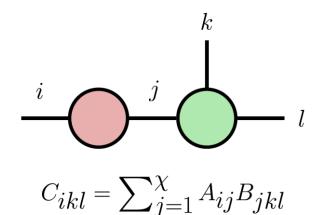
• Lattice field theories with finite density or a theta term suffer from the sign problem

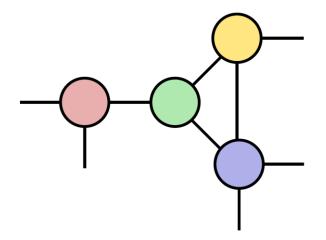
$$\langle \hat{O} \rangle = \int DU \, O \overline{D\Psi D \bar{\Psi} e^{-S}}$$

This quantity is complex (e.g., negative) Not easy for Monte-Carlo method

- Tensor network methods are free from the sign problem (a big advantage!)
- Some terminologies:



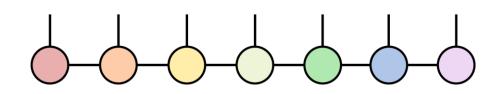




Bond dimension: the number of values that an index can take

Tensor contraction

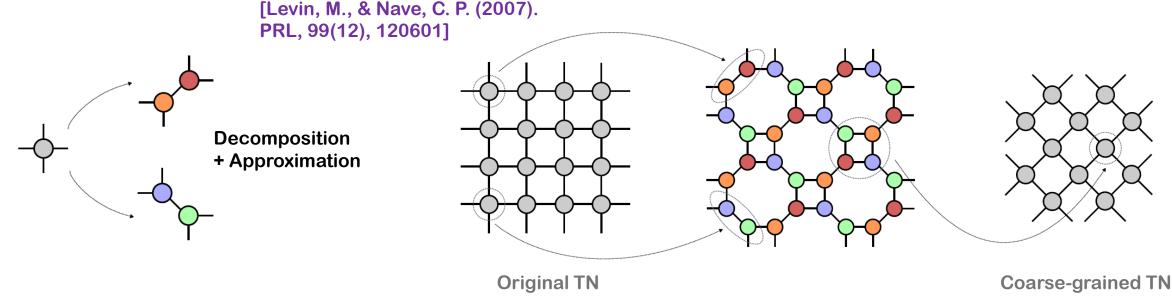
Tensor network: a network of contracted tensors Hamiltonian approach



[S. Kuhn+, JHEP 07 (2015) 130] [P. Silvi+, Quantum 1 (2017) 9] [M. C. Banuls+, PRX 7 (2017) 041046] [P. Sala+, PRD 98 (2018) 034505] [P. Silvi+, PRD 100 (2019) 074512] [M. Rigobello+, 2308.04488] [H. Liu+, 2312.17734] [T. Hayata+, JHEP 07 (2024) 106]

• Lagrangian approach (Tensor Renormalization Group)

[J. Bloch & R. Lohmayer, Nucl. Phys. B 986 (2023) 116032] [M. Asaduzzaman+, JHEP 05 (2024) 195]



✓ Can achieve a large lattice efficiently

✓ Can describe fermions directly by incorporating Grassmann variables (Grassmann TRG)

What do we study?

