## HHQCD2024@YITP





# Theta angle dependence of the vacuum energy in two-dimensional $\mathbb{C}P^{N-1}$ model Tohoku University Takahiro Yokokura (D2)

Based on work in progress Collaborators : Tsubasa Sugeno, Kazuya Yonekura (Tohoku U)

## 2024/11/12





# 1. Introduction

Introduction (5)



### Method & Result (11)



## $\theta$ term

### What is a $\theta$ term ?

- $\theta$  term = topological term coupled to  $2\pi$  periodic parameter  $\theta$
- In 4d QCD or pure Yang-Mills theory



## Why do we consider $\theta$ term ?

- Instanton effects on perturbative calculations via  $\theta$  term

 $\theta$  dependence of the vacuum energy = Axion potential

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Introduction (1/5)

 $\mathscr{L}_{\theta} = -\frac{\theta}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}(F^{\mu\nu}F^{\rho\sigma})$ 

## $|\theta| \leq 1.2 \times 10^{-10}$ (from nEDM exp.) : Strong CP Problem $\rightarrow$ QCD Axion



## $\theta$ term

### What is a $\theta$ term ?

- $\theta$  term = topological term coupled to  $2\pi$  periodic parameter  $\theta$
- In 4d QCD or pure Yang-Mills theory



## Why do we consider $\theta$ term ?

Instanton effects on perturbative calculations via  $\theta$  term

 $\theta$  dependence of the vacuum energy = Axion potential

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Introduction (1/5)

 $\mathscr{L}_{\theta} = -\frac{\theta}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}(F^{\mu\nu}F^{\rho\sigma})$ 

## $|\theta| \leq 1.2 \times 10^{-10}$ (from nEDM exp.) : Strong CP Problem $\rightarrow$ QCD Axion



# Vacuum energy in DIGA

## **Dilute instanton gas approximation (DIGA)**

Instanton size  $\rho$  : sufficiently small

(Each instantons do not overlap)



Vacuum energy :  $E(\theta) \propto 1 - \cos \theta$ 

This approx. is valid at the weak coupling.

The vacuum energy is nontrivial in the strong coupling regime

But it is difficult to analyze at strong coupling.

Introduction (2/5)

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Method & Result (11)

### Summary (1)

### Dilute instanton gas configuration









# Vacuum energy in non-DIGA

## Expectation : Vacuum energy has multi-branch structure

Vacua (all branch) = True vacuum (1 branch) + Metastable vacua (other branches)

## Natural candidate

• Trivially gapped at  $\theta \notin (2\mathbb{Z} + 1)\pi$ 

• CP symmetry breaking at  $\theta \in (2\mathbb{Z} + 1)\pi$ 

At  $\theta = (2\mathbb{Z} + 1)\pi$ , true vacuum  $\rightarrow$ 

metastable vacuum, one of metastable vacua  $\rightarrow$  true vacuum

Evidence : Large N [Witten, '80],

Holographic QCD [Witten, '98], etc…

Introduction (3/5)

 $2d \mathbb{C}P^{N-1} \mod (2)$ 



Method & Result (11)



# One branch of vacuum energy

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

One branch of vacuum energy = axion potential

- The energy of true vacuum is not smooth and have  $2\pi$  - periodicity.
- $\rightarrow \theta$  is  $2\pi$  periodic parameter.
- Each branches of vacuum energy are analytic functions which are not  $2\pi$  - periodic.

 $\rightarrow \theta$  is not  $2\pi$  periodic parameter.

Introduction (4/5)



Method & Result (11)





# One branch of vacuum energy

I would like to find whole behavior of one branch However it is difficult to simulate  $\theta$  angle because of sign problem. I will use 2d  $\mathbb{C}P^{N-1}$  model instead of 4d pure Yang-Mills theory.

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Introduction (5/5)



# 2. 2d $\mathbb{C}P^{N-1}$ model

Introduction (5)



Method & Result (11)



# 20 $CP^{N-1}$ mode

 $\mathscr{L} = (D_{\mu}z)^{\dagger}D^{\mu}z +$ 

- z : N complex scalar field,  $A_{\mu}$  : aux. U(1) gauge field, D : aux. scalar field,
- $g_0$ : 't Hooft coupling,  $E := F_{12}$ : Euclidean electric field

 $2d \mathbb{C}P^{N-1} \mod (1/2)$ 

## Similarities with 4d pure Yang-Mills theory

- Strong coupling theory
- Topological  $\theta$  term, instanton
- Vacuum energy has multi-branch structure (from large N analysis)

### Introduction (5)

$$D\left(z^{\dagger}z - N/g_0^2\right) + \frac{i\theta}{2\pi}E$$





# Vacuum energy in large N limit

I will focus on the branch that is true vacuum around  $\theta = 0$ One branch of vacuum energy [D'adda, Lüscher, '78]

 $E_{\rm vac}(\theta) \simeq \frac{3N_1}{2\pi}$ 

 $2d \mathbb{C}P^{N-1} \mod (2/2)$ 

vacuum energy.

