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Long term problem:
Define instanton on lattice in a natural manner.

Conclusion:
Must refine Wilson's lattice gauge field at a definition level.
This can be—and has to be—done by higher category theory.

This leads to a systematic rethinking of what “lattice QFT” really 1is.

motivation, principle & math: [2406.06673]
explicitly: with Peng Zhang [2411.07195]



Long term problem:
Define instanton on lattice in a natural manner.

Conclusion:
Must refine Wilson's lattice gauge field at a definition level.
This can be—and has to be—done by higher category theory.

This leads to a systematic rethinking of what “lattice QFT” really 1is.

[ will NOT: introduce category theory itself
in fact, lattice theory helped me learn higher category theory

The story can be highly formal, but it can also be very physically intuitive.

motivation, principle & math: [2406.06673]
explicitly: with Peng Zhang [2411.07195]
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current methods
restricted config space,
cooling/flow,

fermion index
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Wilson’s lattice gauge theory: G d.o.f. on each link

HGl—)Z

links [
config space instanton number
connected discrete

any two configs can
continuously deform
to each other

either single-valued
or discontinuous map

same 1ssue for group cohomology lattice models for
topological order, when the group becomes continuous



Very general problem:

topological operators lost
when putting continuous-valued d.o.f. on lattice

H X — topological number

local

connected discrete

either single-valued
or discontinuous



topological operators lost
when putting continuous-valued d.o.f. on lattice
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topological operators lost

when putting continuous-valued d.o.f. on lattice

S* nlsm (XY): winding, vortex

U(1l) gauge: Dirac quantization, monopole,
abelian CS, abelian instanton

S?nlsm: Berry phase, skyrmion, hedgehog
S3 nlsm: WZW, skyrmion, hedgehog
SU(N) gauge: CS, instanton, Yang monopole

... whatever ...

7T physics
solved by Villainization

T2 physics
solved by
spinon-decomposition

7U3 (or higher) thSiCS
groups/fibre bundles fail

higher category theory
necessary
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becomes finite dimensional
but not in the naive way

conceptually refine to capture
homotopy / interpolation
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St nlsm (XY): Villainization

\ \/\’“
'(\ s A

we feel: w=1 w=()

Continuous deformable to each other!
(only on lattice, not in continuum)



St nlsm (XY): Villainization
—

If link embedded 1n continuum,
how does 6 iterpolate?



St nlsm (XY): Villainization

If link embedded in continuum, ) highest weight y
how does 6 iterpolate?

’Yl E R ei’yl — ei(HU/—H,U)

277 part unfixed V1 = 0y — 0, + 2y
sum over all possibilities with suitable weights



St nlsm (XY): Villainization

—

If link embedded 1n continuum,

how does 6 iterpolate?

(L

. ) highest weight y

j{:: ’yh/Qﬂ'—— EE::TNJ

[ on loop

winding well-defined



St nlsm (XY): Villainization
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St nlsm (XY): Villainization
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St nlsm (XY): Villainization

Y1 = Uy’

_9'0

27rml



St nlsm (XY): Villainization

S
= H/ o

ID3

- l, ml/ EZ

[[wi(w)

but Villain model allows us to do more:
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St nlsm (XY): Villainization

but Villain model al

/ =

S
U/

™ 46,
1/ %

ID3

l, ml/ EZ

invented by Berezinsky!

[Twi(w)

lows us to do more:

ID3

l ml/ EZ

vortex fugacity

or even a delta function
(manifests dual symm)
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vortex in 2d — now monopole 1n 3d
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U(1) lattice gauge theory: Villainization

S field on vertex — now U(1) gauge field 4 on link

real field on link — now real gauge flux /' on plaquette
winding in 1d — now Dirac quantized flux in 2d

vortex in 2d — now monopole 1n 3d

:.attice abelian iIlStaIltOIl Tin Sulejmanpasic, Christof Gattringer [1901.02637]
lattice fractional Hall conductivity rvchen 1902.06756)

lattice U(l) chiral Chern-Simons-Maxwell  ze-anxu, 1YChen [2410.11034]
N O
/
/ .
// N / A\ /\\ w

qx qx
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"new" fields,

some discrete
° deterministically
recovering the desired ¢ . coupling, :
homotopy information . 1.e. joint weight 7 topological numbers
in the continuum : 7
¢ _ - " probabilistically
* "traditional" fields ¢

