

The Physics of Parity-Doubled Nucleons at High Density

Chihiro Sasaki Institute of Theoretical Physics University of Wroclaw, Poland & SKCM², Hiroshima University, Japan

Outline

Clarify the role of $N^*(\frac{1}{2})$ near chiral restoration

cf. $\sigma(0^+)$ forming a parity doublet with pions

- I. Net-baryon number fluctuations near LG & chiral phase boundaries
 - DeTar-Kunihiro model (aka parity doublet model)
 [DeTar & Kunihiro (89)]
- II. Emergent chiral symmetry in neutron matter
 - P-wave neutron superfluidity

[Tamagaki (70); Takatsuka & Tamagaki (71)]

DeTar-Kunihiro/Parity doublet model

❑SU(2) chiral transformation of 2 nucleons → how to assign 2 indep. rotation to them?

$$\mathcal{L}_m = m_0 \left(\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2 \right) \Rightarrow m_{N_{\pm}} = \frac{1}{2} \left[\sqrt{c_1 \sigma^2 + 4m_0^2} \mp c_2 \sigma \right]$$

[DeTar and Kunihiro, 1989]

Parity doubling of baryons

$$M_{\pm} = \sqrt{m_0^2 + c_1^2 \sigma^2 \mp c_2 \sigma} \xrightarrow{\sigma \to 0} m_0$$

Caution

■N*(1535): the lowest-lying resonance

- $\pi N \& \eta N$ interactions in a dynamical approach
- cf. the nature of $f_0(500)$ vs. σ meson in LSM

Hadronic picture at high density

- A consistent description for CS restoration
- CS realized linearly \rightarrow parity (chiral) doublet

 $\boldsymbol{\boldsymbol{\ast}}\mathcal{L}_{eff}$ near CSR; Symmetries & universality

FLUCTUATIONS AND CORRELATIONS OF BARYONIC CHIRAL PARTNERS

V. Koch, M. Marczenko, K. Redlich and C. Sasaki, Phys.Rev.D 109 (2024); M. Marczenko, K. Redlich and C. Sasaki, arXiv:2410.21746 [nucl-th]

Net proton vs. baryon number fluct.

 χ_2^B sensitive to the QCD phase transition

- →Net proton fluctuations as a good proxy for net baryon fluctuations: folklore
- ✓ Nucleon parity doublet: N(939) & N*(1535)
 - Mean: $\langle N_B \rangle \equiv \kappa_1^B = \kappa_1^+ + \kappa_1^-$
 - Variance: $\langle \delta N_B \delta N_B \rangle \equiv \kappa_2^B = \kappa_2^{++} + \kappa_2^{--} + 2\kappa_2^{+-}$
 - Cumulants → susceptibilities:

 $\kappa_n^B = VT^3\chi_n^B$ $\chi_2^B = \chi_2^{++} + \chi_2^{--} + 2\chi_2^{+-}$

• Sign and strength of χ_2^{+-} ?

Thermodynamics of parity doubler

Linear sigma model for (σ,π) , ω , (N,N^*) & MF \Box New chemical potentials $\mu_{+,-}$ for N,N* \Box Set at the end $\mu_{\pm} = \mu_N = \mu_B - g_{\omega}\omega$ \Box Susceptibilities from thermodynamics pot. $\Omega = \Omega_+ + \Omega_- + V_{\sigma} + V_{\omega}$

Liquid-gas vs. chiral

- **L**G dominated by χ_2^{++}
- Chiral dominated by both, but $\chi_2^{--} > \chi_2^{++}$
- **D**Peaks diminished by $\chi_2^{+-} \rightarrow$ weak signal in χ_2^B

Liquid-gas vs. chiral

□Increasing T → 2 peaks getting closer □Qualitative difference of χ_2^{++} from χ_2^{--} □Stronger signal left in χ_2^B

χ_2/χ_1 along the phase boundary VP of LG VCD CP

The net-proton fluctuations do not necessarily reflect the net-baryon fluctuations at the chiral phase boundary.

