Computing mass spectra of gauge theories in the Hamiltonian formalism

- Akira Matsumoto (YITP, Kyoto U, RIKEN iTHEMS) collaboration with
- Etsuko Itou (YITP, Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP, Kyoto U)
 - JHEP11 (2023) 231 [2307.16655]
 - JHEP09 (2024) 155 [<u>2407.11391</u>]
 - HHIQCD2024, 13 November 2024 @YITP

Background: mass spectrum of QCD

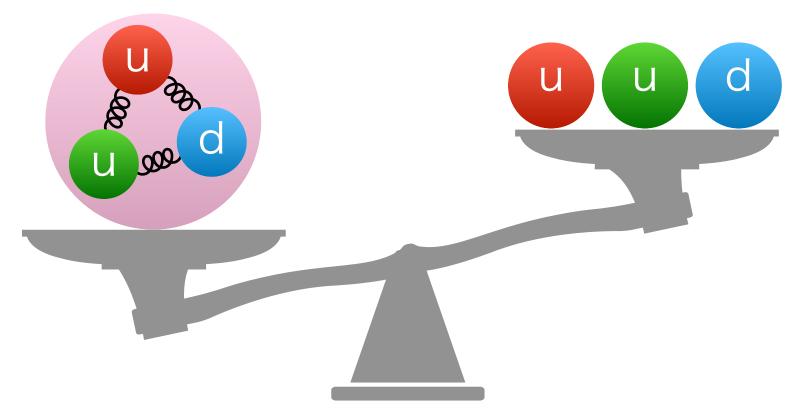
- quark confinement in QCD
- hadrons are much heavier than quarks

u/d quark: $m_{\mu} \sim 2$ MeV, $m_d \sim 5$ MeV π + meson (u, d): 140 MeV $\gg m_{\mu} + m_d$ proton (u, u, d): 938 MeV $\gg 2m_{\mu} + m_{d}$

nonperturbative calc. is essential to understand the properties of hadrons •

motivation:

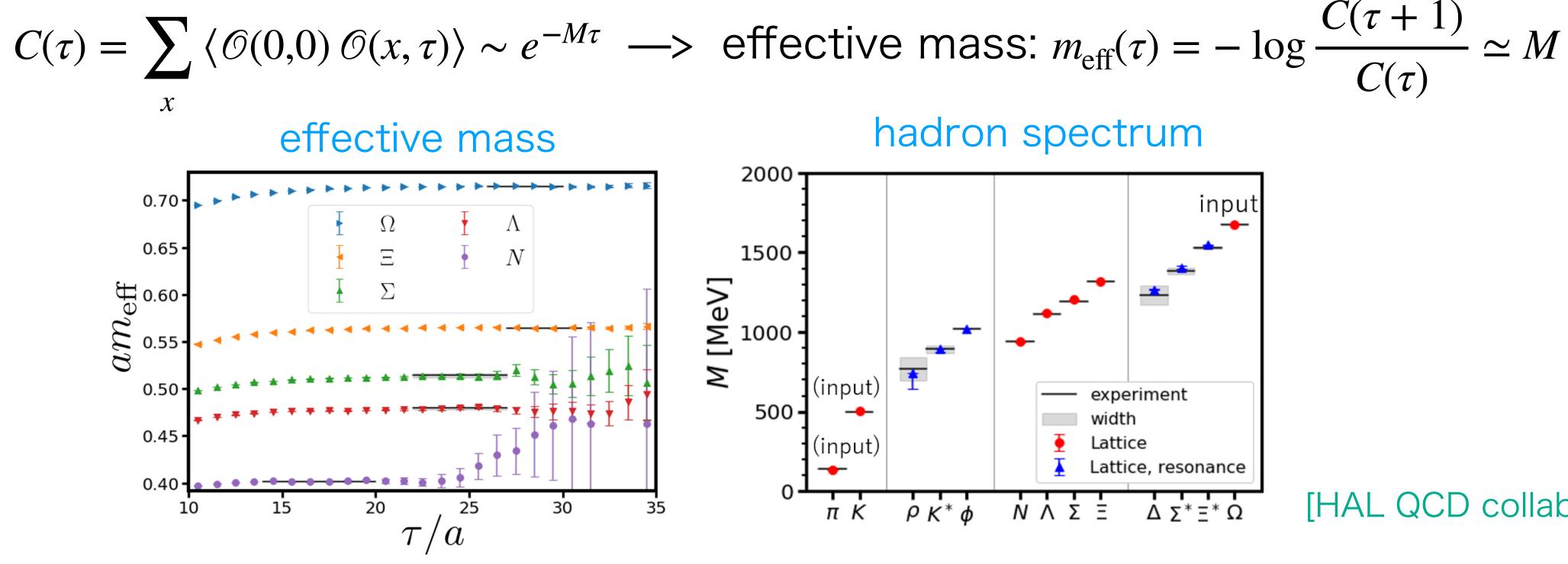
··· low-energy d.o.f. are not quarks but composite particles (hadrons)



Numerically investigate low-energy spectra of gauge theories such as QCD

Mass spectrum by lattice QCD

- well-established method: Monte Carlo simulation of the lattice gauge theory (Lagrangian formalism)
- obtain hadron masses from imaginary-time correlation functions •



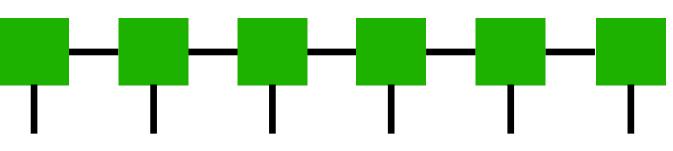
[HAL QCD collab. (2024)]

Hamiltonian formalism

- logical Monte Carlo method cannot be applied to models with complex actions
- \rightarrow sign problem (finite density QCD, topological term, real-time evolution, \cdots) Tensor network and quantum computing in Hamiltonian formalism can be complementary approaches!
 - free from the sign problem
 - analyze excited states directly

aim of this work:

computing the hadron mass spectrum in Hamiltonian formalism that is applicable even when the sign problem arises



Short summary

- JHEP11 (2023) 231: demonstrate three distinct methods to compute the mass spectrum at $\theta = 0$
 - (1) correlation-function scheme
 - (2) one-point-function scheme
 - (3) dispersion-relation scheme
- . JHEP09 (2024) 155: improve and extend them to the case of $\theta \neq 0$
 - (1)+(2) improved one-point-function scheme
 - (3) dispersion-relation scheme
- θ -dependent spectra by these schemes are • consistent with each other and with calculation in the bosonized model

Outline

- 1. Three mesons in 2-flavor Schwinger model
- 2. Calculation strategy: MPS and DMRG
- 3. Correlation-function scheme at $\theta = 0$
- 4. Improved one-point-function scheme for $\theta \neq 0$
- 5. Dispersion-relation scheme
- 6. Summary

Outline

- 1. Three mesons in 2-flavor Schwinger model
- 2. Calculation strategy: MPS and DMRG
- 3. Correlation-function scheme at $\theta = 0$
- 4. Improved one-point-function scheme for $\theta \neq 0$
- 5. Dispersion-relation scheme
- 6. Summary

Schwinger model with two fermions

<u>Schwinger model = QED in 1+1d</u>

simplest nontrivial gauge theory sharing some features with QCD

$$\mathscr{L} = -\frac{1}{4g^2}F_{\mu\nu}F^{\mu\nu} + \frac{\theta}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + \sum_{f=1}^{N_f} \left[i\bar{\psi}_f\gamma^{\mu}\left(\partial_{\mu} + iA_{\mu}\right)\psi_f - m\bar{\psi}_f\psi_f\right]$$

- quantum numbers: • isospin J, parity P, G-parity $G = Ce^{i\pi J_y}$
- *P* and *G* are broken at $\theta \neq 0$ $\rightarrow \eta$ becomes unstable

sign problem if $\theta \neq 0$

$$N_{f} = 2 \longrightarrow \text{three "mesons"}$$

$$\pi_{a} = -i\bar{\psi}\gamma^{5}\tau_{a}\psi \quad : \quad J^{PG} = 1^{-+}$$

$$\sigma = \bar{\psi}\psi \qquad : \quad J^{PG} = 0^{++}$$

$$\eta = -i\bar{\psi}\gamma^{5}\psi \qquad : \quad J^{PG} = 0^{--}$$

Analytic study by bosonization

- $m = 0 \cdots 2$ -flavor Schwinger model = SU(2)₁ Wess-Zumino-Witten model
- $m > 0 \cdots$ not exactly solvable, but bosonization analysis is valid for $m \ll g$

$$\mathscr{L} = \frac{1}{2} \left[(\partial \eta)^2 - \mu^2 \eta^2 \right] + \frac{1}{4\pi} (\partial \varphi)^2 + \frac{e^{\gamma}}{\pi} m \rho N_{\rho} \left[\cos \left(\sqrt{2\pi} \eta - \frac{\theta}{2} \right) \cos \varphi \right]$$

 η : non-compact scalar φ : 2π -periodic scalar

 $N_{\rho}[\cdot]$: normal ordering at the scale ρ $\mu^2 := 2g^2/\pi$

integrating out η of a mass $O(\mu)$

—> low-energy spectrum is described by sine-Gordon theory

[Coleman (1976)]

Mass spectrum by bosonization

optimized perturbation and WKB-type approximation result in

$$\pi$$
 meson: $M_{\pi}(\theta) \propto \left| m \sqrt{\mu} \cos \frac{\theta}{2} \right|^{2/3}$