7: and 2 physics on lattice (known):
form principal bundles



S*nlsm (XY): Villainization

S?nlsm: spinon-decomposition

/ / Berry curvature

Berry connection



seems now we want

skrymion / instanton

/ /WZW density / instanton density

27TZ — R WZW curving / CS
. 7
U ) — 777
o
U
79 i{
< SU(N)
T3

The “??” 1s on link (nlsm) or plaquette (YM), should compose.
But finite dimensional Lie group always has trivial 72 !



form a finite dimensional
higher category,

recovering the desired
homotopy information
in the continuum

anafunctor in cat theory

"new" fields,

,
some discrete

. Wically
< coupling,

L. joint weight s topological numbers

-~
-~
-~

O -7 probabilistically

. "traditional" fields ¢

-~

7: and 2 physics on lattice (known):
form principal bundles

More general cases:
Mathematically impossible for
group theory / fibre bundles to fulfill goal

need more flexible “rules of the game™



much like some kind of board game:

Which types of castle
are allowed to play here?

o




continuum gauge field: lattice gauge field:

looks simple, looks complicated,
but infinite dim. path int. but finite dim. path int.
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PM G [ i :utv—ug C
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Wilson’s theory



continuum gauge field: lattice gauge field:

looks simple, looks complicated,
but infinite dim. path int. but finite dim. path int.
Ly BEG,
Il I
PM G I g
U =1 e L, T BEG,
M I I
L G
Il I
,Co *

A grand picture is unfolding, where

Wilson's dream use lattice QFT to make sense of QFT
and

Grothendieck's dream use weak higher categories as foundation of homotopy theory

come into splice.
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Wilson’s traditional lattice gauge theory (we focus on SU(2) now)

Z = H/ W)

L gl/ESU(2)_ D

943

%%
: 3
0 o Dy, =00 k
g21 .
W decreases with A

— A

W only depends on eigenvalue — gauge invariance



refined version — categorical generalization of Villainization

/][I e
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with Peng Zhang
[2411.07195]




refined version — categorical generalization of Villainization

traditional link d.o.f.
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refined version — categorical generalization of Villainization
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refined version — categorical generalization of Villainization

cube d.o.f. — dynamical CS phase

d27 'y dcc’- I ]
HZ/; H/_wzwénz
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c h

cube weight — CS saddle & CS sensitivity (technical part)



refined version — categorical generalization of Villainization

hypercube d.o.f. — Villainization

S /5| |5 T

101 iCe , %
e H Wa(Ap, my) H Ws(e N o c.c.)
P c

topological theta term

hypercube weight
over instanton density
~dCy

Iy = o + th
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traditionally:

943

914[::]932 Dg, = pev‘pgg Up_1 e SU(2)

g21

traditional link weight: w

A

E;A

0 T

W only depends on eigenvalue — gauge invariance
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traditionally:

: 3
914[::{932 Dg, = U,e"?*° Up_1 e SU(2)
g21
n, N3
a b r1
’ f 4
Vg, Dg,
|
¥
Ny ——  m

a

think of the interpolation in SU(2)
pictured as a 3-ball with center=+1, surface=-1

ambiguous when: Dg, — —1



refined — different ways of interpolation
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refined — different ways of interpolation
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refined — different ways of interpolation

943

914[::{932 Dg, = peMW3 Up_1 e SU(2)

g21 Q
Yp = (Dgp, myp,Mp) €Y
b ’
E /1 Dg, 1
VB
BI Dg, /
o ¥ n
mp = + my = —
Dgp # —1 Dg, # +1

The m label does not form a group! And Y not fibre bundle!
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refined version — categorical generalization of Villainization

cube d.o.f. — dynamical CS phase
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Ws(e“ev? + c.c.)

