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Introduction

▶ Chiral gauge theories are very important in particle physics

e.g. Standard model, GUT...

▶ Open problem: Lattice formulation of chiral gauge theories

It is difficult to formulate lattice theories with the same

gauge anomaly structure as in continuous theories

Only special cases have been solved

U(1), Lüscher ’98, SU(2)× U(1), Kikukawa, Nakayama ’00...

Recently, Bosonization-based approaches are proposed in 2D U(1)

=⇒ Berkowitz, Cherman, Jacobson ’23, DeMarco, Lake, Wen ’23
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Bosonization-based approach

▶ In 2D, there is a duality between fermions and bosons

(Bosonization)

▶ Instead of a fermion itself, we can use a boson with the

same chiral symmetry structure as chiral gauge theories

Fermion ⇐⇒ Boson → Lattice formulation

Advantages

▶ Exact chiral symmetry and ultra-locality

▶ Simple formulation: Gauge anomalies can be calculated

classically and easily from explicit breaking by gauge transf.
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Continuum theory: 2D fermion action and Bosonization

In 2D, massless Dirac fermions ψ and compact boson ϕ are equivalent at

a certain fixed point R = 1√
2

Coleman ’75, Mandelstam ’75

According to Bosonization rule,∫
M2

d2x ψ̄i /∂ψ ⇐⇒ 1

8π

∫
M2

d2x ∂µϕ∂µϕ

Global symmetries: U(1)Left × U(1)Right ∼= U(1)Axial × U(1)Vector

Axial sym.: ψ → e iγ3ξψ, ∂µ(ψ̄γµγ3ψ) = 0 ⇐⇒ e iϕ → e iϕe iξ, ∂µ∂µϕ = 0

Boson counterpart of Axial sym. is shift sym. and E.o.M

Vector sym.: ψ → e iΛψ, ∂µ(ψ̄γµψ) = 0

⇐⇒ e iϕ̃ → e iϕ̃e iΛ, ∂µ∂µϕ̃ = ϵµν∂µ∂νϕ = 0

ϕ̃ is dual scalar ∂µϕ̃ = ϵµν∂νϕ

Boson counterpart of Vector sym. is dual shift sym. and Bianchi

identity
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Breaking of Bianchi identity

Dual vertex operator e i ϕ̃(x) impose breaking of Bianchi id. at x .

In other words, ϕ̃(x) is a Lagrange multiplier which imposes

Bianchi id. L = · · ·+ i ϕ̃(x)∂µjV ,µ(x), jV ,µ(x) ∼ ϵµν∂νϕ

This story is almost same for lattice theories.

ϕ̃(x) → ϕ̃(ñ) (ñ : dual lattice) e.g. Berkowitz, Cherman, Jacobson ’23

In this method, breaking of Bianchi id. is imposed into a plaquette

to introduce a vector charged object ∂µjV ,µ(x) ∼ ∂µ(ϵµν∂νϕ) ̸= 0

We propose yet another formulation that respects “smoothness”
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Lattice field contents
Let us consider a 2D compact boson on the lattice e iϕ(n)

“Derivative” respecting the compactness

∂ϕ(n, µ) ≡ 1
i ln[e

−iϕ(n)e iϕ(n+µ̂)] = ∆µϕ(n) + 2πℓµ(n), ℓµ(n) ∈ Z

−π ≤ 1
i ln e

iϕ(n) < π, ϕ(n) = 1
i ln e

iϕ(n)

ϵµν∂ϕ(n, ν) are lattice counterparts of jV ,µ

Under the admissibility condition supn,µ |∂ϕ(n, µ)| < ϵ < π
2 ,

=⇒ ϵµν∆µ∂ϕ(n, ν) = 0 (Bianchi identity) e.g. Fujiwara, Suzuki, Wu, ’00

Admissibility imposes a conservation law corresponding to vector

symmetry on the lattice
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Excision method Abe, SO, Morikawa, Suzuki, Tanizaki ’23

We propose a definition of vector charge (Noether charge) that

keeps admissibility (in other word, without breaking of

ϵµν∆µ∂ϕ(n, ν) = 0)=⇒ Excision method (a charged object

corresponding to vector symmetry is a “hole”)

Excision method

We can introduce conserved and non-zero vector charge

m ≡ 1
2π

∑
(n,µ)∈∂D ∂ϕ(n, µ) ∈ Z

When the holes are sufficiently large, m can be non-zero value.

D
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Short proof

According to admissibility condition,

|∆1ℓ2(n)−∆2ℓ1(n)| = 1
2π |∆1∂ϕ(n, 2)−∆2∂ϕ(n, 1)| < ϵ

2π × 4 < 1

=⇒ ϵµν∆µ∂ϕ(n, ν) = 0 Here, the 4 is # of links in a plaquette

In the presence of “hole” D and considering
∑

(n,µ)∈∂D ∂ϕ(n, µ)

we can avoid the bound: ϵ
2π |∂D| > 1 =⇒

∑
(n,µ)∈∂D ∂ϕ(n, µ) ̸= 0

D

Excision method

We can introduce conserved and non-zero vector charge

m ≡ 1
2π

∑
(n,µ)∈∂D ∂ϕ(n, µ) ∈ Z
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Chiral gauge theories in continuum

Introducing flavor d.o.f. and gauging both U(1)Axial,α × U(1)Vector,α∫
M2

d2x
∑

α:flavor

ψ̄α{i /∂ + qV ,α /A+ γ3qA,α /A}ψα

Bosonized-counterpart:

∫
M2

d2x
∑

α:flavor

[
R2

4π
(∂µϕα + 2qA,αAµ)

2 +
iqV ,α

2π
Aµϵµν(∂νϕα + 2qA,αAν)

]

Under the gauge transf. (Λ is a gauge transf. parameter)

(gauge anomaly) ∝ (
∑
α

qA,αqV ,α)

∫
M2

d2x ΛF12

Our lattice formulation reproduces this structure!
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Couple to gauge fields on the lattice

“Covariant derivatives”

Dϕ(n, µ) ≡ 1
i ln

[
e−iϕα(n)U(n, µ)2qA,αe iϕα(n+µ̂)

]
Fµν(n) ≡ 1

i ln□ = ∆µAν(n)−∆νAµ(n) + 2πNµν(n)

Admissibility condition: supn,µ |Dϕα(n, µ)| < ϵ, supn,µ,ν |2qA,αFµν(n)| < δ

Analogue of Bianchi id.: ∆µDϕα(n, ν)−∆νDϕα(n, µ) = 2qA,αFµν(n)

Excision method works in gauge theory as well∑
(n,µ)∈∂D Dϕα(n, µ) = mα + 2qA,αF (∂D)

F (∂D) ≡ 1
i ln

∏
(n,µ)∈∂D U(n, µ)
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Gauged action

Our lattice action:

SB =
∑

flavor : α

∑
n∈M2

[
R2

4π
Dϕα(n, µ)Dϕα(n, µ) +

i

2π
qV ,αϵµνAµ(ñ)Dϕα(n + µ̂, ν)

+
i

2
qV ,αϵµνNµν(ñ)ϕα(n + µ̂+ ν̂)

]

For technical reasons, we put copies on dual lattice U(n, µ) = U(ñ, µ)
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Gauge anomaly

Under the gauge transformation,

eϕα(n) → eϕα(n)e−2qA,αiΛ(n),

U(n, µ) → e−iΛ(n)U(n, µ)e iΛ(n+µ̂),

U(ñ, µ) → e−iΛ(ñ)U(ñ, µ)e iΛ(ñ+µ̂)

Then, we can check

∆SB = (gauge anomaly) ∝ (
∑

α qA,αqV ,α)(
∑

n∈M2
Λ(ñ)F (n)+· · · )

Anomaly cancellation condition :
∑

α qA,αqV ,α = 0

=⇒ The gauge field can be dynamical.

=⇒ We can construct anomaly-free lattice chiral gauge theory!
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Selection rule I

In the presence of the “hole”(labeled by Ĩ ),

∆SB gets additional term: ∆SB = −i
∑

Ĩ ,α qV ,αmĨ ,αΛ(ñ∗,Ĩ )

e−i
∑

Ĩ,α qV,αmĨ,αΛ(ñ∗,̃I) shows vector gauge transf. of vector

charged objects

By definition from mĨ ,α,∑
Ĩ mĨ ,α = −2qA,α

2π (
∑

p∈M2−
∑

Ĩ DĨ
F12(p)+

∑
Ĩ F (∂DĨ )) = −2qA,αQ

Vector charges saturate 1st Chern number Q =⇒ index theorem!

ñ∗,Ĩ

D
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Selection rule II

The case of axial charged objects?

Axial charged objects are vertex operator: V{nα}(n) ≡ e i
∑

α nαϕα(n)

For a non-zero correlation function

(under global shift: ϕα(n) → ϕα(n) + ξα),∑
I nI ,α =

qV ,α

2π

∑
p̃∈M̃2

F12(p̃) = qV ,αQ̃ (I labels vertex operators)

Axial charges saturate 1st Chern number Q̃ on dual lattice

In the presence of holes, lattice and dual lattice do not have 1 to 1

correspondence =⇒ Generally Q ̸= Q̃ ñ∗,Ĩ

D

Assuming sufficiently “strict” admissibility (δ is small enough),

|Q − Q̃| < 1 =⇒ Q = Q̃
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Selection rule III

Considering Weyl fermion operators

U(1)Axial × U(1)Vector ∼= U(1)Left × U(1)Right

qR = qV + qA, qL = qV − qA

When Q = Q̃, results of “vector case” and ”axial case” can be

combined

As a result, consistent with the fermion number anomaly∫
M2

d2x ∂µJ
L,R
µ (x) = ∓qL,RQ (Q = 1

2π

∫
M2

F )
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Future directions

▶ Lattice formulation via non-abelian bosonization cf. Witten ’84

Our admissibility-respecting formulation may be compatible with

topologies of lattice gauge theories, including non-abelian cases

cf. Lüscher ’82

−i
2π

∮
Tr
{
g−1dg

} discretize∼ −i
2π

∑
log det

{
g(n + µ̂)g(n)−1

}
= 0 (w/ admissibility)

If
∑

→
∑

around hole, then winding # ̸= 0

▶ Generalization of Excision method to higher dimensions

In 4D U(1) lattice Maxwell theory, ‘t Hooft line can be defined by

using Excision method (hole ∼= S2 × S1)

=⇒ Witten effect and dyon’s statistics can be observed on lattice

(SO, arXiv:2411.xxxxx)
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Summary

▶ We construct 2D anomaly-free U(1) chiral gauge theory on

the lattice with exact gauge symmetry

▶ In paticular, the vector symmetry is exactly realized by

Excision method (Vector charged objects are “hole”) and

admissibility
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