

Simulating Floquet scrambling circuits on trapped-ion quantum computers

Kazuhiro Seki, Y.K., Tomoya Hayata, Seiji Yunoki, arxiv:2405.07613

Yuta Kikuchi (Quantinuum)

HHIQCD2024@YITP, Kyoto

© 2024 Quantinuum. All Rights Reserved.

Introduction

Need to cope with significant noise!! (What can we do with **50-100 qubits** and **gate fidelity 99.9%**, **99.99%**, ...?)

Digital quantum simulation on noisy hardware

Setup

- Measure a local observable
- Circuit has geometrically local connectivity

Digital quantum simulation on noisy hardware

Setup

- Measure a local observable
- Circuit has geometrically local connectivity

Crude estimate of error

- Dominant source of error is 2-qubit gates
- Yellow contains N_{2Q} 2-qubit gates
- Model the noisy circuit by the reduced density matrix

$$\rho_A^{\text{noisy}} = f \rho_A^{\text{ideal}} + (1 - f) \frac{I^{|A|}}{2^{|A|}}, \qquad f = \left(1 - p_{2Q}\right)^{N_{2Q}}$$

• Expectation value of traceless operator A is

 $\operatorname{Tr}_{A}[A\rho_{A}^{\operatorname{noisy}}] = f \operatorname{Tr}_{A}[A\rho_{A}^{\operatorname{ideal}}]$

© 2024 Quantinuum. All rights reserved.

Digital quantum simulation on noisy hardware

Hamiltonian simulation by Trotterization

$$H = H_1 + H_2$$
$$e^{-iHt} \approx \left(e^{-iH_1T}e^{-iH_2T}\right)^{t/T}$$

Crude estimate of error

- Parameters: t = 5, T = 0.1, N = 20
- # of 2Q gates: $N_{2Q} \approx N \frac{t}{T} = 1000$
- 2Q gate error: $p_{2Q} = 2 \times 10^{-3}$
- Expectation value of traceless operator A is

 $\text{Tr}_{A}[A\rho_{A}^{\text{noisy}}] = f \text{Tr}_{A}[A\rho_{A}^{\text{ideal}}], \quad f = (1 - p_{2Q})^{N_{2Q}} = 0.135$

Floquet dynamics

Floquet dynamics:

- Periodically driven dynamics described by Hamiltonian H(t + T) = H(t)
- Floquet systems eventually heat up to infinite temperature by acquiring energy from the driving force (Floquet heating)
 Lanzarides, Das & Moessner '14; D'Alessio & Rigol '14;

 $\langle \psi(t)|A|\psi(t)\rangle \approx \operatorname{Tr}[A(I^N/2^N)] \quad \text{for} \quad |\psi(t)\rangle = \mathcal{T}e^{-i\int_0^t dt' H(t')} |\psi(0)\rangle$

Abanin, Roeck & Huveneers '15;

Mori, Kuwahara & Saito '16

Floquet dynamics

Floquet dynamics:

- Periodically driven dynamics described by Hamiltonian H(t + T) = H(t)
- Floquet systems eventually heat up to infinite temperature by acquiring energy from the driving force (Floquet heating)
 Lanzarides, Das & Moessner '14; D'Alessio & Rigol '14;

 $\langle \psi(t)|A|\psi(t)\rangle \approx \operatorname{Tr}[A(I^N/2^N)] \quad \text{for} \quad |\psi(t)\rangle = \mathcal{T}e^{-i\int_0^t dt' H(t')} |\psi(0)\rangle$

Trotterization

- Trotter dynamics for time mT, $(e^{-iH_1T/2}e^{-iH_2T/2})^{2m}$, is a Floquet dynamics of m cycles
- Qualitative change happens as the period T is increased
- \rightarrow Floquet heating happens during Trotter dynamics

Heyl, Hauke & Zoller '18; Varnier, Bertini, Giudici & Piroli '23

Abanin, Roeck & Huveneers '15;

Mori, Kuwahara & Saito '16

Information scrambling by Floquet circuits

Kicked-Ising model Prosen '02, '07

- $U_{\rm F} = {\rm e}^{-{\rm i} H_Z {T \over 2}} {\rm e}^{-{\rm i} H_X {T \over 2}},$
- $H_Z = -J \sum_i Z_i Z_{i+1} + B_Z \sum_i Z_i$, $H_X = B_X \sum_i X_i$
- Maximally chaotic point at $|JT| = |B_XT| = \frac{\pi}{2}$

Information scrambling by Floquet circuits

Kicked-Ising model Prosen '02, '07

- $U_{\rm F} = {\rm e}^{-{\rm i} H_Z {T \over 2}} {\rm e}^{-{\rm i} H_X {T \over 2}},$
- $H_Z = -J \sum_i Z_i Z_{i+1} + B_Z \sum_i Z_i, \quad H_X = B_X \sum_i X_i$
- Maximally chaotic point at $|JT| = |B_XT| = \frac{\pi}{2}$

Information scrambling:

- A process of the lost information spreading across the system
- Scrambling dynamics makes it hard to recover the initial information
- \rightarrow Diagnose the complexity of dynamics

Experiments on trapped-ion quantum computers

GOAL:

Access the feasibility of scrambling simulation on the current hardware

Seki, YK, Hayata, Yunoki '24

- Hayden-Preskill recovery protocol
- Interferometric protocol for OTOCs
- Thermal expectation value with microcanonical TPQ states

System Model H1 Available on various platforms

- 99.91% Two-qubit gate fidelity (arbitrary angle)
- 20 qubits
- 99.998% Single-qubit gate fidelity
- Measurement cross talk error < 0.01%
- All-to-all-connectivity
- SPAM fidelity > 99.7%

 $\ensuremath{\mathbb{C}}$ 2024 Quantinuum. All rights reserved. System Models H1 and H2 are powered by Honeywell.