Goal : Find behavior of vacuum energy at large  $\theta$  in large N limit

Introduction (5)

$$\frac{\Lambda^2}{\pi} \left(\frac{\theta}{N}\right)^2 \quad \text{at } \theta \sim O(1)$$

However, if  $\theta/N \sim O(1)$  ( $\theta \sim O(N)$ ), higher order terms of  $\theta/N$  contribute to

- $\rightarrow$  At large  $\theta$ , the vacuum energy is still nontrivial even in large N limit.





# 3. Method & Result

Introduction (5)



Method & Result (11)



# Summary of method

Basically our method is a saddle point approximation (Large N)

path integral over  $z, z^{\dagger}$ )

Step 2 : Determine an analytic form of  $\mathscr{L}_{eff}(E,D)$ 

Evaluate the eff. Lagrangian on the saddle point



 $2d \mathbb{C}P^{N-1} \mod (2)$ 

### Introduction (5)



Step 1 : Calculate the effective Lagrangian  $\mathscr{L}_{eff}(E,D)$  (by performing the

- Step 3 : Find a saddle point  $(E(\theta), D(\theta))$  (such that  $(E(0), D(0)) = (0, \Lambda^2)$ ) &
  - Vacuum energy :  $E_{\rm vac} = \operatorname{Re} \mathscr{L}_{\rm eff}|_{\rm saddle}$ 
    - **Decay rate** :  $\Gamma = -2 \operatorname{Im} \mathscr{L}_{eff}|_{saddle}$

### Method & Result (1/11)



# Step 1. Eval. of eff. Lagrangian

Performing path integral over z,  $z^{\dagger}$  $S_{\rm eff} \supset NTr\log(-I)$ 

Choice of a cons

$$D_{\mu}D^{\mu} + D) = -\int d^{2}x \int_{\varepsilon}^{\infty} \frac{dt}{t} \operatorname{Tr} e^{-t[(\partial_{\mu} + iA_{\mu})^{2} + D]}$$
  
stant configuration  
$$A_{\mu} = -\epsilon_{\mu\nu} x_{\nu} E/2, E = \operatorname{const.}, D = \operatorname{const.}$$

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

$$\int_{\varepsilon}^{\infty} \frac{\mathrm{d}t}{t} \operatorname{Tr} e^{-t[(\partial_{\mu} + iA_{\mu})^{2} + D]} = \int \mathrm{d}^{2}x \int_{\varepsilon}^{\infty} \frac{\mathrm{d}t}{4\pi t} \frac{Ee^{-tD}}{\sinh Et}$$

Introduction (5)

 $Tre^{-t[(\partial_{\mu}+iA_{\mu})^{2}+D]} = Trace of Boltzmann factor in Hilbert space of Landau level$ 

Method & Result (2/11)





# Step 2. Analytic form of eff. Lagrangian

For E > 0



up to higher derivative terms of (E, D)

Note : We get the analytic form for E < 0 by  $E \rightarrow -E$ 

Introduction (5)

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

$$\left(\frac{D}{2E}\right) + \log 2\varepsilon E - \frac{E}{D}\log 2\pi + \gamma + \frac{1}{\varepsilon D}\right] + O(\varepsilon)$$

$$\left(\frac{1}{2} + \frac{D}{2E}\right) + D\log\frac{2E}{\Lambda^2} - E\log 2\pi$$





# Step 3. Find a saddle point

Ansatz : There is a saddle point for constant E and D The higher derivative terms in  $\mathscr{L}_{eff}$  are neglected.  $\frac{\partial \mathscr{L}_{\text{eff}}}{=}$  $\partial E$ 

We find a saddle point such that  $(E(0), D(0)) = (0, \Lambda^2)$  by numerical calculation. (Solve the saddle point condition)