 σ meson: $M_{\sigma}(\theta) = \sqrt{3}M_{\pi}(\theta)$

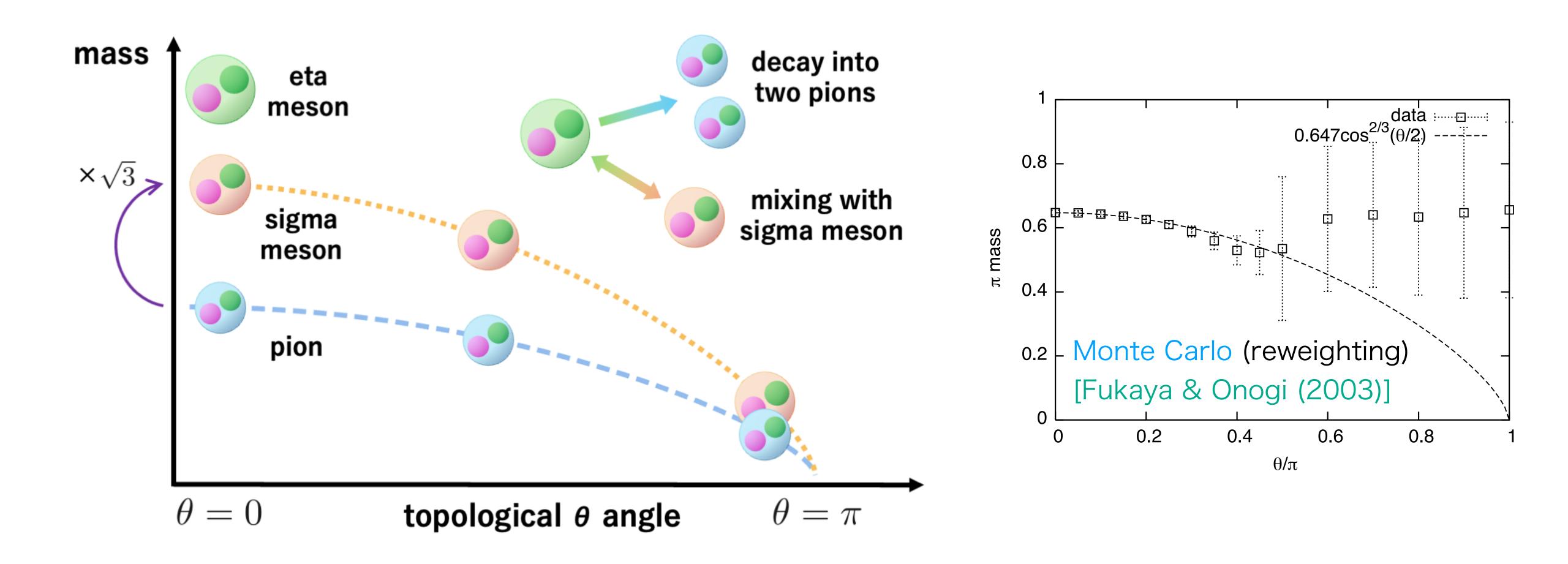
- η meson has a mass of $O(\mu)$ at $\theta = 0$ but becomes unstable at $\theta \neq 0$
- ! θ -dependent interaction $\left(\sqrt{2\pi}\sin\frac{\theta}{2}\right)\eta\cos\varphi$ creates

[Coleman (1976)] [Dashen et al. (1975)]

validity of the approximation is not clear —> check it by first-principles calculation

a σ state or $\pi \pi \pi$ scattering state from $\eta \longrightarrow \eta - \sigma$ mixing / $\eta \longrightarrow \pi \pi$ decay

θ -dependent mass spectrum



Lattice 2-flavor Schwinger model

Hamiltonian on the 1d lattice with the open boundaries

$$H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left(L_n + \frac{\theta}{2\pi} \right)^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} U_n \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} U_n^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]$$

 $\chi_{f,n}$: staggered fermion, U_n : link variable, L_n : conjugate momentum

 $m_{\text{lat}} := m - \frac{N_f g^2 a}{8}$ taking O(a) correction into account [Dempsey et al. (2022)]

 \longrightarrow The lattice theory at m = 0 maintains the discrete chiral symmetry.

[Kogut & Susskind (1975)]

Map to the spin system

gauge fixing $U_n = 1$ and solving Gauss

• Jordan-Wigner transformation for $N_f = 2$

$$\chi_{1,n} = \sigma_{1,n}^{-1} \prod_{j=0}^{n-1} (-\sigma_{2,j}^{z} \sigma_{1,j}^{z}), \quad \chi_{2,n} = \sigma_{2,n}^{-} (-i\sigma_{1,n}^{z})$$

•
$$\{\chi_{f,n}^{\dagger}, \chi_{f',n'}\} = \delta_{f,f'} \delta_{n,n'} \text{ and } \{\chi_{f,n}', \chi_{f',n'}\} = \{\chi_{f,n}^{\dagger}, \chi_{f',n'}\} = \{\chi_{f,n}, \chi_{f',n'}\} = \{\chi_{f,n'}, \chi_$$

s law
$$L_n - L_{n-1} = \sum_{f} \chi_{f,n}^{\dagger} \chi_{f,n} + (-1)^n - 1$$

 \rightarrow gauge field is eliminated (a specific feature of 1+1d theory with o.b.c)

 $\chi^{\dagger}_{f',n'}$ = 0 are reproduced

 \rightarrow spin Hamiltonian with a finite-dim. Hilbert space (spin-1/2, $N_f \times N$ sites)

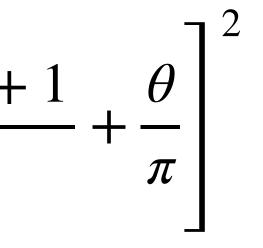
Explicit form of the spin Hamiltonian

 $H = H_{\text{gauge}} + H_{\text{kin}} + H_{\text{mass}}$

$$H_{\text{gauge}} = \frac{g^2 a}{8} \sum_{n=0}^{N-2} \left[\sum_{f=1}^{N_f} \sum_{k=0}^n \sigma_{f,k}^z + N_f \frac{(-1)^n + 1}{2} \right]$$

$$H_{\rm kin} = \frac{-i}{2a} \sum_{n=0}^{N-2} \left(\sigma_{1,n}^+ \sigma_{2,n}^z \sigma_{1,n+1}^- - \sigma_{1,n}^- \sigma_{2,n}^z \sigma_{1,n+1}^+ \right)$$

$$H_{\text{mass}} = \frac{m_{\text{lat}}}{2} \sum_{f=1}^{N_f} \sum_{n=0}^{N-1} (-1)^n \sigma_{f,n}^z + \frac{m_{\text{lat}}}{2} N_f \frac{1-(1)^n \sigma_{f,n}^z}{2} + \frac{m_{\text{lat}}}{2} + \frac{m_{\text{la$$



 $+ \sigma_{2,n}^{+} \sigma_{1,n+1}^{z} \sigma_{2,n+1}^{-} - \sigma_{2,n}^{-} \sigma_{1,n+1}^{z} \sigma_{2,n+1}^{+} \Big)$

 $(-1)^{N}$

Outline

1. Three mesons in 2-flavor Schwinger model

2. Calculation strategy: MPS and DMRG

3. Correlation-function scheme at $\theta = 0$

4. Improved one-point-function scheme for $\theta \neq 0$

5. Dispersion-relation scheme

6. Summary

Approximation of states by MPS

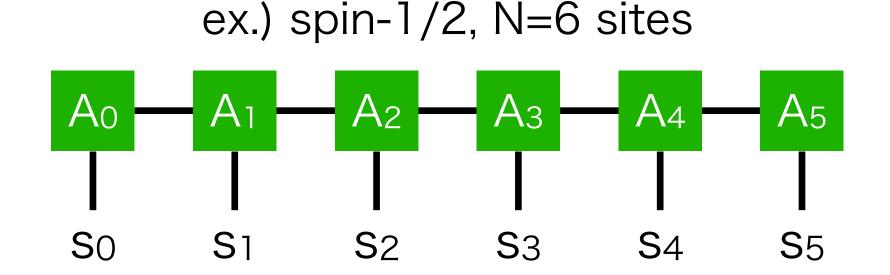
Matrix Product State (MPS)

$$|\Psi\rangle = \sum_{\{s_i\}} \operatorname{Tr} \left[A_0(s_0) A_1(s_1) \cdots \right] |s_0 s_1 \cdots \rangle$$

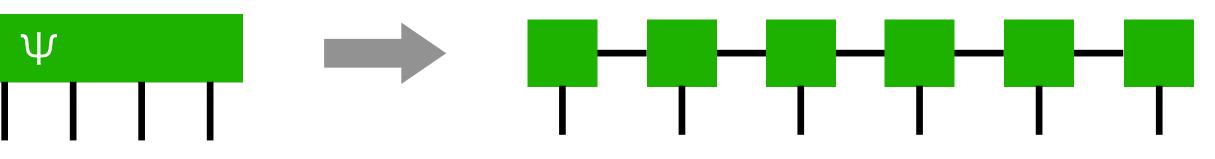
- $A_i(s_i) : D_{i-1} \times D_i$ matrix with a spin index $s_i \in \{\uparrow, \downarrow\}$ (D_i : bond dimension)

$$|\Psi\rangle = \sum_{\{s_i\}} \Psi(s_0, s_1, \cdots) | s_0 s_1 \cdots \rangle$$

of 1+1d gapped systems of any size N. \rightarrow numerical cost = $O(ND^3)$



. Any state can be written as MPS by repeating SVD, but $D_i = O(2^{N/2})$ in general.