• (1+1)-D two-color QCD with staggered fermions on a square lattice

What we calculate with TRG

 $Z = \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} \,\mathrm{e}^{-S}$

 $S = S_f + S_g + S_\lambda$

Parameters: m, β, μ, λ

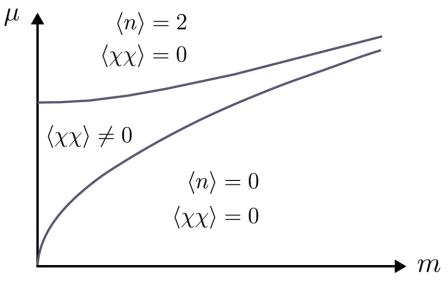
Fermion hopping term
+ mass term

Wilson's gauge action

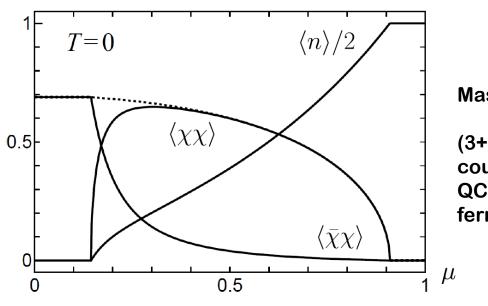
Diquark source term

$$S_{\lambda} = \frac{\lambda}{2} \sum_{n} \left[\chi^{T}(n) \sigma_{2} \chi(n) + \bar{\chi}(n) \sigma_{2} \bar{\chi}^{T}(n) \right]$$
$$\langle \chi \chi \rangle \equiv \frac{1}{2V} \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} \sum_{n} \left(\chi^{T} \sigma_{2} \chi + \bar{\chi} \sigma_{2} \bar{\chi}^{T} \right) e^{-S}$$

• Phase structure of the (3+1)-D theory



[Y. Nishida+, Phys. Rept. 398 (2004) 281–300]



Mass = 0.02

(3+1)-D infinite coupling two-color QCD with staggered fermions

Our proposal

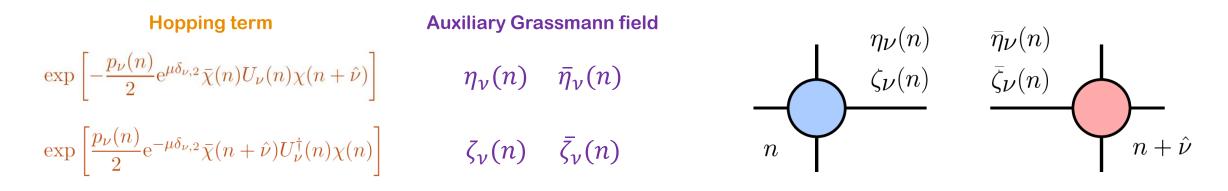
- Two-color QCD with staggered fermion has the global $U_V(1) \times U_A(1)$ symmetry at a finite μ , in the vanishing λ limit and chiral limit ($m \rightarrow 0$)
- In higher dimensions, spontaneous symmetry breaking is possible and diquark condensate (χχ) may have a finite value
- However, there is NO spontaneous breaking of continuous global symmetry in two dimensions.

 $\lim_{m \to 0} \lim_{V \to \infty} \langle \bar{\chi} \chi \rangle = 0 \qquad \qquad \lim_{\lambda \to 0} \lim_{V \to \infty} \langle \chi \chi \rangle = 0$

- Therefore, we explicitly break the $U_A(1)$ symmetry with a finite m, and the $U_V(1)$ symmetry with a finite λ
- Under this setting, we compute the expectation value of quark number density, chiral condensate, and diquark condensate with the TRG approach
 - 1. Construction of the TN representation (Discretization of the gauge group integration)
 - 2. The bond dimension of the tensors is inevitably large (How to handle this in practical computation)

[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

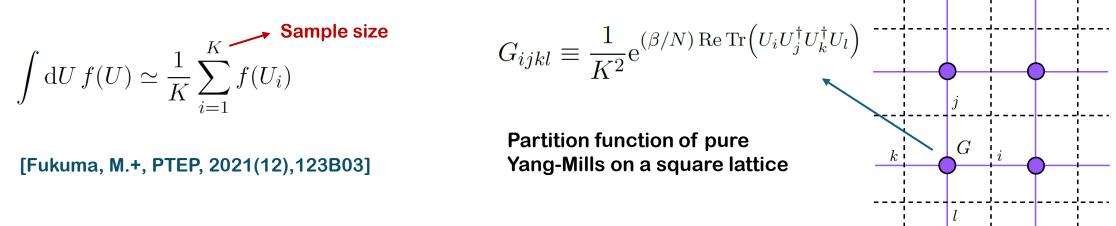
• The Grassmann path integral is expressed as the trace of a Grassmann tensor network by introducing a pair of *N*- component auxiliary Grassmann field on edges to decompose each of the hopping terms



