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1. Introduction
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   termθ

ℒθ = − θ
32π2 ϵμνρσtr(FμνFρσ)

In 4d QCD or pure Yang-Mills theory
 term = topological term coupled to  - periodic parameter θ 2π θ
What is a  term ?θ

Why do we consider  term ?θ

 (from nEDM exp.) : Strong CP Problem → QCD Axion|θ| ≲ 1.2 × 10−10

Instanton effects on perturbative calculations via  termθ

 dependence of the vacuum energy = Axion potentialθ
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  Vacuum energy in DIGA
Dilute instanton gas approximation (DIGA) 

ρ

Dilute instanton gas configuration

instanton

Vacuum energy : E(θ) ∝ 1 − cos θ

This approx. is valid at the weak coupling.
The vacuum energy is nontrivial in the strong coupling regime
But it is difficult to analyze at strong coupling…

Instanton size  : sufficiently small 
(Each instantons do not overlap)

ρ
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  Vacuum energy in non-DIGA
Expectation : Vacuum energy has multi-branch structure
Vacua (all branch) = True vacuum (1 branch) + Metastable vacua (other branches)

At , true vacuum → 
metastable vacuum, one of 
metastable vacua → true vacuum

θ = (2ℤ + 1)π

Evac(θ)

θ0 π 3π2π 4π

 true vacuum⋯
 metastable vacuum⋯

Natural candidate

Evidence : Large  [Witten, ’80],  
Holographic QCD [Witten, ’98],  etc…

N

• Trivially gapped at  

• CP symmetry breaking at 
θ ∉ (2ℤ + 1)π

θ ∈ (2ℤ + 1)π
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  One branch of vacuum energy
One branch of vacuum energy = axion potential

Evac(θ)

θ0 π 2π−π−2π

• The energy of true vacuum is not 
smooth and have  - periodicity. 
→  is  periodic parameter. 

• Each branches of vacuum energy 
are analytic functions which are 
not  - periodic. 
→  is not  periodic parameter.

2π
θ 2π

2π
θ 2π
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I would like to find whole behavior of one branch

I will use 2d  model instead of 4d pure Yang-Mills theory. ℂPN−1

However it is difficult to simulate  angle because of sign problem.θ
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2. 2d  modelℂPN−1
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  2d  modelℂPN−1

ℒ = (Dμz)†Dμz + D (z†z − N/g2
0) + iθ

2π
E

 :  complex scalar field,  : aux.  - gauge field,  : aux. scalar field,  

 : 't Hooft coupling,  : Euclidean electric field

z N Aμ U(1) D

g0 E := F12

• Strong coupling theory 
• Topological  term, instanton 
• Vacuum energy has multi-branch structure (from large  analysis)

θ

N

Similarities with 4d pure Yang-Mills theory
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  Vacuum energy in large  limitN

One branch of vacuum energy [D’adda, Lüscher, ’78]

   at Evac(θ) ≃ 3NΛ2

2π ( θ
N )

2
θ ∼ O(1)

However, if  ( ), higher order terms of  contribute to 
vacuum energy.

θ/N ∼ O(1) θ ∼ O(N) θ/N

→ At large , the vacuum energy is still nontrivial even in large  limit.θ N

I will focus on the branch that is true vacuum around θ = 0

Goal : Find behavior of vacuum energy at large  in large  limitθ N
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3. Method & Result

Introduction (5) 2d  model (2) ℂPN−1 Method & Result (11) Summary (1) 



 

 

  Summary of method

Step 1 : Calculate the effective Lagrangian  (by performing the 
path integral over , ) 
Step 2 : Determine an analytic form of  

Step 3 : Find a saddle point  (such that ) & 
Evaluate the eff. Lagrangian on the saddle point

ℒeff(E, D)

z z†

ℒeff(E, D)

(E(θ), D(θ)) (E(0), D(0)) = (0, Λ2)

Basically our method is a saddle point approximation (Large )N

Vacuum energy : Evac = Re ℒeff |saddle
                           Decay rate : Γ = − 2 Imℒeff |saddle
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  Step 1. Eval. of eff. Lagrangian

Seff ⊃ NTr log(−DμDμ + D) = − ∫ d2x∫
∞

ε

dt
t

Tre−t[(∂μ+iAμ)2+D]

Choice of a constant configuration
, , Aμ = − ϵμνxvE/2 E = const . D = const .