. Even with a cutoff $D_i \leq \text{const}$, MPS efficiently approximates low-energy states

Density-matrix renormalization group (DMRG)

variational method to find the ground state using MPS as an ansatz

- cost function: energy $E = \langle \Psi | H | \Psi \rangle$
- update $A_i(s_i)$ iteratively to decrease E by local optimization and low-rank approx. with SVD
- control the accuracy by a cutoff parameter ε $\rightarrow D_i$ is determined so that (truncation error of SVD) < ε high accuracy \leftrightarrow small $\varepsilon \leftrightarrow$ large $D_i \leftrightarrow$ high cost

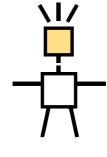
The C++ library of ITensor is used in this work. [Fishman et al. (2022)] $-\frac{1}{1}$

[White (1992)] [Schollwock (2005)]

$$|\Psi\rangle = \sum_{\{s_i\}} \operatorname{Tr} \left[A_0(s_0) A_1(s_1) \cdots \right] |s_0 s_1|$$

 $A_i(s_i) : D_{i-1} \times D_i$ matrix

 D_i : bond dimension

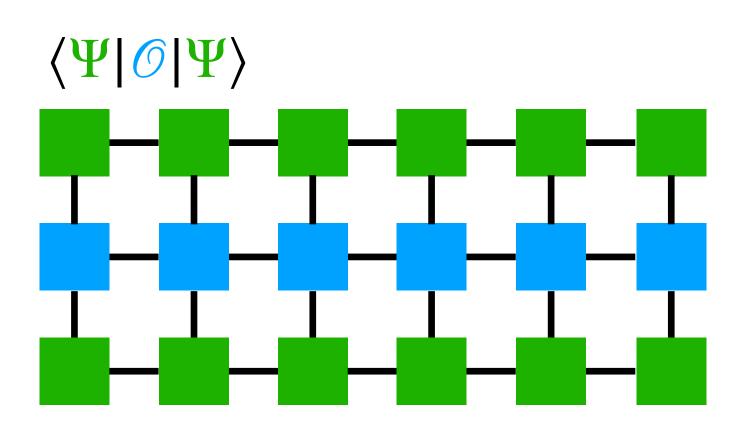


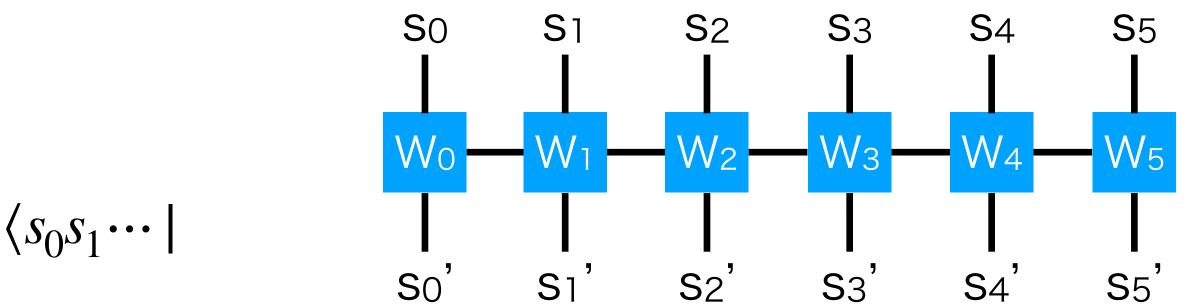
Calculation of expectation values

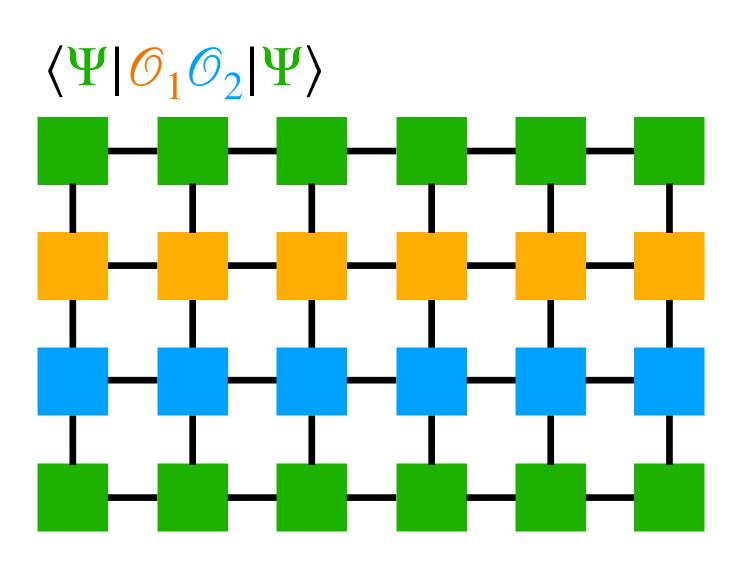
<u>Matrix Product Operator (MPO)</u>

 $\mathcal{O} = \sum \sum \operatorname{Tr} \left[W_0(s'_0, s_0) W_1(s'_1, s_1) \cdots \right] |s'_0 s'_1 \cdots \rangle \langle s_0 s_1 \cdots |$ $\{S'_i\} \{S_i\}$

Expectation values are computed by contracting MPS and MPO



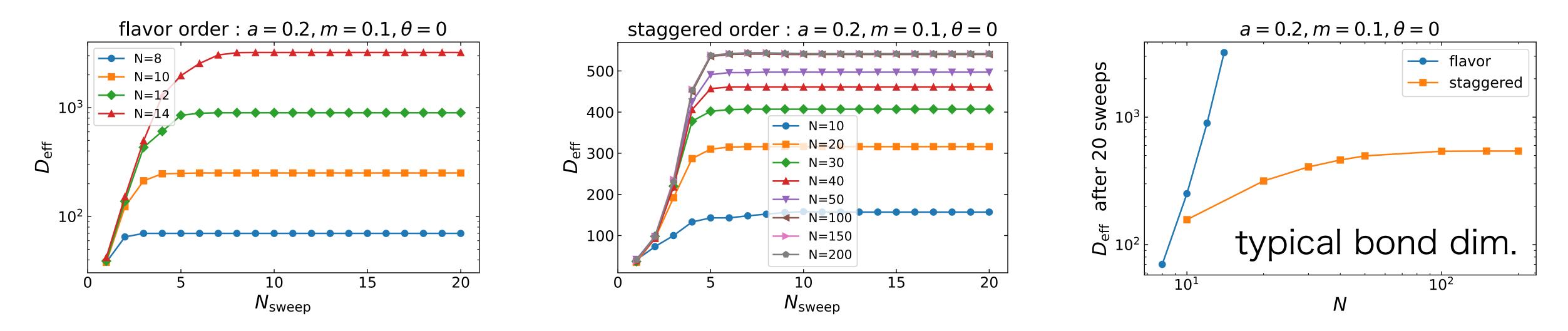




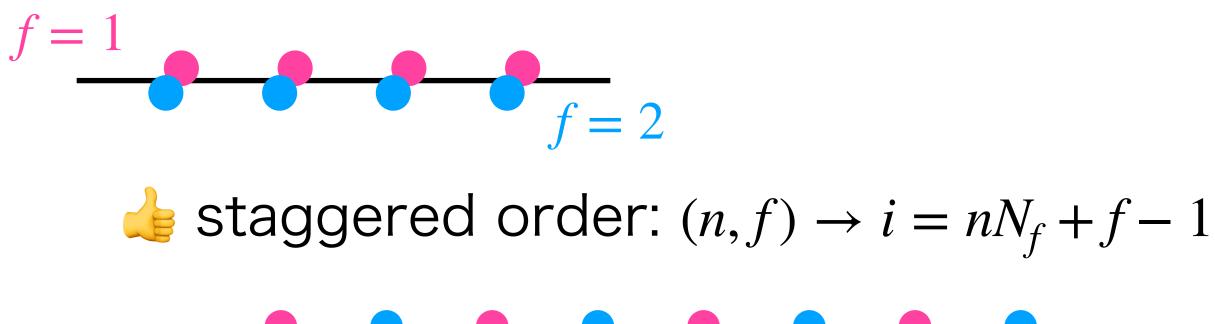
Arrangement of the flavors

ex.)
$$N = 4, N_f = 2$$

(i) flavor order: $(n, f) \rightarrow i = n + N(f - 1)$



arrange $N_f \times N$ spins on the 1d lattice to use MPS for 2-flavor Schwinger model



Outline

1. Three mesons in 2-flavor Schwinger model

2. Calculation strategy: MPS and DMRG

3. Correlation-function scheme at $\theta = 0$

4. Improved one-point-function scheme for $\theta \neq 0$

5. Dispersion-relation scheme

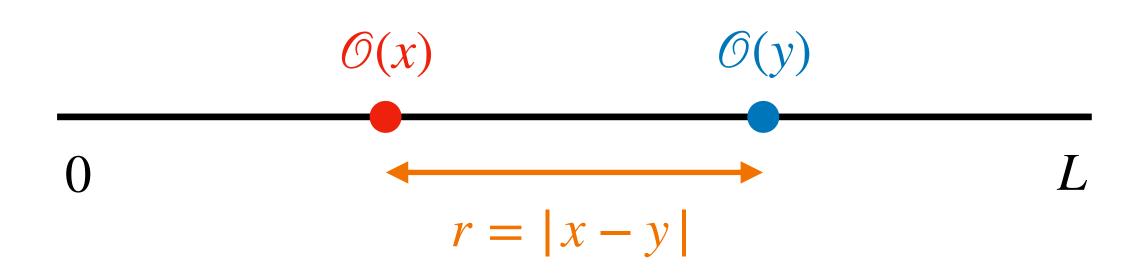
6. Summary

Correlation-function scheme

Extract meson masses from the spatial correlation function as in conventional Lattice QCD

 generate the ground state by DMRG and measure the spatial correlation function (connected part)

$$C_{\mathcal{O}}(r) = \langle \mathcal{O}(x)\mathcal{O}(y) \rangle - \langle \mathcal{O}(x) \rangle \langle \mathcal{O}(y) \rangle$$