- The bond dimension of a Grassmann tensor is 2
 - > Our construction: 2^{2N}
 - > [M. Asaduzzaman+, JHEP 05 (2024) 195]: 2^{2N^2}
- In our construction, a Grassmann tensor at site *n* depends on the link variables $U_1(n-\hat{1})$ and $U_2(n-\hat{2})$
 - → The dependence of any link variable appears in only one local tensor
 - At the infinite coupling limit, we can do the gauge group integration exactly for each tensor before TRG

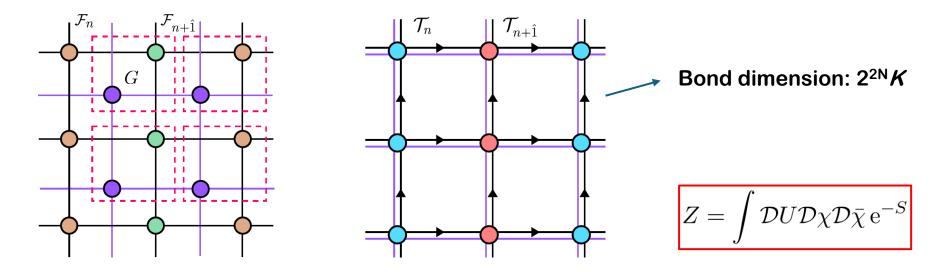
Tensor network representation (including plaquette term)

 The gauge group integration is dicretized by a summation with group elements sampled uniformly from the group manifold



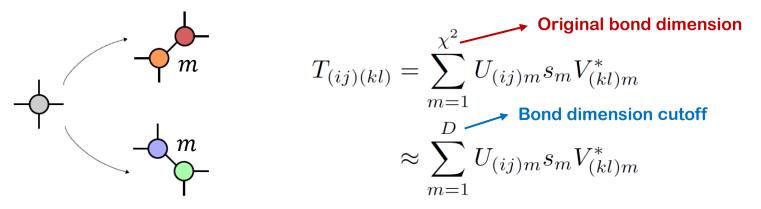
N = no. of color

• We then combine the Grassmann tensor F and the above real-valued tensor G



- We use <u>bond-weighted tensor renormalization group</u> to coarse-grain the tensor network and reach the thermodynamic limit
- The choice of bond dimension cutoff *D* in TRG algorithms depends on the bond dimension of initial tensors. In our case (two-color i.e., N=2), the initial bond dimension is 16*K*!

Truncated singular value decomposition (SVD)

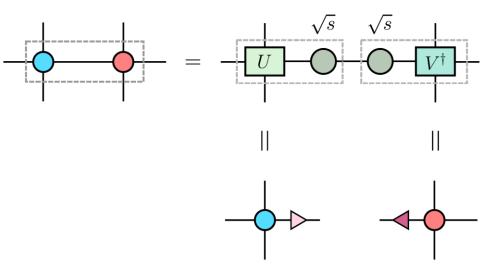


Among the χ^2 singular values *s*, we only keep the largest *D* ones and set the remaining *s* to zero

- Compression of the initial tensors is needed before TRG
 - insert a pair of squeezers, which acts as a good approximation of identity, on every bond of the tensor network

$$2^{2N}K$$
 \longrightarrow D'_1 \longrightarrow P'_2 \longrightarrow P'_2

• The insertion of squeezers is equivalent to doing a truncated SVD on the following contraction of initial tensors

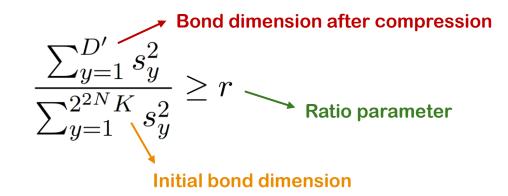


Efficiency of our compression scheme

m = 0.1	$\beta = 1.6$	$\mu = 0.4$	$\lambda = 0$	K = 14
---------	---------------	-------------	---------------	--------

r	D'_1	D_2^{\prime}	D_3^{\prime}	D_4^{\prime}	compression rate
1	224	224	224	224	100%
0.99999	148	148	143	143	17.8%
0.99995	122	122	118	118	8.23%
0.9999	110	110	105	105	5.30%
0.9995	80	80	79	79	1.59%
0.999	70	70	67	67	0.874%
0.99	35	35	33	33	0.0530%

How to determine the bond dimension after compression (how many singular values are kept)?