### 2d $\mathbb{C}P^{N-1}$ model (2)

Introduction (5)

$$= \frac{\partial \mathscr{L}_{\text{eff}}}{\partial D} = 0$$



## Result





### Introduction (5)

- The vacuum becomes no longer metastable for  $\theta/N \gtrsim 0.4$  because of  $E_{\rm vac} \sim \Gamma$ . (If vacuum is metastable,  $E_{\rm vac} \gg \Gamma$ )
- .  $E_{\rm vac} < 0$  for  $1.1 \leq \theta/N \leq 2.7$

### Method & Result (5/11)







## Puzzle?

Introduction (5)

Physically negative vacuum energy is strange because

- Negative vacuum energy is smaller than the true vacuum energy  $(E_{\rm vac} \sim 0 \text{ for true vacuum}).$
- . Saddle point which gives  $E_{\rm vac} < 0$  have large  $\exp(-S_{\rm eff})$ , contribution of this saddle to path integral is larger than true vacuum.
- .  $E_{\rm vac} < 0$  exist in each branches. (Each branches are labeled by integers n. By  $\theta \to \theta - 2\pi k$ , we get branch n = k from branch n = 0. If k/Nis subleading, branch n = k is almost same as branch n = 0.).

2d  $\mathbb{C}P^{N-1}$  model (2)

### Method & Result (6/11)





## Puzzle?

Physically negative vacuum energy is strange because

- Negative vacuum energy is smaller than the true vacuum energy  $(E_{\rm vac} \sim 0 \text{ for true vacuum}).$
- . Saddle point which gives  $E_{\text{vac}} < 0$  have large  $\exp(-S_{\text{eff}})$ , contribution of this saddle to path integral is larger than true vacuum.
- .  $E_{\rm vac} < 0$  exist in each branches. (Each branches are labeled by

is subleading, branch n = k is almost same as branch n = 0.).

We have not understood the solution for this puzzle. I will show you possibilities of the solution. Introduction (5)  $2d \mathbb{C}P^{N-1} \mod (2)$ 

- integers n. By  $\theta \to \theta 2\pi k$ , we get branch n = k from branch n = 0. If k/N





# Possibilities of solution for the puzzle

- 1. The saddle point in previous slide does not contribute, other saddle points contribute (There are infinitely saddle points.).
- 2. Lefschetz thimble method is invalid (so we cannot use the saddle point approximation.).

2d  $\mathbb{C}P^{N-1}$  model (2)







### The plot of saddles as functions of $\theta$ angle



Introduction (5)

Method & Result (8/11)



### The plot of saddles as functions of $\theta$ angle



Introduction (5)

### The saddle point in previous slide

### $\theta = 0$

Method & Result (8/11)



### I will show you some example of vacuum energy at other saddles.



Introduction (5)

### I will focus on two cases.

Method & Result (8/11)





Left case  $E_{\rm vac} < 0$  for  $\theta > 1.15N$ 

They have large  $exp(-S_{eff})$  near  $\theta$  which gives  $E_{vac} < 0$  for first saddle.

Introduction (5)

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Right case  $E_{\rm vac} < 0$  for  $\theta > 1.25N$ 

Method & Result (9/11)





## As long as we research, 10 saddles have large $exp(-S_{eff})$ for large $\theta$ . It seems that the puzzle is not solved by this method. But we are not sure because there are many other saddle points.





### Method & Result (10/11)



# Lefschetz thimble method

We would like to deform original path integral contour  $(-\infty, \infty)$  by Cauchy theorem (Lefschetz thimble method)

$$\mathscr{L}_{\text{eff}} \supset -\int_{\varepsilon}^{\infty} \frac{\mathrm{d}t}{4\pi t} \frac{Ee^{-tD}}{\sinh Et} \sim \sum_{k \in \mathbb{Z}} (2k)$$

 $\rightarrow$  The effective Lagrangian is not analytic at E = 0

original contour.

It may not be possible to use the (standard) saddle point approximation in this case.

 $2d \mathbb{C}P^{N-1} \mod (2)$ 

Introduction (5)

- k)! $E^{2k}$ : asymptotic expansion

- We cannot deform the original contour directly because E = 0 is on the

Method & Result (11/11)



- . We studied one branch of the vacuum energy beyond  $\theta \sim O(1)$  of large N 2d  $\mathbb{C}P^{N-1}$  model. (Motivation : axion potential, 't Hooft anomaly)
- At large  $\theta$ , there are saddle points which have larger contributions to the path integral than the true vacuum.
- It is not obvious whether we can use the saddle point approximation or not.

 $2d \mathbb{C}P^{N-1} \mod (2)$ 