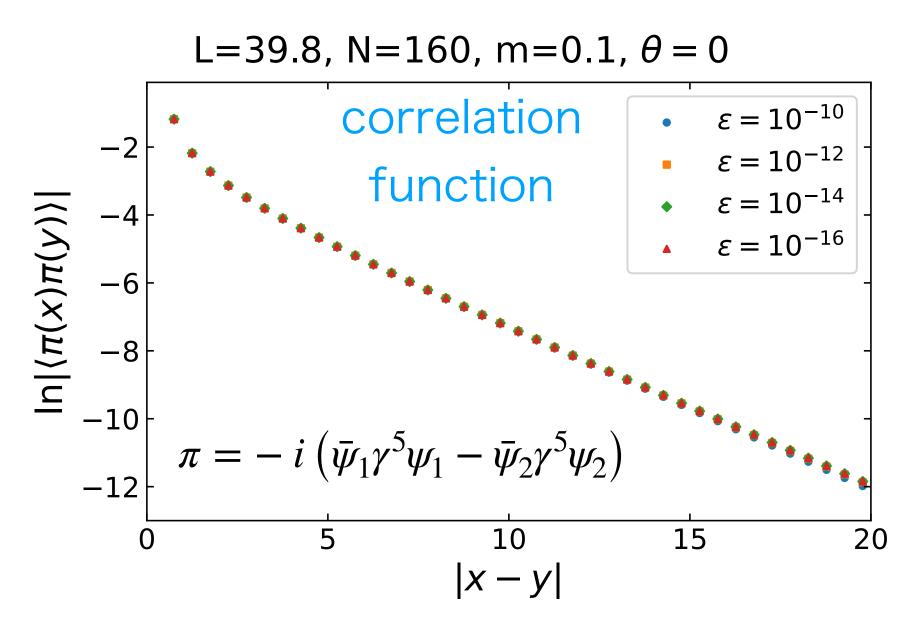


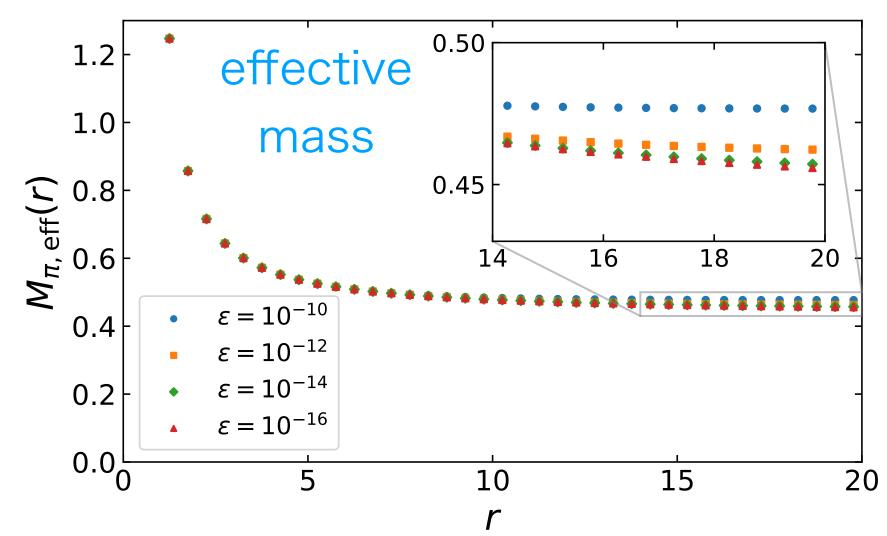
Pion correlation function at $\theta = 0$

- pion at $\theta = 0$: $C_{\pi}(r) = \langle \pi(x)\pi(y) \rangle$ r = |x y|
- effective mass: $M_{\pi,\text{eff}}(r) = -\frac{d}{dr} \log C_{\pi}(r)$
- <u>plateau value = pion mass?</u> A plateau behavior gets modified in accurate calc.
 - $\varepsilon = 10^{-10} (D_i \sim 400)$: $M_{\pi.eff}(r)$ is almost flat

 $\epsilon = 10^{-16} (D_i \sim 2800)$: $M_{\pi, eff}(r)$ depends on r

What's happened?

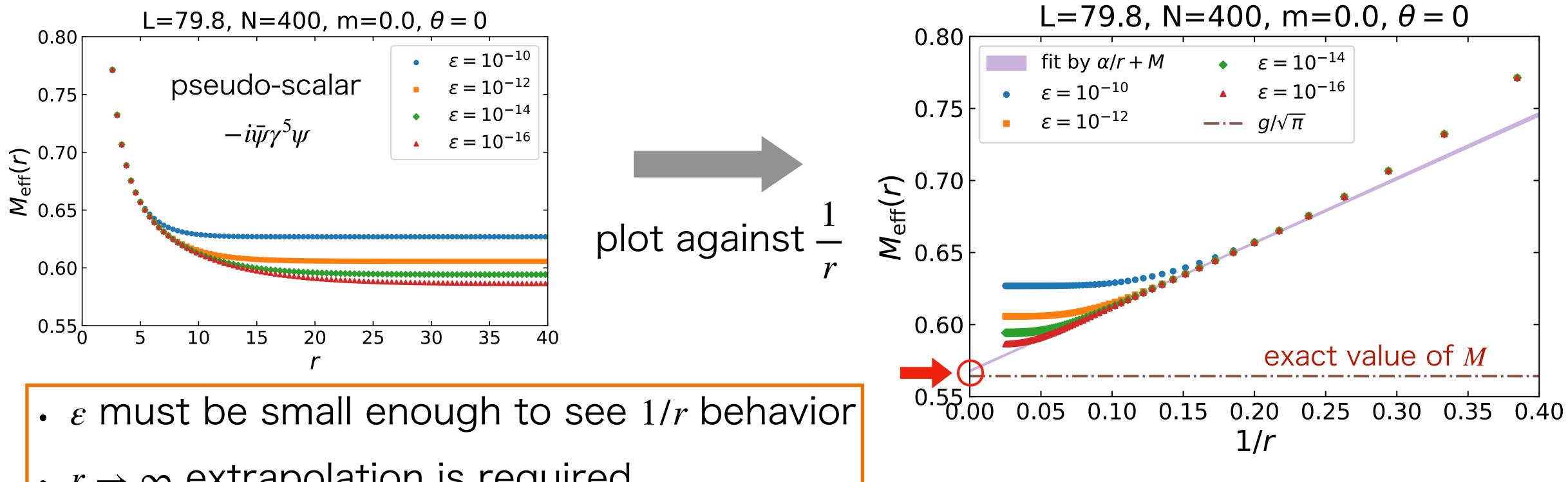




Yukawa-type correlation $\rightarrow 1/r$ term

cf.) 1+1d free scalar of mass M : $\langle \phi(x,t) \rangle$

cf.) massless $N_f = 1$ Schwinger model (exactly solvable):



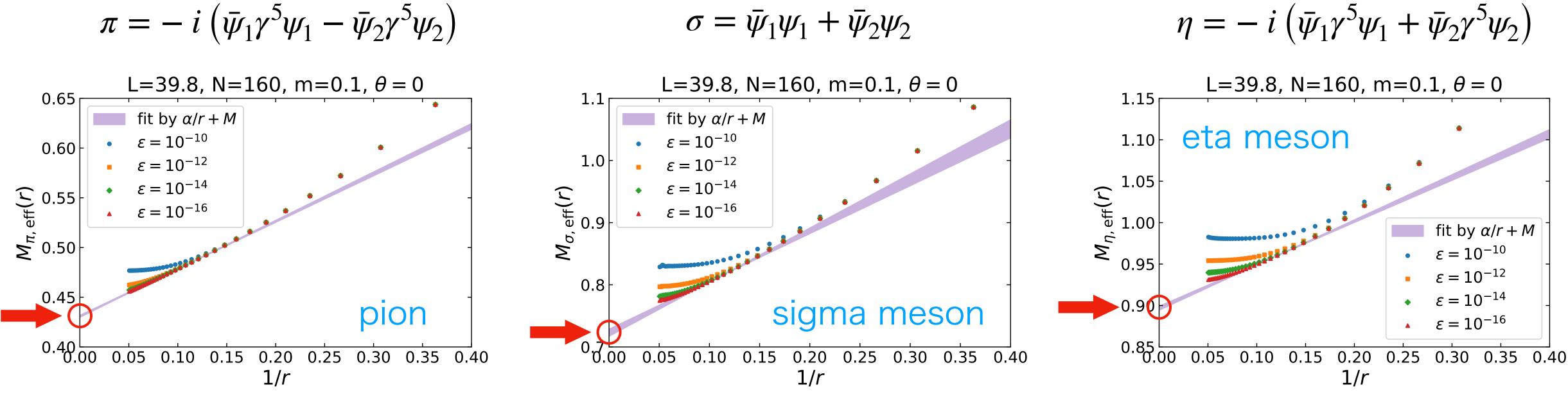
• $r \rightarrow \infty$ extrapolation is required

$$\langle t \rangle \phi(y,t) \rangle \sim \frac{1}{r^{\alpha}} e^{-Mr} \rightarrow M_{\text{eff}}(r) \sim \frac{\alpha}{r} + M \qquad \alpha = \frac{1}{2}$$

Result of the three mesons at $\theta = 0$

<u>extrapolate the effective mass to $r \to \infty$ using the result for $\varepsilon = 10^{-16}$ </u>

