HHIQCD2024

Contribution ID: 29

Type: 4th week (Nuclear matter under extreme conditions)

The Effect of Isovector Scalar Meson on Neutron Star Matter Based on a Parity Doublet Model

Thursday, November 7, 2024 5:30 PM (30 minutes)

We study the effect of the isovector-scalar meson $a_0(980)$ on the properties of nuclear matter and the neutron star (NS) matter by constructing a parity doublet model with including the a_0 meson based on the chiral $SU(2)_L \times SU(2)_R$ symmetry.

We also include the ω - ρ mixing contribution to adjust the slope parameter at the saturation.

We find that, when the chiral invariant mass of nucleon m_0 is smaller than about 800\MeV, the existence of a_0 (980) enlarges the symmetry energy by strengthening the repulsive ρ meson coupling. On the other hand, for large m_0 where the Yukawa coupling of a_0 (980) to nucleon is small, the symmetry energy is reduced by the effect of ω - ρ mixing.

We then construct the equation of state (EoS) of a neutron star matter to obtain the mass-radius relation of NS.

We find that, in most choices of m_0 , the existence of a_0 (980) stiffens the EoS and makes the radius of NS larger.

We then constrain the chiral invariant mass of nucleon from the observational data of NS, and find that 580~MeV

 $lesssimm_0$

lesssim860 MeV for $L_0 = 57.7$ MeV.

Primary author: KONG, Yuk Kei (Nagoya University)

Co-authors: Prof. HARADA, Masayasu (Nagoya University); Dr MINAMIKAWA, Takuya (Nagoya Univer-

sity)

Presenter: KONG, Yuk Kei (Nagoya University)

Session Classification: 1-day workshop (4th week)