Phase Transition Scenarios in the Core of Neutron Star

Tianqi Zhao 趙天奇

Collaborators: Constantinos Constantinou, Mirco Guerrini, Madappa Prakash, Sophia Han, Christian Drischler, Sanjay Reddy, James Lattimer

HHIQCD at YITP, Oct 31, 2024

Maxwell Construction **Hybrid Neutron Stars**

- (Modified) Urca process $\bar{\nu} + u + e^- \leftarrow d \quad (+N)$ 1200 $(N+) u + e^- \to d + \nu$ -3) leads to $\mu_{\mu} + \mu_{e} = \mu_{d} = \mu_{s}$ (MeV fm
- Baryon number conservation: $n_u + n_d + n_s = n_0 = n_B/3$
- Local charge neutrality: $n_{e,Q} = \frac{-n_u}{3} - \frac{-n_d}{3} - \frac{-n_s}{3}$ $n_{e,N} = n_p$

Mechanical equilibrium

$$P_{npe} = P_{ude} = P$$

• Strong equilibrium

 $\mu_n = \mu_u + 2\mu_d = \mu$

$$n, p, e^{-} \qquad u, d, e^{-}$$

$$n_{n,p}, P, \mu \qquad n_{u,d}, P^{-}$$

- Local charge neutrality (Maxwell): $n_{e,Q} = \frac{-n_u}{3} - \frac{-n_d}{3} - \frac{-n_s}{3}$ 1200 $n_{e,N} = n_p$ 1000
- Leptons aren't balanced at the interface.
- Energy **isn't** minimized!

4

• Global charge neutrality (Gibbs):

$$n_{e} = fn_{e,N} + (1 - f)n_{e,Q}$$

$$n_{B} = f(n_{p} + n_{n}) + \frac{1 - f}{3}(n_{u} + n_{d} + n_{s})$$

Problem of Gibbs Construction

• e.g. volume fraction f = 0.5:

Surface energy increases \longrightarrow

- Gibbs construction assumes infinite mixing leading to infinite boundary.
- Gibbs construction is realistic only when surface tension is negligibly small.

Coulomb energy increases

• (local or global) charge neutrality condition determines the amount of boundary.

Between Maxwell & Gibbs Partially local & partially global

- Locally neutral lepton densities: $n_{e,N} = n_p, \ n_{e,Q} = \frac{2}{3}n_u - \frac{1}{3}n_d - \frac{1}{3}n_s$ 1200
- Global lepton density, $n_{e,G}$
- Total lepton density:

 $n_e = g(fn_{e,N} + (1 - f)n_{e,Q}) + (1 - g)n_{e,G}$

- $g = 0 \rightarrow$ Gibbs transition $g = 1 \rightarrow$ Maxwell transition
- g could be determined by Surface & Coulomb energy.

arXiv: 2302.04289

- 3)

(MeV

Between Maxwell & Gibbs 120 ZL+vMIT quark phase β -equilibrium 100 hadronic 80 phase (MeV) 60 g = 0(G)*g* = 0.2 40 q = 0.4g = 0.6q = 0.820 q = 1(M)500 1000 1250 1500 1750 750 2000 μ (MeV) arXiv: 24xx.xxxx

Extend to finite temperature:

• Introduce anti-particles as,

7

 $\mu_{e^-} = - \mu_{e^+}$ $\mu_{\mu^-} = - \mu_{\mu^+}$ $\mu_{u^-} = - \mu_{u^+}$ $\mu_{d^-} = - \mu_{d^+}$ $\mu_{s^-} = -\mu_{s^+}$

• Add photon contribution, $\varepsilon_{photon} \propto T^4$

arXiv: 1808.02858

arXiv: 2406.05267

Soft hadronic EOSs is flavored by ab-initio calculation, nuclear experiments & neutron star merger observation.

 ${\cal E}$

Maxwell Construction Inverted Hybrid Star C. Zhang, J. Ren 2023

Crossover Construction Smooth interpolation Masuda, Hatsuda, Takatsuka 2018 J. I. Kapusta, T. Welle 2021

Soft hadronic EOSs is flavored by ab-initio calculation, nuclear experiments & neutron star merger observation.

 ${\cal E}$

Quarkyonic Matter

• The hypothetical phase between hadronic matter and deconfined quark matter, with unclear chiral symmetry.

Credit: figure from David Blaschke

Sanjay and McLerran 2018

Dynamical realization:

K. Jeong et. al. 2020 T. Kojo & D. Suenaga 2021 Y. Fujimoto et. al. 2023

Extend isospin, flavor, finite T: Zhao & Lattimer 2020 S. Sen et. al. 2021 **D. Duarte et. al. 2021** J. Margueron et. al. 2021

Include better hadronic EOS:

G. Cao et. al. 2021 **A. Kumar et. al. 2022**

C. Xia et. al. 2023

B. Gao & M. Harada 2024

• QCD beta function: $\beta(\alpha_s) = q^2 \frac{\partial \alpha_s}{\partial q_2^2} = -\beta_0 \alpha_s^2 - \beta_1 \alpha_s^3 - \cdots$ where $\alpha_s = \frac{g^2}{4\pi}$, $\beta_0 = \frac{33 - 2N_f}{12\pi} > 0$, β_1