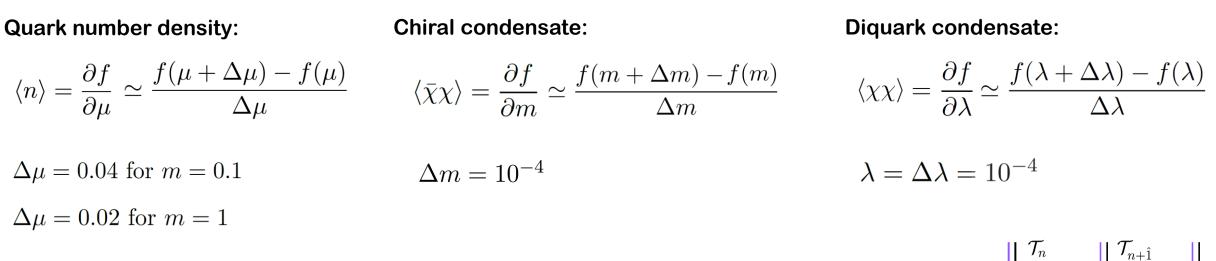


m = 0.1 $\beta = 0.8$ $\mu = 0.4$ $\lambda = 0$ K = 14

r	D'_1	D_2^{\prime}	D'_3	D'_4	compression rate
1	224	224	224	224	100%
0.99999	86	86	84	84	2.07%
0.99995	68	68	66	66	0.800%
0.9999	61	61	59	59	0.514%
0.9995	46	46	43	43	0.155%
0.999	39	39	37	37	0.0827%
0.99	19	19	19	19	0.00518%

Free energy density:

 $f = \ln Z/V$ What we calculate directly with TRG

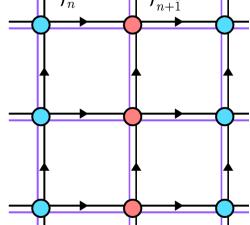


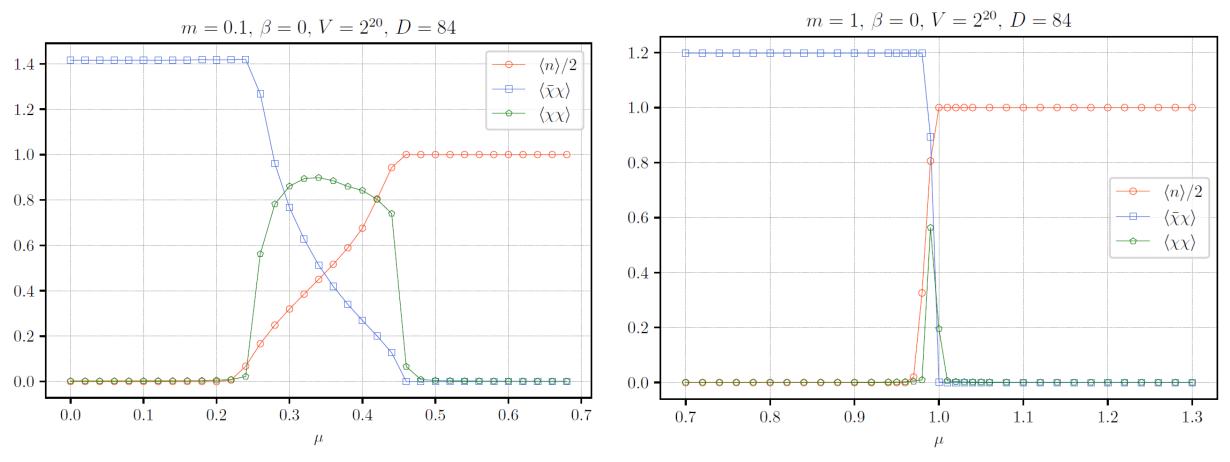
Another way to evaluate expectation values: Impurity tensor method

 $\langle O \rangle \equiv \mathbb{Z}^{-1} \int \mathcal{D} U \mathcal{D} \chi \mathcal{D} \bar{\chi} O e^{-S}$