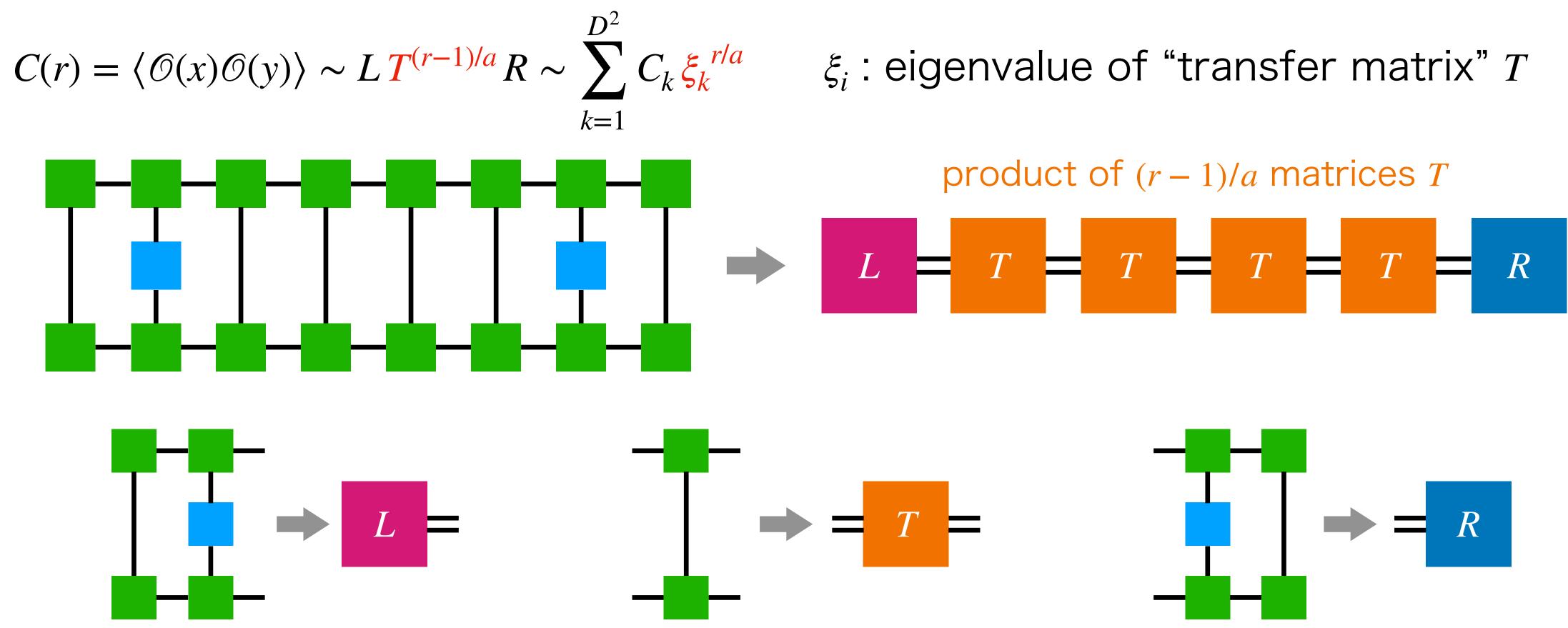
$$\pi = -i\left(\bar{\psi}_1\gamma^5\psi_1 - \bar{\psi}_2\gamma^5\psi_2\right) \qquad \qquad \sigma =$$



	pion	sigma	eta
Μ	0.431(1)	0.722(6)	0.899(2)

Correlation function from MPS

Assuming the translational invariance of MPS; correlation functions $C(r) \sim$ linear sum of exponential functions of r = |x - y|



Outline

- 1. Three mesons in 2-flavor Schwinger model
- 2. Calculation strategy: MPS and DMRG
- 3. Correlation-function scheme at $\theta = 0$
- 4. Improved one-point-function scheme for $\theta \neq 0$
- 5. Dispersion-relation scheme
- 6. Summary

Meson operators at $\theta \neq 0$

$$\pi_a = -i\bar{\psi}\exp\left[i\frac{\theta}{2}\gamma^5\right]\gamma^5\tau_a\psi$$

$$\sigma = \bar{\psi} \exp\left[i\left(\frac{\theta}{2} + \omega(\theta)\right)\gamma^5\right]\psi$$

$$\eta = -i\bar{\psi}\exp\left[i\left(\frac{\theta}{2} + \omega(\theta)\right)\gamma^5\right]\gamma^5\psi$$

 $\omega(\theta)$: nontrivial correction due to $\eta - \sigma$ mixing

define the meson operators at $\theta \neq 0$ taking the axial rotation into account

Correlation matrix \rightarrow meson operators

<u>determine θ-dependent mixing angle from numerical results</u>

 diagonalization of the correlation matrix e.g.) isosinglet sector

 $\begin{pmatrix} \langle S(x) S(y) \rangle_c & \langle S(x) PS(y) \rangle_c \\ \langle PS(x) S(y) \rangle & \langle PS(x) PS(y) \rangle \end{pmatrix} = R(\delta)^{\mathrm{T}} \begin{pmatrix} \langle \sigma(x) \sigma(y) \rangle_c & 0 \\ 0 & \langle n(x) n(y) \rangle \end{pmatrix} R(\delta) \qquad S(x) \leftrightarrow \psi \psi(x)$

 $R(\delta) = \begin{pmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{pmatrix} \cdots \text{ rotation matrix with the mixing angle } \delta$

--> define the meson operators by

$$\langle AB \rangle_c := \langle AB \rangle - \langle A$$

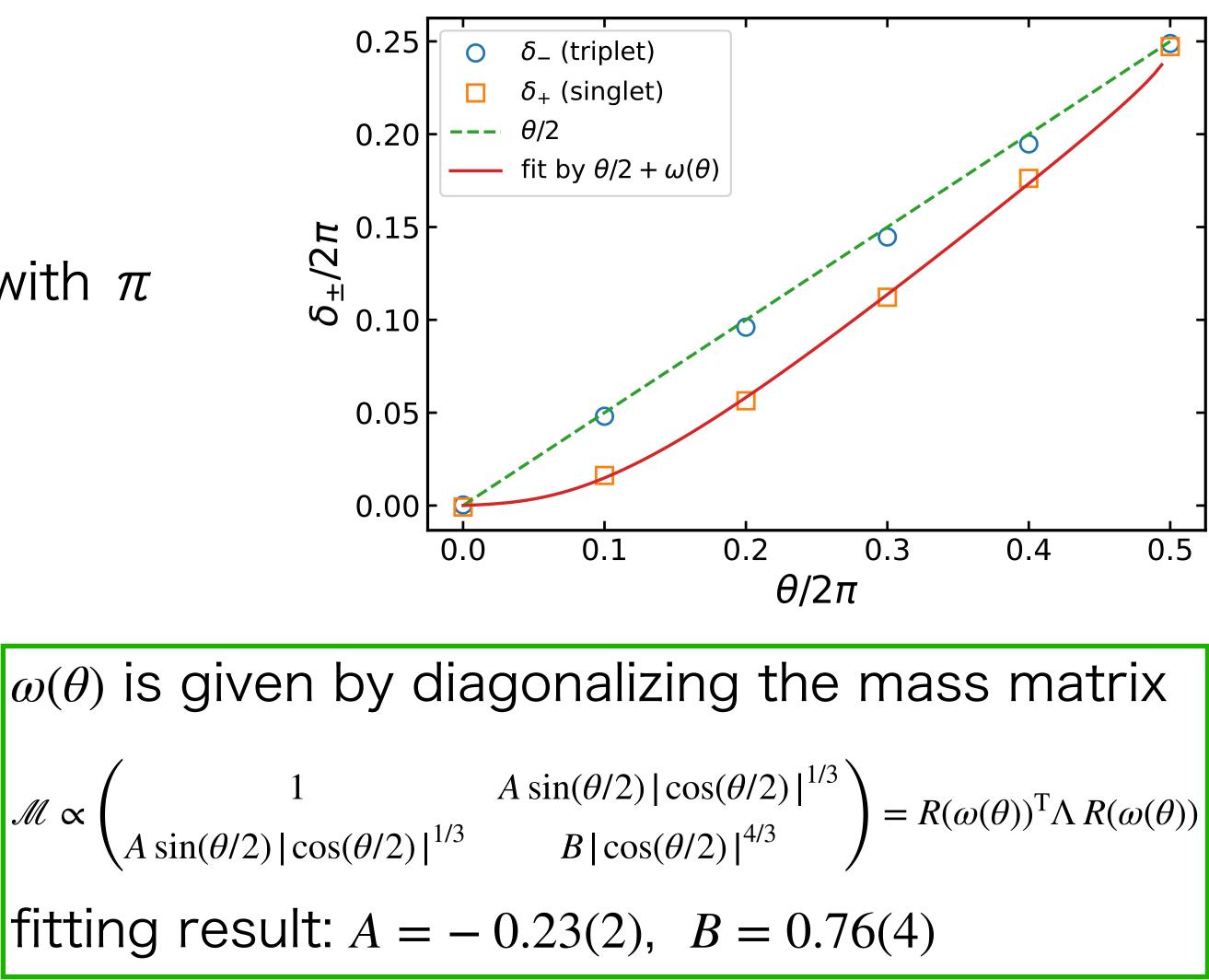
 $S(x) \leftrightarrow \bar{\psi}\psi(x)$

$$\begin{array}{ccc}
0 & \langle \eta(x) \eta(y) \rangle_c \end{array} R(\delta) \\
PS(x) \leftrightarrow -i\bar{\psi}\gamma^5\psi
\end{array}$$

$$\sigma(x) \\ \eta(x) \end{pmatrix} := R(\delta) \begin{pmatrix} S(x) \\ PS(x) \end{pmatrix}$$

Result of mixing angle

- triplet sector: $\delta_{-} \approx \theta/2$
 - trivial rotation exp $[i(\theta/2)\gamma^5]$ since there is no mixing partner with π
- . singlet sector: $\delta_+ \approx \theta/2 + \omega(\theta)$ correction from η - σ mixing
- . The result of δ_{\perp} can be fitted by the function obtained from the bosonized model



fitting result: A = -0.23(2), B = 0.76(4)

One-point-function scheme

<u>Regarding the boundary (defect) as the source of mesons,</u> obtain the masses from the one-point functions

- |bdry> has translational invariance in time direction

 $\langle \mathcal{O}(x) \rangle_{\text{obc}} \sim \langle \text{bdry} | e^{-Hx} \mathcal{O} | 0 \rangle_{\text{bulk}} \sim e^{-Mx}$