Isospin correlations near LG

 $\chi_n^B \not\approx \chi_n^p$

S. Yasui, M. Nitta and C. Sasaki, arXiv:2409.05670

SUPERFLUIDITY IN NEUTRON STARS

Superfluidity in neutron stars

□s-wave superfluid by ¹S₀ [Migdal, '60]

 \Box p-wave superfluid by ³P₂ at $\rho/\rho_0 > \frac{1}{2}$ [Tabakin, '68]

- ✓ Pulser glitches
- ✓ Rapid cooling

- L: angular momentum J: spin+angular momentum
- □This study: Cooper pairing of parity-doubled neutrons at high density → the role of N*
 - Generalized χ -sym G such that G \supset naïve&mirror $G = U(1)_{1L} \times U(1)_{1R} \times U(1)_{2L} \times U(1)_{2R}$
 - Common operators to the naïve & mirror assign.

Symmetries

 $\begin{array}{c} \Box U(1)_L \times U(1)_R \text{ chiral symmetry} \\ (n, n^*) \Leftrightarrow (\psi_1, \psi_2), \ \psi_i = \psi_{iL} + \psi_{iR} \end{array} \end{array}$

Naïve assignment

 $\psi_{1L} \to U_L \psi_{1L}, \quad \psi_{2L} \to U_L \psi_{2L}, \quad \psi_{1R} \to U_R \psi_{1R}, \quad \psi_{2R} \to U_R \psi_{2R}$

Mirror assignment

 $\psi_{1L} \rightarrow U_L \psi_{1L}, \quad \psi_{2L} \rightarrow U_R \psi_{2L}, \quad \psi_{1R} \rightarrow U_R \psi_{1R}, \quad \psi_{2R} \rightarrow U_L \psi_{2R}$

Generalized chiral symmetry

 $G = U(1)_{1L} \times U(1)_{2L} \times U(1)_{1R} \times U(1)_{2R}$ $\psi_{1L} \rightarrow U_{1L}\psi_{1L}, \quad \psi_{2L} \rightarrow U_{2L}\psi_{2L}, \quad \psi_{1R} \rightarrow U_{1R}\psi_{1R}, \quad \psi_{2R} \rightarrow U_{2R}\psi_{2R}$

Naïve: $U_{1L} = U_{2L}, U_{1R} = U_{2R}$ Mirror: $U_{1L} = U_{2R}, U_{1R} = U_{2L}$

Symmetries

 $\begin{array}{ll} \begin{array}{ll} \text{Define 2 symmetries as} & [\psi_L^t = (\psi_{1L}, \psi_{2L})^t] \\ \psi_L \to e^{i\theta_L} \psi_L, & \psi_R \to e^{i\theta_R} \psi_R, & \text{with} & (e^{i\theta_L}, e^{i\theta_R}) \in \mathrm{U}(1)_L \times \mathrm{U}(1)_R \\ \psi_L \to e^{i\tau_3\theta_L} \psi_L, & \psi_R \to e^{i\tau_3\theta_R} \psi_L, & \text{with} & (e^{i\tau_3\theta_L}, e^{i\tau_3\theta_R}) \in \mathrm{U}(1)_{(1-2)L} \times \mathrm{U}(1)_{(1-2)R} \\ \end{array} \\ \begin{array}{l} \mathrm{U}(1)_{1L} \times \mathrm{U}(1)_{2L} = \frac{\mathrm{U}(1)_L \times \mathrm{U}(1)_{(1-2)L}}{\mathbb{Z}'_{2L}}, & \mathrm{U}(1)_{1R} \times \mathrm{U}(1)_{2R} = \frac{\mathrm{U}(1)_R \times \mathrm{U}(1)_{(1-2)R}}{\mathbb{Z}'_{2R}} \end{array} \end{array}$

 $\begin{aligned} & \clubsuit \text{Global sym } \mathcal{G} \text{ and its subgroups} \\ & \text{U}(1)_{L} \times \text{U}(1)_{R} \subset \frac{\text{U}(1)_{L} \times \text{U}(1)_{(1-2)L}}{\mathbb{Z}'_{2L}} \times \frac{\text{U}(1)_{R} \times \text{U}(1)_{(1-2)R}}{\mathbb{Z}'_{2R}} = \text{U}(1)_{1L} \times \text{U}(1)_{2L} \times \text{U}(1)_{1R} \times \text{U}(1)_{2R} \\ & \clubsuit \text{ Emergent chiral symmetry for } (\psi_{1}, \psi_{2})^{t} \\ & \text{U}(1)_{(1-2)L} \times \text{U}(1)_{(1-2)R} \end{aligned}$