Trace of TN composed of uniform tensors, and some impurity tensors

Trace of TN composed of uniform tensors





At m = 0.1: an intermediate phase is observed in a finite region of μ

At m = 1: a sharp transition is seen, and the intermediate phase becomes a very narrow region in μ

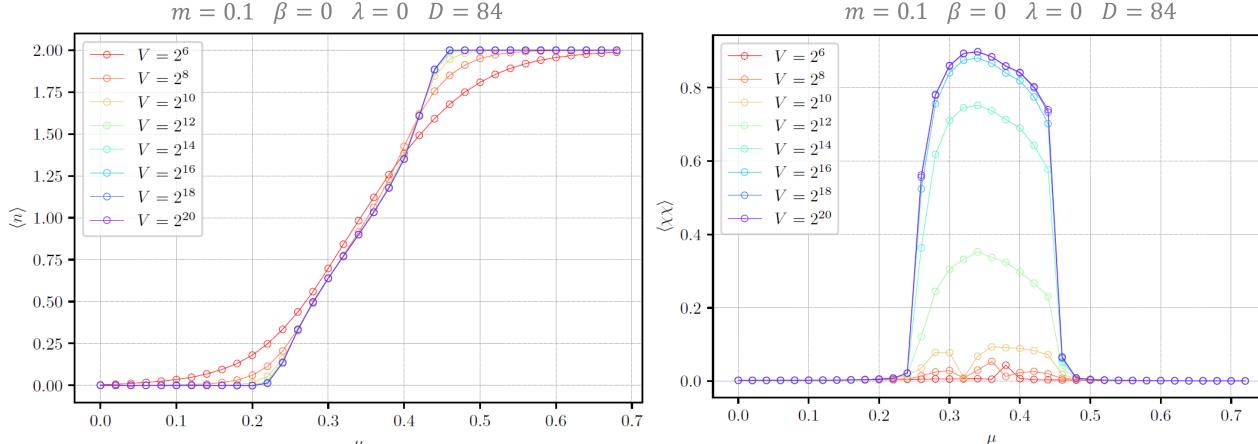
• The qualitative behavior of the observables at finite m and/or λ is similar to that exhibited in a mean-field study of the (3+1)-D theory, where spontaneous symmetry breaking exists [Y. Nishida+, Phys. Rept. 398 (2004) 281–300]

Numerical results: Volume dependence

Quark number density:

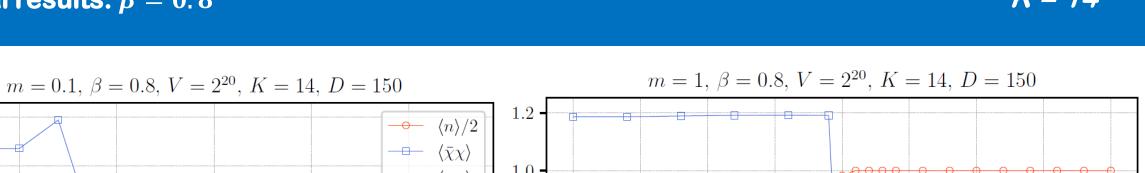
m = 0.1 $\beta = 0$ $\lambda = 0$ D = 84

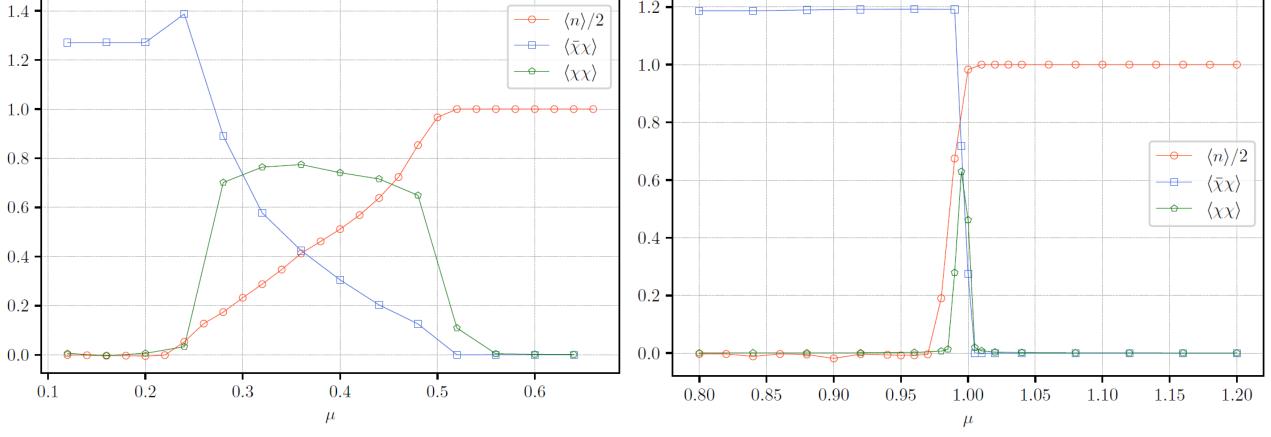
Diquark condensate:



The thermodynamic limit is reached when $V = 2^{20}$ •

 μ

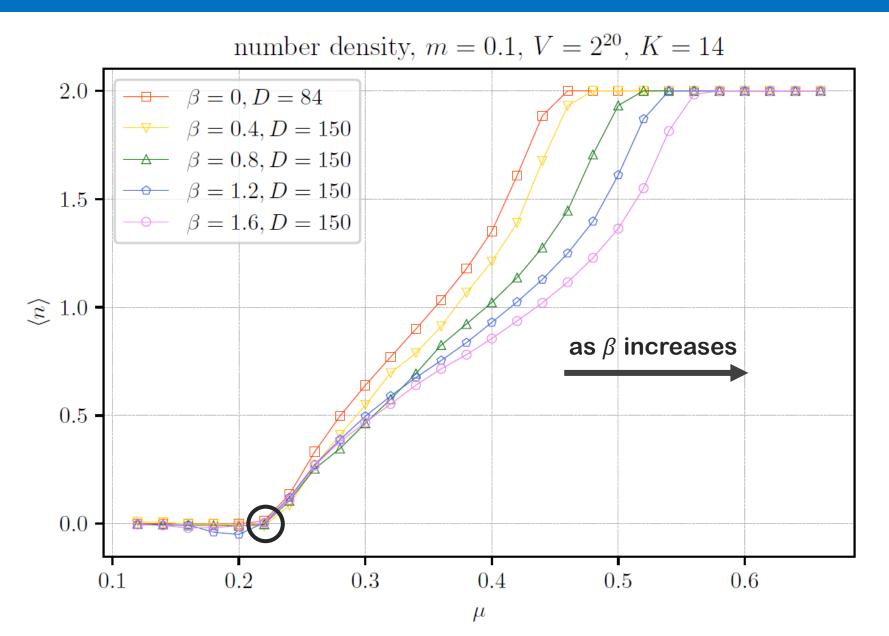




- The behavior at finite coupling is similar to that at infinite coupling
- As β becomes nonzero, the intermediate phase becomes broader at m = 0.1

 $\beta = 0$ $0.22 \le \mu \le 0.46$ $\beta = 0.8$ $0.22 \le \mu \le 0.52$

β dependence of transition points



- The first transition point (the one at a smaller μ) seems to be robust against β
- The second transition point locates at larger chemical potential as β increases
- (n) does not saturate in regions of larger chemical potential as the gauge interaction is weakened, approaching the continuum limit