gledcyMpedc Npedc

positive, increasing function

GZCC dynamical CS phase d.o.f. over the cube
C iC gO)

saddle point when @i — y/|y‘ =

the dynamical CS phase actually forms a U(1)
bundle over the space d.o.f. around the cube



Ws(e“ev? + c.c.)

gledcyMpedc Npedc

positive, increasing function

6’LCC dynamical CS phase d.o.f. over the cube
. (0
saddle point when @ZCC — y/|y‘ — 6@C§ )

CS saddle v/|v| constructed by standard interpolation
of gauge holonomy into cube (~ Liischer 1982)

so deviation of i from CS saddle e’

~ deviation from standard interpolation



Ws(e“ev? + c.c.)

gledcyMpedc Npedc

positive, increasing function

6’LCC dynamical CS phase d.o.f. over the cube
Ce ic{0)

saddle point when ei — ) / |y‘ =

CS saddle v/|v| constructed by standard interpolation
of gauge holonomy into cube (~ Liischer 1982)

so deviation of i from CS saddle e’

~ deviation from standard interpolation

CS sensitivity || approaches 0 when standard
interpolation into cube becomes ambiguous
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C(O)
To construct CS saddle V / ’V ’ — e"¢ " we need:

— for a given interpolation, an evaluation of the cube’s CS phase

crucial: we only consider interpolation of Wilson loops starting at vertices
—to avoid worrying about unnecessary gauge choices in the interior of cube

ny Ny
" i s given d.o.f. and interpolations
[ S on the plaquettes around
R : C / d
) 7 , .
Y / € y ; / construct a standard interpolation
| | . V into the interior of cube
a : ! b
s R B -
(0 'y, ng CS sensitivity ]1/’ approaches 0
| when standard interpolation ambiguous
@ :
n(ng) nqy
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ic(®)

To construct CS saddle V / ’V ’ =€ , we need:

— a standard interpolation of gauge holonomy into cube

in fact we only need the CS phase over all cubes on the boundary of hypercube

. .0~ ~(0) .5
in cube weight ezCC — ez(C C™)e |I/| — e’LCc |I/|
instanton density ~dCy, dC + dC}(LO)

over hypercube h= o T = o + tp,

only need dC}(LO) mod 27



iC ()

To construct CS saddle V / ’V ’ — € , we need:

— a standard interpolation of gauge holonomy into cube

Liischer has an expression for instanton density over a hypercube
given the interpolation in the cubes around

Epvpo _ _ _
“—pg / d3mTf[(Sn+ﬂ,u) 1auSn+ﬂ,u(Sn+ﬂ,u) 13psn+ﬂ,u(sn+ﬂ,u) 1aasn+ﬂ,u]
24m c(n+p,u)

+ / d23"Tr[Pn+/l+t7,uuap(Pn+ﬂ+f/,w)_1(Rn+ﬂ,u;V)_1aaRn+ﬂ,u;u]
p(n+a+o,u,v)

- / dsxTr[(Sn,u)_13vSn,u(Sn,u) _1apSn,u(Sn,u) _1(905,,,,“]
c(n,p)

- / dzxﬁ[Pn+9,wap(Pn+0,w)_1(Rn,n;V)_laaRn,u;V]} )
p(n+o,p,v)

but now we are using it differently:
—we allow general gauge holonomies, not just those close to 1

—only the phase, not a real number, since integer part depends on gauge
—CS phase saddle, not “the CS phase”; the latter fluctuates

—re-express the phase saddle in a manifestly gauge invariant form
to avoid unnecessary gauge choices ambiguities in the interior of cube



C(O)
To construct CS saddle V / ’V ’ — e"¢ " we need:

— a standard interpolation of gauge holonomy into cube

6l,uup

127 /c(n+i,1) &’z tr [T(z)"'9,T(2)T(z) '8, T (2)T () 0,T ()]

[ e [T (R - DO R @R, 1,0)
p(n+1+4,1,u)

+aVRn,1;p,(x - i)Rn+[L,u 1( )8 Rn+1 1; p( )_1

+auRn,1;u (a: - i)apRnJrﬁ,u;l (x)Rn+i,1;u(x)_1)]

mod 27 .