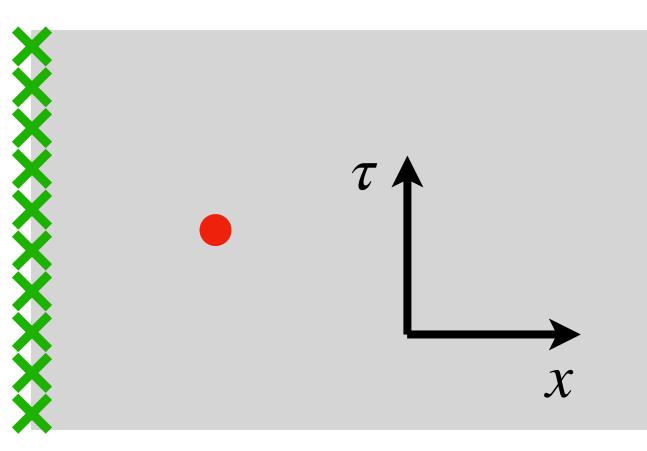
boundary state

 $\mathcal{O}(x)$

truncation effect is much smaller

. 1pt. function $\langle O(x) \rangle_{obc}$ measures the correlation with the boundary state |bdry>

 $p_{\tau} | \text{bdry} \rangle = 0$

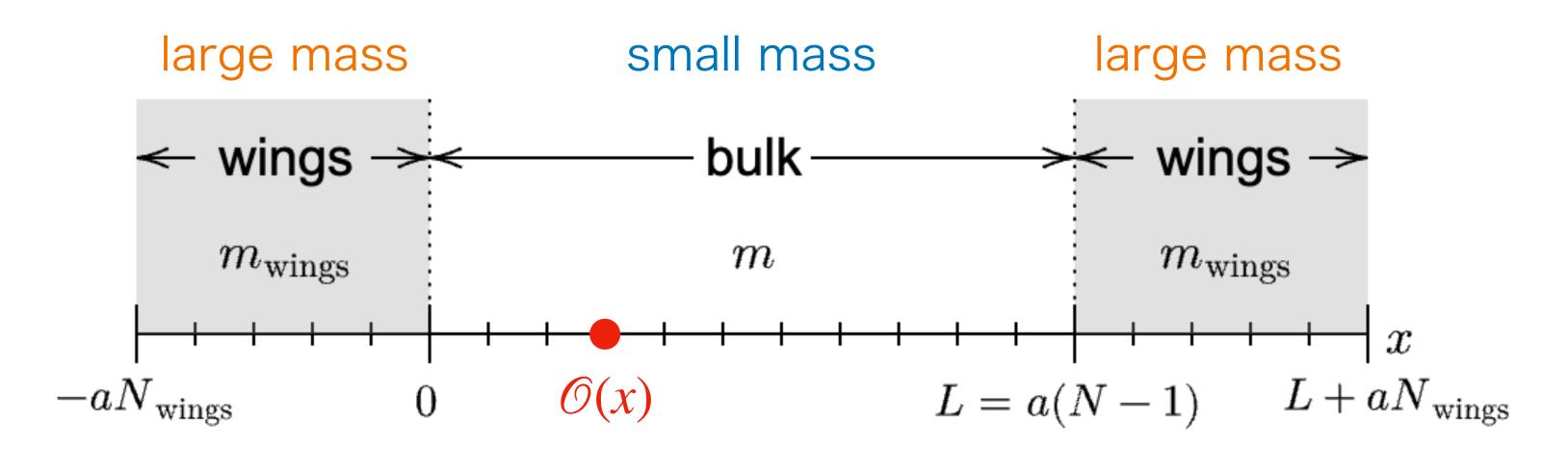


cf.) wall source method

Some technical improvement

·We attach "the wings" to the lattice to control the boundary condition flexibly

e.g.) Dirichlet b.c. $\cdots m_{\text{wings}} \gg m$

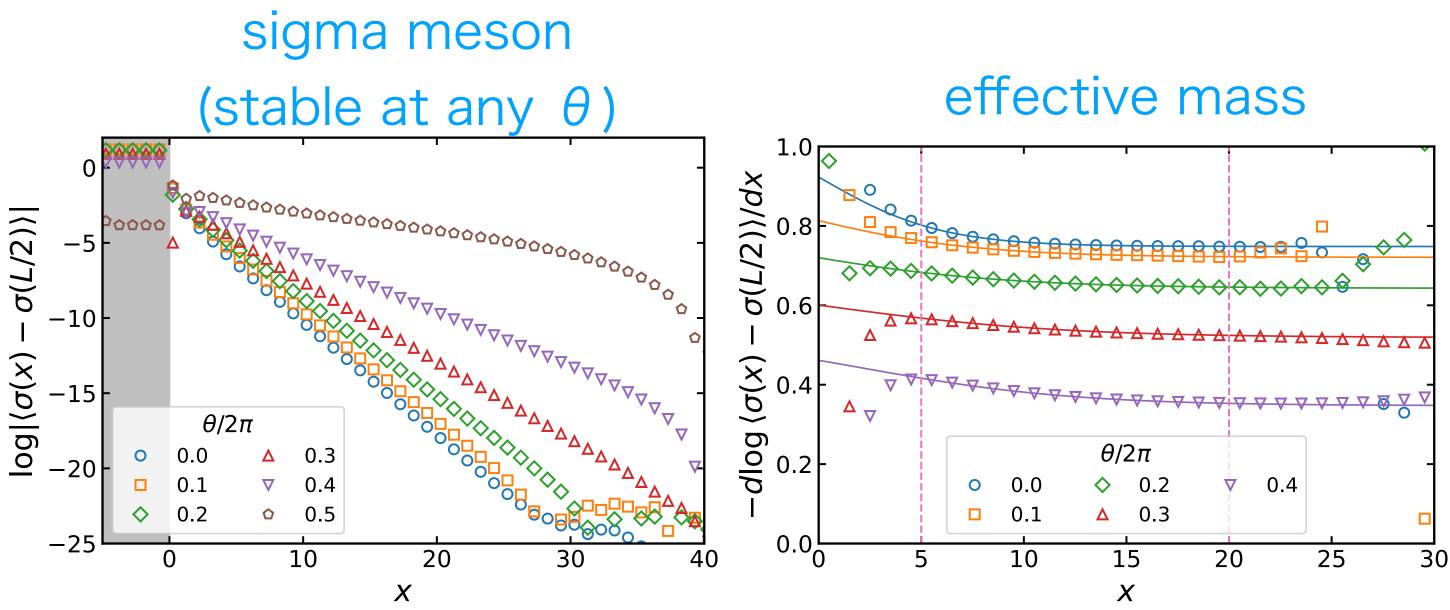


The boundary must have the same quantum number as the target meson

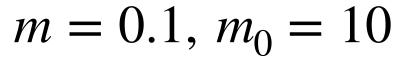
Result of sigma and eta mesons

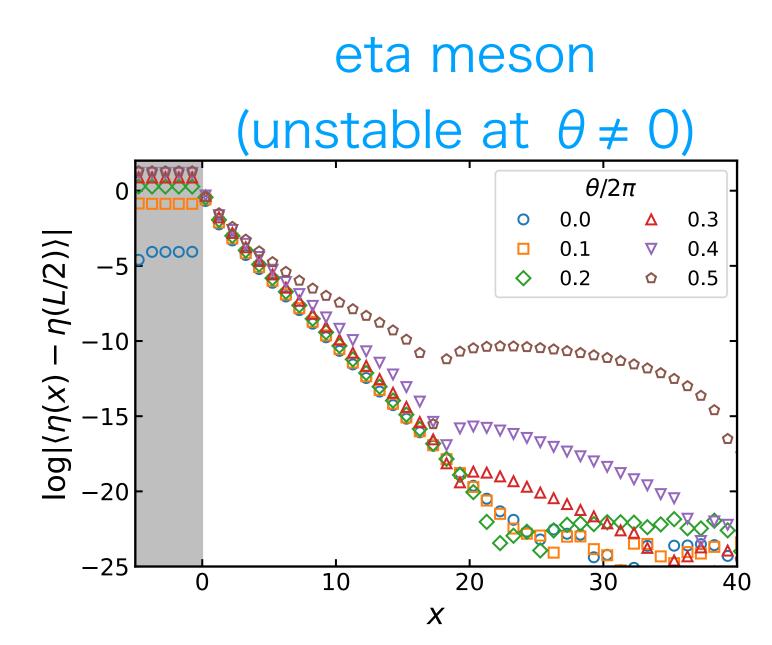
- . For the singlet mesons, we set the Dirichlet b.c. $m_{\text{wings}} = m_0 \gg m$
- Assuming $\langle \mathcal{O}(x) \rangle \sim Ae^{-Mx} + Be^{-(M+\Delta M)x}$,

we fit the effective mass by $M + \frac{\Delta M}{1 + Ce^{\Delta Mx}}$ to obtain M