Both naïve & mirror as subgroups of ECS

\Box Pairing formation \rightarrow 4-point interactions

 $\mathcal{L}_{com} = \bar{\psi}_1 i \gamma \partial \psi_1 + \bar{\psi}_2 i \gamma \partial \psi_2$ $- 4g_{\perp} ((\bar{\psi}_1 \psi_1)^2 + (\bar{\psi}_1 i \gamma_5 \psi_1)^2) - 4g'_{\perp} ((\bar{\psi}_2 \psi_2)^2 + (\bar{\psi}_2 i \gamma_5 \psi_2)^2)$ $- 8g_{\parallel} ((\bar{\psi}_1 \psi_2) (\bar{\psi}_2 \psi_1) + (\bar{\psi}_1 i \gamma_5 \psi_2) (\bar{\psi}_2 i \gamma_5 \psi_1)).$ $\square Special case: 3 equal coupling constants$ $\rightarrow SU(2)_L \times SU(2)_R emergent chiral sym.$

 $U(1)_{1L+2L} \times U(1)_{1R+2R}$

 $U(1)_{1L+2R} \times U(1)_{1R+2L}$

Mean-field analyses

\Box A simplified Lagrangian assuming $g_{\perp} = g'_{\perp}$

 $\mathcal{L}_{com} = \bar{\psi}i\gamma\partial\psi - 2g_{\perp}\left(\left(\bar{\psi}\tau_{0}\psi\right)^{2} + \left(\bar{\psi}\tau_{3}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau_{0}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau_{3}\psi\right)^{2}\right) \\ - 2g_{\parallel}\left(\left(\bar{\psi}\tau_{1}\psi\right)^{2} + \left(\bar{\psi}\tau_{2}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau_{1}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau_{2}\psi\right)^{2}\right),$

Nambu-Gor'kov formalism, mean-field approx. to get the thermodynamic potential

• Pairings [note: $\psi_C = C\gamma^0 \psi^*$, $C = i\gamma^2 \gamma^0$]

• $\overline{\psi}_{C} \overline{\gamma} \gamma_{5} \tau_{a} \psi$: vector (a=0,1,3), symmetric $\rightarrow S_{a} 1^{-1}$

• $\bar{\psi}_C \vec{\gamma} \tau_2 \psi$: axial-vector, anti-symmetric $\rightarrow A 1^+$

Phase diagram

Cooper pairs: exp. values of $S_a 1^-$ and $A1^+$

$\begin{array}{l} \hline \textbf{Dynamical symmetry breaking} \\ \frac{U(1)_L \times U(1)_{(1-2)L}}{\mathbb{Z}'_{2L}} \times \frac{U(1)_R \times U(1)_{(1-2)R}}{\mathbb{Z}'_{2R}} \times \mathrm{SO}(3)_{\mathrm{S}} \end{array}$

- □ Vectorial symmetry $U(1)_{L+R}$ broken → superfluid phonons
- \Box Axial symmetry $U(1)_{L-R}$ unbroken
- Emergent chiral symmetry broken to $U(1)_{(1-2)(L+R)} \rightarrow$ emergent pions
- □Spatial rotation symmetry broken to $SO(2)_S$ → magnons

✤NG bosons as sexaquark states w/ B=2: exotic

SUMMARY

Conclusions

□Negative correlations between N and N*

- *χ*^B₂ at the chiral may not reflect *χ*^B₂ at the chiral phase boundary.
- $\chi_2^{++,--,+-}$ in other non-perturbative approaches

Emergent chiral symmetry at high density

- New superfluidity in NSs, strong anisotropy
- Toward understanding of multi-quark states in dense QCD
- Specific in mirror model? Vortices? Cooling? Interface to QM?

BACKUP

Correlations between N & N*

Dirac points

Single-particle energy with a gap $\vec{\delta} = (0,0,\delta)$ Dirac points (massless) at $p_z = \pm \sqrt{\mu^2 + \delta^2}$

$$\varepsilon_q \cong \sqrt{\frac{q_x^2 + q_y^2}{1 + \frac{\mu^2}{\delta^2}} + q_z^2}$$

➢ Propagation along x&y directions in v ≪ 1
 ➢ Propagation along z direction in v = c = 1
 → Anisotropy in transport phenomena, NS cooling