CS phase saddle around hypercube manifestly gauge inv

beautiful relation between CS in the space of gauge fields
and WZW 1n the space of Wilson lines
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positive, increasing function

6’LCC dynamical CS phase d.o.f. over the cube
Ce ic{0)

saddle point when ei — ) / |y‘ =

CS saddle v/|v| constructed by standard interpolation
of gauge holonomy into cube (~ Liischer 1982)

so deviation of i from CS saddle e’

~ deviation from standard interpolation

CS sensitivity || approaches 0 when standard
interpolation into cube becomes ambiguous
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refined version — categorical generalization of Villainization

hypercube d.o.f. — Villainization

S /5| |5 T

101 iCe , %
e H Wa(Ap, my) H Ws(e N o c.c.)
P c

topological theta term

hypercube weight
over instanton density
~dCy

Iy = o + th



Villainize the U(1) dynamical CS field on cube

instanton density - dCs, dCy, + dC}(LO)
h= &5 =

over hypercube o T lh o +uw €R

Instanton number I = j[ 1 = ZIh = Z L € Z
4d 3 .

hypercube weight
decreases with instanton density

Wa(Zy)

(5d cell Yang monopole dZ )



“delooped CS bundle 2-gerbe (as a cubicial weak 4-group)” construction
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“delooped CS bundle 2-gerbe (as a cubicial weak 4-group)” construction

hypercube d.o.f. — Villainization

| p’ 'm,p/=i e

1> [ |1/ 5|

101 iCe , %
e H Wa(Ap, my) H Ws(e N o c.c.)
p C

topological theta term

hypercube weight
over instanton density
~dCy

In = 2T T th



“delooped CS bundle 2-gerbe (as a cubicial weak 4-group)” construction

cube d.o.f. — dynamical CS phase

e[ ) s e ) fms
/ gl/ESU(Q)_ I pl my==% am ||t c T 2m - i h' Lh’EZ_
O T Walrmy) [[IWale“vr, 0o o +cc)| [[WiT)
p ¢ "

cube weight — CS saddle & CS sensitivity (technical part)



“delooped CS bundle 2-gerbe (as a cubicial weak 4-group)” construction

s /% mf % nx

p m I_:t n h, Lh/ EZ
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“delooped CS bundle 2-gerbe (as a cubicial weak 4-group)” construction

traditional link d.o.f.

ze=:1;[ /gyewi li> I i, H [ ns

p m l_:t n h, Lh, EZ

eiO1 H WQ()\p) mp) H WB(eiCc V;zeac,mpeacﬁpeac -+ C.C.) H W4(Ih)
p c h
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— Generalization to SU(N)

(. ) G373
(0,0) (0,0,0)
SU(2) SU(3)

Weyl alcove in Cartan subalgebra (space of eigenvalues)
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— Generalization to SU(N)

— Optimization of the weight functions in numerics (not my expertise)

— Integrating out d.o.f. on higher dim. cells generates
beyond-nearest-neighbor coupling for d.o.f. on lower higher dim. cells

PN

better control in renormalization
(recall vortex fugacity in BKT)

relation to Symanzik improvement?

— Extract physics of instanton density fluctuations

— Similar construction for S pion NLsM, get 773 baryons
but still need 4d WZW term, due to 775

— A lot of beautiful, deep themes in cat theory M@
thank you
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why cat(egory) necessary
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S nlsm (XY): Villainization S%nlsm: spinon-decomposition

skrymion .
erry curvature
<
27TZ —> R Berry connection
2nd, — R l
) U(l) — SU(2)

St 3
S2



S*nlsm (XY): Villainization

S?nlsm: spinon-decomposition

/ / Berry curvature

Berry connection



seems now we want
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skrymion / instanton

/ /WZW density / instanton density
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seems now we want

skrymion / instanton

/ /WZW density / instanton density

27TZ — R WZW curving / CS
. 7
U ) — 777
o
U
79 i{
< SU(N)
T3

The “??”” 1s on link (for nlsm), should be able to compose.

But finite dimensional Lie group always has trivial 72 !