- Keep only the first term on the right-hand side, $\alpha_s \approx \frac{1}{\beta_0 \log q^2 / \Lambda_{QCD}^2}$ therefore $\lim_{q >> \Lambda_{QCD}} \alpha_s(q) \to 0$
- Perturbative QCD: QCD Lagrangian (quark-gluon coupling) + Analytical method (vacuum and ring diagram)

Asymptotic Free

Gross, Wilczek and Politzer 1973

$$P_1 = \frac{153 - 19N_f}{24\pi^2} > 0$$

Speculation from large N_c McLerran & Pisarski 2007

- Large N_c limit: $N_c \rightarrow \infty$ while fixing $\lambda_{'tHooft} = g^2 N_c$ and N_f : $m_{Debye}^2 \propto T^2$ for high temperature; $m_{Debye}^2 \propto \frac{\mu^2}{N_c} \rightarrow 0$ for high chemical potential.
- Asymptotic free + Confinement (at the same time) ???? Quark + Baryon = Quarkyonic matter

Quarkyonic Matter Momentum Space

- Perturbative quarks = quarks deep inside Fermi sphere
- Baryons = triple-pair of quarks near Fermi surface

Nucleons are degenerate with quarks (quark-hadron duality)

Quark Hadron Duality

Quarks from different baryon may subject to Pauli Blocking

- Gaussian wavepacket for quarks in baryon: $|\psi_O(k)|^2 \propto e^{-k^2/\Lambda^2}$ where $\Lambda \approx 200$ MeV for $\langle R^2 \rangle \approx 0.61$ fm
- Baryons cannot follow free Fermi gas at density, $n_B^{id,sat} \approx 0.09 \text{ fm}^{-3} \left(\frac{\Lambda}{200 \text{ MeV}}\right)^3$ T. Kojo & D. Suenaga 2021
- Modified Gaussian wavepacket: $|\psi_Q(k)|^2 \propto e^{-k^2/\Lambda^2}/k^2$ Y. Fujimoto et. al. 2023
- We apply wavefunction from the Bag model. K. Saito & A. W. Thomas 1994

MTbagmodel

- Developed at Massachusetts Institute of Technology (MIT) in 1974.
- The total energy of the bag,
- Solving particles in a spherical infinite potential well, $\Omega_q = 2.04$ (ground state) $\frac{dL_b}{dR_b} = 0 \longrightarrow 4\pi R_b^4 B + Z = \sum N_q \Omega_q \quad (2)$ The bag radius is fixed by minimization, \boldsymbol{Q}

• Bag constant $B = 0.144 \text{ GeV}^4$, $Z = 2.55 \text{ fixed by } E_h = 939 \text{ MeV}$, $R_h = 1 \text{ fm}$.

Quarks in MIT bag

• Momentum space: $\rho(k) = (\hat{f}^2 + \hat{g}^2)/(32\pi^4)$

Quarks in extended MIT bag Stationary bag (in bag frame)

• Quark wave function: f(r), g(r)

• Momentum space: $\hat{f}(r)$, $\hat{g}(r)$

Quarks in extended MIT bag Stationary bag (in bag frame)

• Quark wave function: f(r), g(r)

• Momentum space: $\rho(k) = (\hat{f}^2 + \hat{g}^2)/(32\pi^4)$

Quarks in extended MIT bag Stationary bag (in bag frame)

• Quark wave function: f(r), g(r)

• Momentum space: $\rho_{FFG}(k) = 3/(4\pi^3 n_B)$

Quarks in extended MIT bag Moving bag (in lab frame)

- Bag as nucleon forms its own Fermi Sea $p \in [0, p_F]$, determined by baryon density n_B , $n_B = \frac{p_F^3}{3\pi^2}$
- Quark in bag at lab frame, $k_{lab} = \sqrt{(p/3)^2 + k^2 - 2pk\cos(\theta)}$

9

• Bag as nucleon forms its own Fermi Sea $p \in [p_{-}, p_{+}]$, determined by baryon density n_B ,

• Bag as nucleon forms its own Fermi Sea $p \in [p_{-}, p_{+}]$, determined by baryon density n_B ,

_
_
-
_
-
-
_
-
-
-
-
_
-
_
_
1 -
/
_
-
-
-
-
- - - -
- - - -
- - - - - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - - - - - - - - - - - -

Summary

- The traditional MIT bag model can be extended to finite potential.
- Quarks in the extended MIT bag model have lower momentum which can saturate when hadron-to-quark transition begins.
- Due to the Pauli-exclusion of quarks in nucleons, the low momentum states of nucleons are excluded, pushing nucleons to higher energy states.
- Quarkyonic EOS can robustly stiffen a soft hadronic EOS without fine-turning.

Hadron-quark Transition in Neutron Star Core

Soft hadronic EOSs is flavored by ab-initio calculation, nuclear experiments & neutron star merger observation. arXiv: 2406.05267 arXiv: 1808.02858

arXiv: 24xx.xxxx arXiv: 2302.04289 Between Maxwell & Gibbs

uark EOS

Crossover transition

Quarkyonic transition

arXiv: 2004.08293 arXiv: 24xx.xxxx

Thank you!

 ${\cal E}$ arXiv: 2009.06441