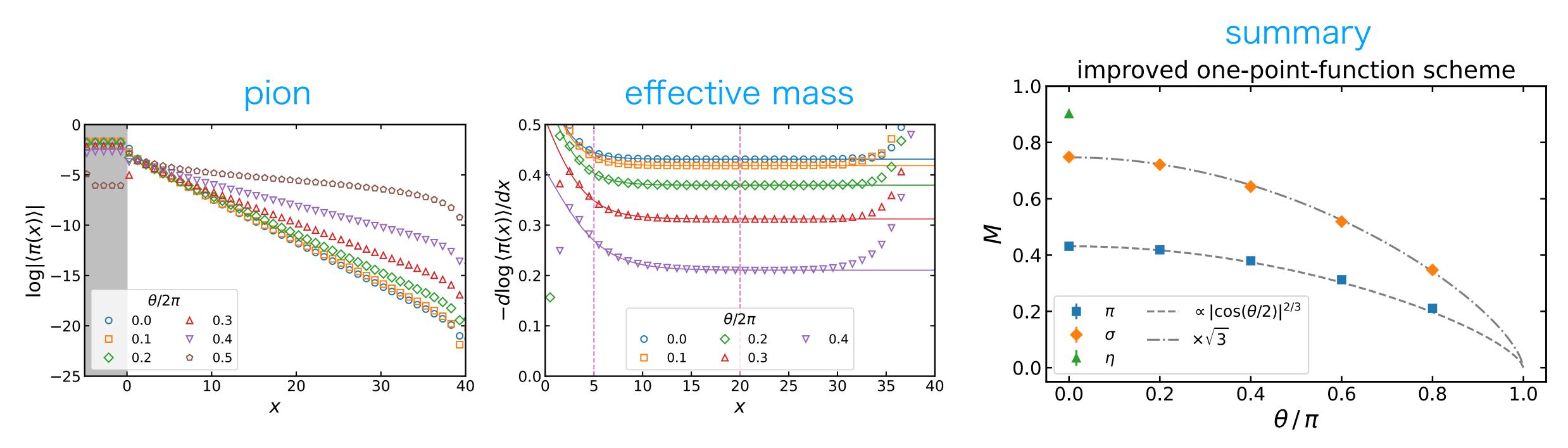
N = 320, a = 0.25





Result of pion

- $\langle \pi(x) \rangle = 0$ for the Dirichlet b.c. since such a boundary is isospin singlet
- . We apply a flavor-asymmetric twist n in the wings to induce the isospin-br



$$n_{\text{wings}} = m_0 \exp(\pm i\Delta\gamma^5)$$
 $N = 320, a = 0.25$
reaking effect $m = 0.1, m_0 = 10, \Delta =$

Outline

- 1. Three mesons in 2-flavor Schwinger model
- 2. Calculation strategy: MPS and DMRG
- 3. Correlation-function scheme at $\theta = 0$
- 4. Improved one-point-function scheme for $\theta \neq 0$
- 5. Dispersion-relation scheme
- 6. Summary

Dispersion-relation scheme

<u>Obtain the dispersion relation $E = \sqrt{K^2 + M^2}$ directly</u> from the excited states (momentum excitations of the mesons)

- generate the excited states using DMRG and identify the type of meson via the quantum numbers
- measure the energy E and the total
- $[H, K] \neq 0$ due to the open boundary, however, K is useful as an approximated operator.

momentum
$$K = \sum_{f} \int dx \, \psi_{f}^{\dagger} (i\partial_{x} - A_{1}) \psi_{f}$$

DMRG for excited states

- . ℓ -th excited state $|\Psi_{\ell}\rangle$
 - = the lowest energy eigenstate under the orthogonality condition $\langle \Psi_{\ell'} | \Psi_{\ell'} \rangle = 0$ for $\ell' = 0, 1, \dots, \ell - 1$
- obtained by DMRG adding the projection term to the Hamiltonian • $H_{\ell} = H + W \sum_{\ell'} |\Psi_{\ell'}\rangle \langle \Psi_{\ell'}| \qquad W > 0$ $\ell'=0$

--> cost function: $\langle \Psi_{\ell} | H | \Psi_{\ell} \rangle + W \sum_{\ell=1}^{\ell-1} V_{\ell}$ $\ell' = 0$

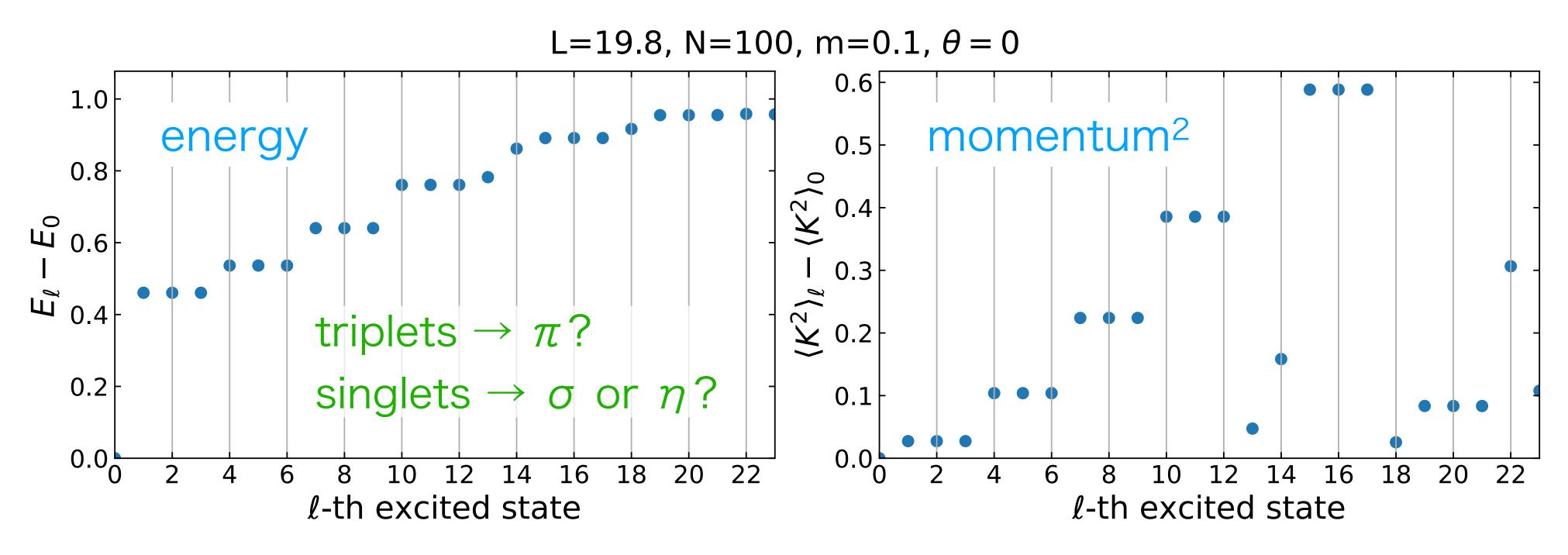
The excited state can be generated step by step from the bottom.

[Banuls et al. (2013)]

$$\left| \langle \Psi_{\ell'} | \Psi_{\ell} \rangle \right|^2$$

Energy spectrum at $\theta = 0$

- . energy gap $\Delta E_{\ell} = E_{\ell} E_0$ and momentum square $\Delta K_{\ell}^2 = \langle K^2 \rangle_{\ell} \langle K^2 \rangle_0$



.the states can be identified by measuring quantum numbers: \mathbf{J}^2 , J_7 , $G = Ce^{i\pi J_y}$

Quantum numbers

• isospin:

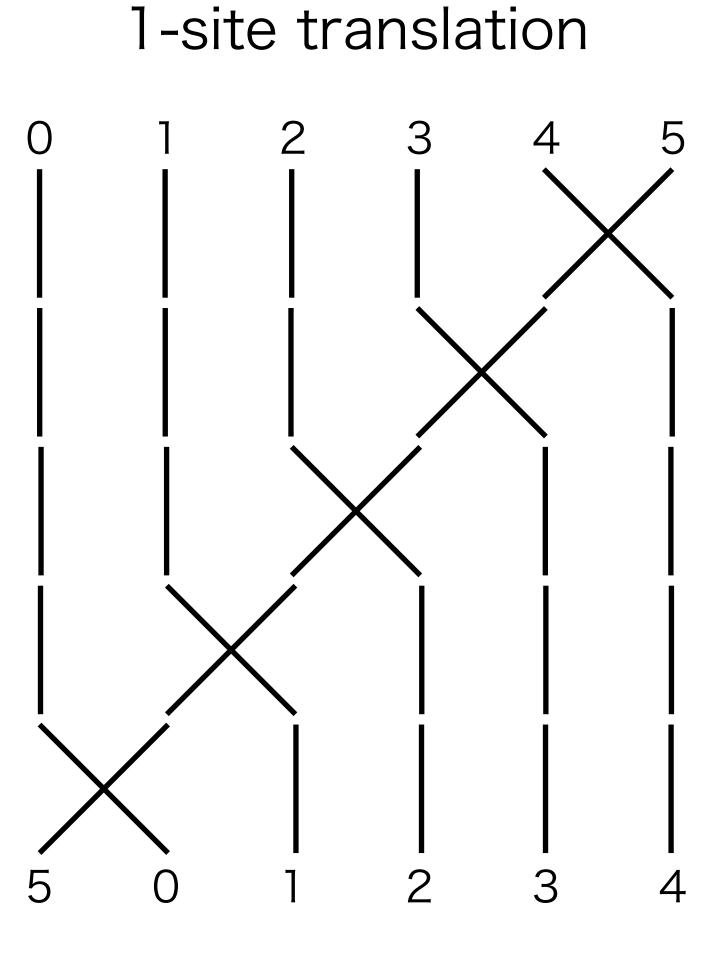
$$J_a = \frac{1}{2} \int dx \ \psi^{\dagger} \tau^a \psi \longrightarrow (\mathbf{J}^2, J_z) \qquad [H, \mathbf{J}^2] = [H, J_z] = 0$$

- charge conjugation:
 - = exchange even/odd sites and flip each spin
 - = 1-site translation and σ^x operator

$$C := \prod_{f=1}^{N_f} \left(\prod_{n=0}^{N-1} \sigma_{f,n}^x \right) \left(\prod_{n=0}^{N-2} (\text{SWAP})_{f;N-2-n,N-1-n} \right)$$

 $[H, C] \neq 0$ due to the boundary

• G-parity: $G = C \exp(i\pi J_v)$



$$(\text{SWAP})_{f;j,k} = \frac{1}{2} \left(\mathbf{1}_{f,j} \mathbf{1}_{f,k} + \sum_{a} \sigma^{a}_{f,j} \sigma^{a}_{f,k} \right)$$