We need:

coverings that are not fibre bundles

d.o.f. that can be composed, but result 1s non-unique,

and can talk about relations between different results

— more flexible “game rules” than groups

g / y {

S LS

h h



much like some kind of board game:

Which types of castle
are allowed to play here?

o




pion non-linear sigma model
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S nlsm: 2d WZW, 3d skyrmion, 4d hedgehog

Jv gu’

® > ®

traditional link field: Gur g, = € SU(2)

new link field: ¥ = (gurgy 'y mu,fy) €Y which covers SUQ2)

%% Wy
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m) = —




S nlsm: 2d WZW, 3d skyrmion, 4d hedgehog

given the vertex fields and link fields,
want to sample the surface, but not too much details:
deviation from min surface captured by U(1) — WZW integral

plaquette field:
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phase of u: volume of pyramid

| decreases as loop grows,
| =0 when min surf ambiguous
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S nlsm: 2d WZW, 3d skyrmion, 4d hedgehog

given the vertex fields and link fields,
want to sample the surface, but not too much details:
deviation from min surface captured by U(1) — WZW integral

plaquette field:

Wy, *
W2 (6 ugveap,mleap,ﬁleap + C'C.)
phase of u: volume of pyramid

| decreases as loop grows,
| =0 when min surf ambiguous

when each m; = +

2d lattice WZW: eik 2.p W



S nlsm: 2d WZW, 3d skyrmion, 4d hedgehog

cube field: Villainize the U(1) WZW field on plaquette
skrymion density S¢ := dW,/27m + s. € R

2
cube weight can be e.g. e~ VS /2

3d theta term: ei@ 2. Se



S nlsm: 2d WZW, 3d skyrmion, 4d hedgehog

cube field: Villainize the U(1) WZW field on plaquette
skrymion density S¢ := dW,/27m + s. € R

~VS82/2

cube weight can be e.g. e (being Gaussian 1s not crucial)

3d theta term: ei@ 2. Se

hypercube defect: dSp, = dsp € Z  baryon non-conservation

if forbid this by Lagrange multiplier eid’hdsh

then the U(1) baryon conservation is manifest



a general relation between
continuum QFT and lattice QFT
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systematically rethink about lattice QFT

field in continuum nlsm what we need on lattice

PIM — PIT
U U
U U
M — T — LZ SN PZ M N 7_)27"
U U U
U U U
L() —> M — T
more info

but still lost info



systematically rethink about lattice QFT

field in continuum nlsm what we need on lattice

Ed —> PdM — PdT

U U U
U U U
M=>T = L: = PM — P
U U U
Ly = PM —= PT
U U U

,C();) M — T

still continuum theory, no new info
but lattice perspective, no lost info



systematically rethink about lattice QFT

field in continuum nlsm what we need on lattice
inf dim
Ed —> PdM — PdT
U U U
U U U
M — T — £2 SN PZ M N PZT
U U U
U U U

,CO;) M — T

still continuum theory
no new 1nfo
but lattice perspective



systematically rethink about lattice QFT

field in continuum nlsm what we need on lattice
find finite dim equiv
L4 PEM PIT ET,
Il Il il il
b= 0 —p "l
M—=T — L, P2M P2T ET,
Il Il Il Il
L1 PM PT ET,
Il Il Il Il
Ly M T T

vague phys problem becomes
well-posed math problem !
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systematically rethink about lattice QFT

field 1n continuum nlsm

M—=T —

what we need on lattice

L, PEM PeT ET,
1) 1) ) )
b= — u ==
L, P2 M P2T ET,
1) 1) i) )
L PM PT ET,
1) ) ) )
Lo M T T

Resonates with development of homotopy theory in math!
Grothendieck’s dream 1n his Pursuing Stacks



systematically rethink about lattice QFT

field in continuum Yang-Mills what we need on lattice

Ly P M P?| BG| BEG,

1 1 U U

PM G I e S e S
u—=1u — L, P:M P?|BG| BEG,

M U U U Il

L PM P|BG]| G

1 1 U U

Take 7 = G and then “deloop” (involves Yang-Baxter equation) to get Yang-Mills

Yang-Baxter automatically resolved by the physically intuitive construction