★t

Larkin & Ovchinikov 1969; Shenker & Stanford 2014

Operator growth

© 2024 Quantinuum. All rights reserved.

Larkin & Ovchinikov 1969; Shenker & Stanford 2014

 $\mathbf{OTOC} = \langle \boldsymbol{O}_{\boldsymbol{A}} \boldsymbol{O}_{\boldsymbol{D}}(t) \boldsymbol{O}_{\boldsymbol{A}}^{\dagger} \boldsymbol{O}_{\boldsymbol{D}}(t)^{\dagger} \rangle$

Interferometric protocol

 $OTOC = \langle O_A O_D(t) O_A^{\dagger} O_D(t)^{\dagger} \rangle$

Swingle, Bentsen, Schleier-Smith & Hayden '16 Swingle & Halpern '18 Mi et.al. '21

Interferometric protocol

 $0TOC = \langle Z_1 X_n(t) Z_1 X_n(t) \rangle$ $0TOC' = \frac{\langle Z_1 X_n(t) Z_1 X_n(t) \rangle}{\langle Z_1 I_n(t) Z_1 I_n(t) \rangle} : \text{mitigates incoherent errors}$

 $\langle Z_1 I_n(t) Z_1 I_n(t) \rangle = 1$ w/o noise

Swingle, Bentsen, Schleier-Smith & Hayden '16 Swingle & Halpern '18 Mi et.al. '21

Interferometric protocol

 $OTOC = \langle Z_1 X_n(t) Z_1 X_n(t) \rangle$

 $0TOC' = \frac{\langle Z_1 X_n(t) Z_1 X_n(t) \rangle}{\langle Z_1 I_n(t) Z_1 I_n(t) \rangle}$: mitigates incoherent errors

Setup

.

19-qubit spin chain + 1 ancilla qubit

$$U_F = \mathrm{e}^{-\mathrm{i}H_Z \frac{T}{2}} \mathrm{e}^{-\mathrm{i}H_X \frac{T}{2}}$$

367 two-qubit gates inside the causal cone at maximum

© 2024 Quantinuum. All rights reserved.

OTOCs [Experiment]

Seki, YK, Hayata, Yunoki '24

 $OTOC_{X} = \langle Z_1 X_n(t) Z_1 X_n(t) \rangle$

 $0\text{TOC}_{\text{I}} = \langle Z_1 I_n(t) Z_1 I_n(t) \rangle \approx \left(1 - p_{2\text{Q}}\right)^{N_{2\text{Q}}} \approx 0.998^{N_{2\text{Q}}}$

Observations

- OTOC₁ decays due to hardware noise
- $(1 p_{2Q})^{N_{2Q}}$ approximates $OTOC_{I}$ very well

OTOCs [Experiment]

exact

Dashed:

Seki, YK, Hayata, Yunoki '24

Left: $0TOC = \langle Z_1 X_n(t) Z_1 X_n(t) \rangle$ Right: $0TOC' = \frac{\langle Z_1 X_n(t) Z_1 X_n(t) \rangle}{\langle Z_1 I_n(t) Z_1 I_n(t) \rangle}$

Observations

- OTOC' suffers less from noise at early times
- Statistical error of OTOC' is amplified at late times

OTOCs [Experiment]

 $OTOC' = \frac{\langle Z_1 X_n(t) Z_1 X_n(t) \rangle}{\langle Z_1 I_n(t) Z_1 I_n(t) \rangle}$

Seki, YK, Hayata, Yunoki '24

Observations

- Ballistic growth of entanglement
- Statistical error of OTOC' is amplified at late times

n

Discussion

Circuit fidelity is crudely (sometimes accurately) estimated by

 $f = \left(1 - p_{2Q}\right)^{N_{2Q}}$

Geometrically local models requires poly(N) gates to scramble information

- 1D geometrically circuit requires $t \approx O(N)$ for the entire system to get involved: $N_{gate} \sim O(N^2)$
- E.g. we used 400 2Q gates for the 20-qubit 1D system
 - ⇒ a 40-qubit system requires 4 times larger gate counts ~ 1600 2Q gates : $f = 0.999^{1600} \approx 0.2$

Discussion

Circuit fidelity is crudely (sometimes accurately) estimated by

 $f = \left(1 - p_{2Q}\right)^{N_{2Q}}$

Geometrically local models requires poly(N) gates to scramble

- 1D geometrically circuit requires $t \approx O(N)$ for the entire system to get involved: $N_{gate} \sim O(N^2)$
- E.g. we used 400 2Q gates for the 20-qubit 1D system \Rightarrow a 40-qubit system requires 4 times larger gate counts ~ 1600 2Q gates : $f = 0.999^{1600} \approx 0.2$

What if hardware result deviates from the estimate?

- Memory error (on idling qubits, during ion shuttling)
- SPAM error (bias between $0 \rightarrow 1$ and $1 \rightarrow 0$)
- Gate counting analysis overestimates the error

C