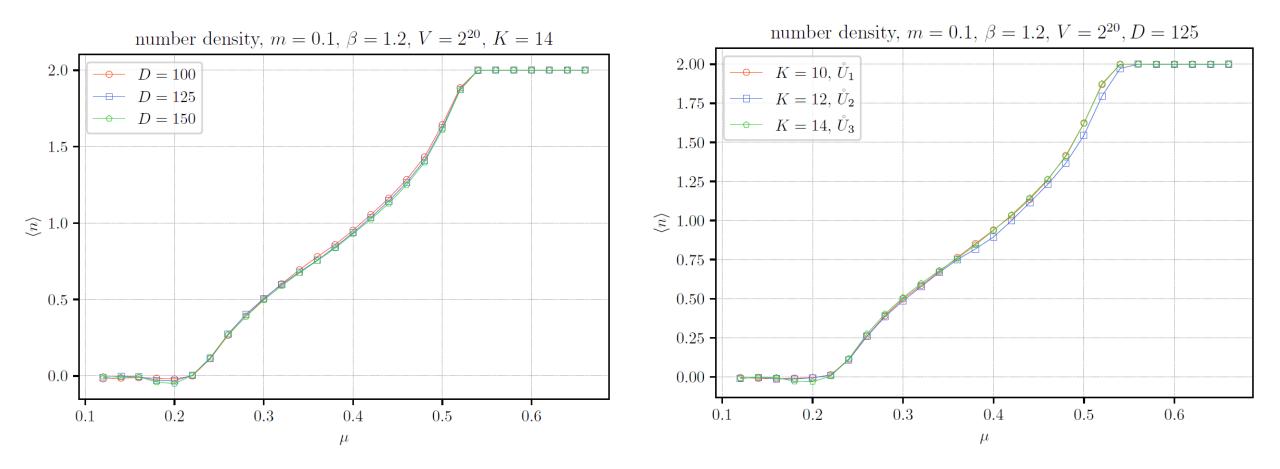
Summary

- This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and finite coupling
- Tensor network calculation for this kind of theories is computationally challenging because of the very large initial bond dimension
- We introduce an efficient initial tensor compression scheme to deal with this issue
- TRG enables the calculation of important physical quantities at the infinite coupling limit and finite β regime
- Future directions:
 - 1) Improved construction of tensor which allows a larger sample size *K* for the discretization of gauge group
 - 2) Chiral limit and vanishing λ limit in higher dimensions
 - 3) Extension to the SU(3) gauge group
 - 4) Investigation of inhomogeneous phase [T. Kojo, Nucl. Phys. A 877(2012) 70-94] [T. Hayata+, JHEP 07 (2024) 106]

Backup slides

D dependence:

K dependence:



0.6

0.5

0.3

0.2 -

0.1

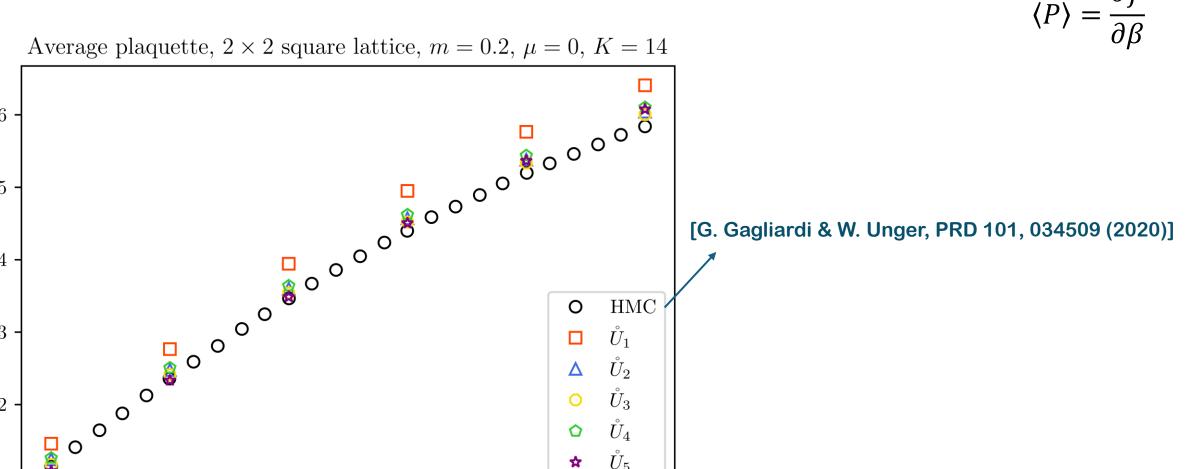
0

0.0

0.5

1.0

 $\widehat{\mathbf{A}}$



 \mathring{U}_5

2.5

☆

2.0

Average plaquette, 2×2 square lattice, $m = 0.2, \mu = 0, K = 14$

1.5

β

Scheme of squeezer construction