Performing path integral over , z z†

 = Trace of Boltzmann factor in Hilbert space of Landau levelTre−t[(∂μ+iAμ)2+D]

∫
∞

ε

dt
t

Tre−t[(∂μ+iAμ)2+D] = ∫ d2x∫
∞

ε

dt
4πt

Ee−tD

sinh Et
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  Step 2. Analytic form of eff. Lagrangian

∫
∞

ε

dt
4πt

Ee−tD

sinh Et
= D [ 2E

D
log Γ ( 1

2 + D
2E ) + log 2εE − E

D
log 2π + γ + 1

εD ] + O(ε)

For E > 0

ℒeff = iθ
2π

E − N
4π [2E log Γ ( 1

2 + D
2E ) + D log 2E

Λ2 − E log 2π]

 : renormalizationg0 ⟶ g

Note : We get the analytic form for  by E < 0 E → − E

up to higher derivative terms of (E, D)
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  Step 3. Find a saddle point

Ansatz : There is a saddle point for constant  and E D

The higher derivative terms in  are neglected.ℒeff

∂ℒeff
∂E

= ∂ℒeff
∂D

= 0

We find a saddle point such that  by numerical 
calculation. (Solve the saddle point condition)

(E(0), D(0)) = (0, Λ2)
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  Result

0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

• The vacuum becomes 
no longer metastable 
for  because of 

. (If vacuum is 
metastable, ) 

•  for 

θ/N ≳ 0.4
Evac ∼ Γ

Evac ≫ Γ

Evac < 0 1.1 ≲ θ/N ≲ 2.7

 is set to zero.Evac(θ = 0)
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  Puzzle ?
Physically negative vacuum energy is strange because
• Negative vacuum energy is smaller than the true vacuum energy 
(  for true vacuum). 

• Saddle point which gives  have large , contribution of 
this saddle to path integral is larger than true vacuum. 
•  exist in each branches. (Each branches are labeled by 
integers . By , we get branch  from branch . If  
is subleading, branch  is almost same as branch .).

Evac ∼ 0

Evac < 0 exp(−Seff)

Evac < 0

n θ → θ − 2πk n = k n = 0 k/N
n = k n = 0
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Evac ∼ 0

Evac < 0 exp(−Seff)

Evac < 0

n θ → θ − 2πk n = k n = 0 k/N
n = k n = 0

We have not understood the solution for this puzzle. 
I will show you possibilities of the solution.
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  Possibilities of solution for the puzzle

1. The saddle point in previous slide does not contribute, other saddle 
points contribute (There are infinitely saddle points.). 

2. Lefschetz thimble method is invalid (so we cannot use the saddle 
point approximation.).
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  Other saddles

Out[]=
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  Other saddles
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The plot of saddles as functions of  angleθ

θ = 0

The saddle point in previous slide

θ = π

Introduction (5) 2d  model (2) ℂPN−1 Method & Result (8/11) Summary (1) 



 

 

  Other saddles

Out[]=
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I will focus on two cases.

I will show you some example of vacuum energy at other saddles.
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  Other saddles
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They have large  near  which gives  for first saddle.exp(−Seff) θ Evac < 0

Left case  for Evac < 0 θ > 1.15N Right case  for Evac < 0 θ > 1.25N
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  Other saddles

As long as we research, 10 saddles have large  for large .exp(−Seff) θ

It seems that the puzzle is not solved by this method.
But we are not sure because there are many other saddle points.
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  Lefschetz thimble method
We would like to deform original path integral contour  by 
Cauchy theorem (Lefschetz thimble method)

(−∞, ∞)

 : asymptotic expansionℒeff ⊃ − ∫
∞

ε

dt
4πt

Ee−tD

sinh Et
∼ ∑

k∈ℤ
(2k)!E2k

→ The effective Lagrangian is not analytic at E = 0

We cannot deform the original contour directly because  is on the 
original contour.

E = 0

It may not be possible to use the (standard) saddle point 
approximation in this case.
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  Summary

• We studied one branch of the vacuum energy beyond  of large 
  2d  model. (Motivation : axion potential, ’t Hooft anomaly) 

• At large , there are saddle points which have larger contributions to 
the path integral than the true vacuum.  

• It is not obvious whether we can use the saddle point approximation or 
not.

θ ∼ O(1)

N ℂPN−1

θ
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