Result of quantum numbers

• triplets: $J^2 = 2$, $J_7 = (0, \pm 1)$, G > 0

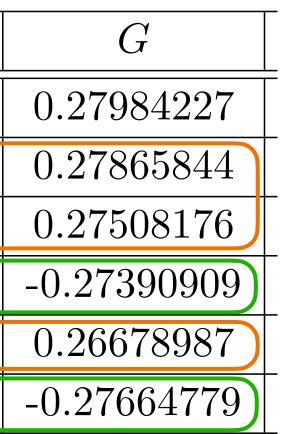
 \longrightarrow pion ($J^{PG} = 1^{-+}$)

• singlets: $J^2 = 0$, $J_7 = 0$,

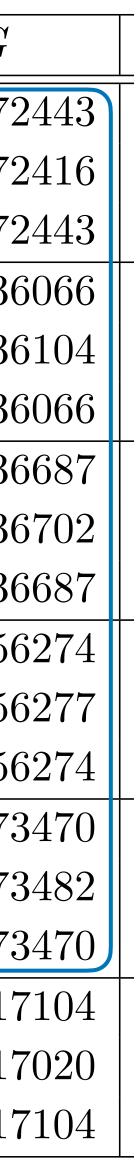
G > 0 ($\ell = 13, 14, 22$) —> sigma meson ($J^{PG} = 0^{++}$) $G < 0 \ (\ell = 18,23) \longrightarrow \text{eta meson} \ (J^{PG} = 0^{--})$

	l	$oldsymbol{J}^2$	J_z
singlets	0	0.0000003	-0.00000000
	13	0.0000003	0.00000000
	14	0.00000003	0.00000000
	18	0.00000028	0.00000006
	22	0.00001537	0.00000115
	23	0.00003607	-0.00000482

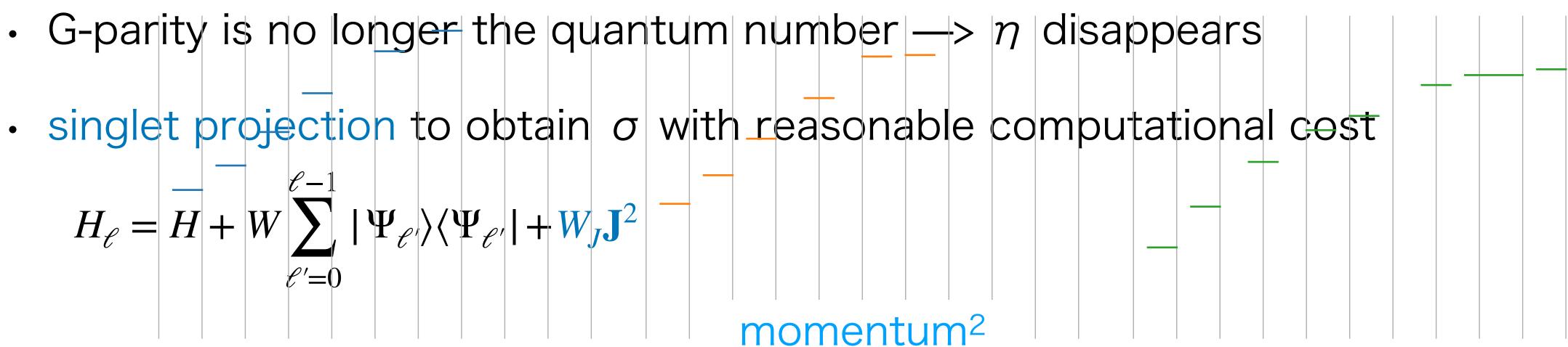
triplets

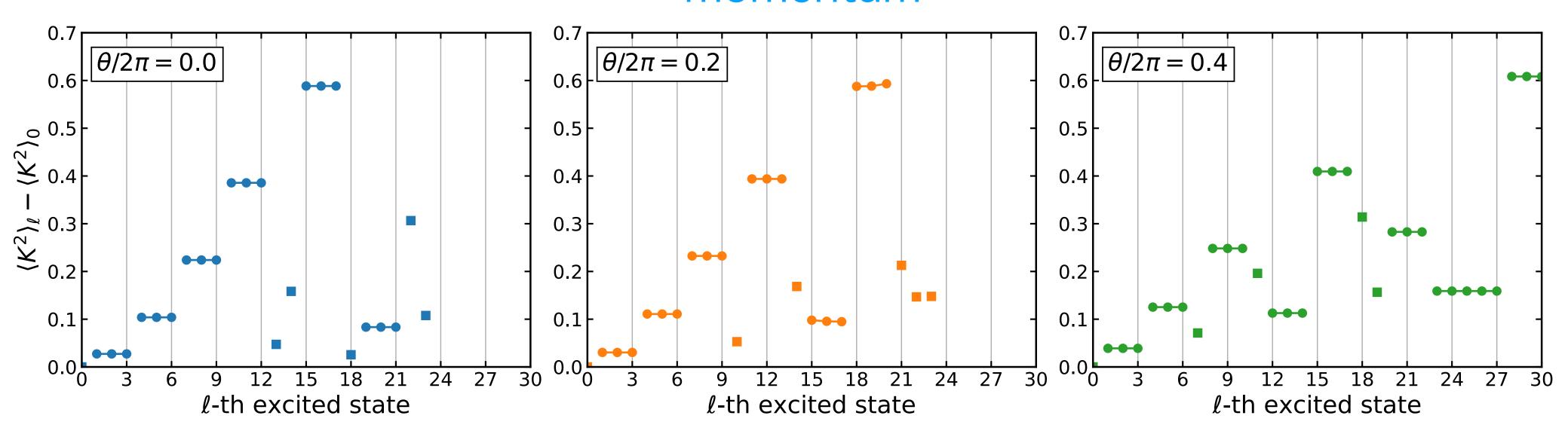


	ℓ	$oldsymbol{J}^2$	J_z	G
	$\boxed{1}$	2.00000004	\sim 0.99999997	0.27872
	-			
	2	2.00000012	-0.00000000	0.27872
S	3	2.0000004	-0.99999996	0.27872
	4	2.00000007	0.99999999	0.2773
	5	2.00000006	0.00000000	0.2773
	6	2.00000009	-0.99999998	0.2773
	7	2.0000010	1.00000000	0.2753
	8	2.00000002	0.00000000	0.2753
	9	2.00000007	-0.99999998	0.2753
	10	2.00000007	0.99999998	0.2735
	11	2.00000005	0.00000001	0.2735
	12	2.00000007	-0.99999999	0.2735
	15	1.99999942	0.99999966	0.2717
	16	2.00000052	0.00000000	0.27173
	17	2.00000015	-1.00000003	0.27173
	19	2.00009067	1.00004377	0.2771'
	20	2.00002578	-0.00000004	0.2771'
	21	2.00003465	-1.00001622	0.2771'
	·			



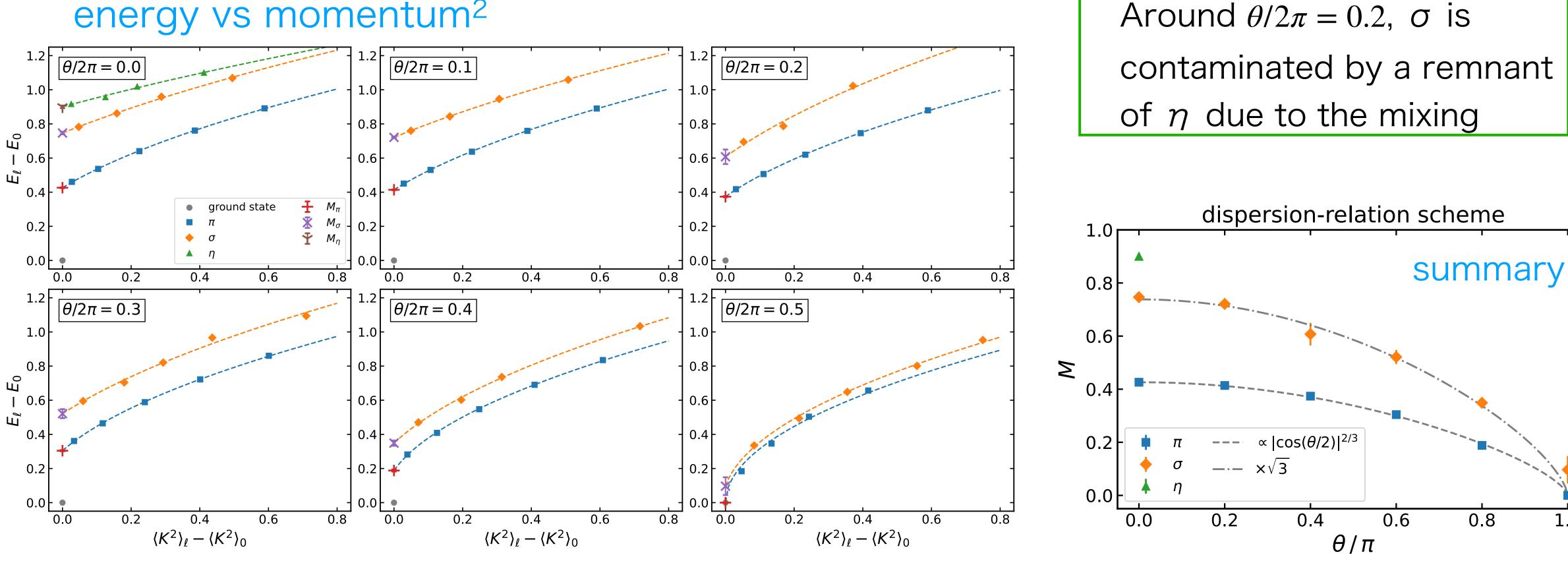
Extension to $\theta \neq 0$





Result of dispersion relation

energy vs momentum²



. plot ΔE_{ℓ} against ΔK_{ℓ}^2 and fit the data by $\Delta E = \sqrt{b^2 \Delta K^2 + M^2}$ for each meson



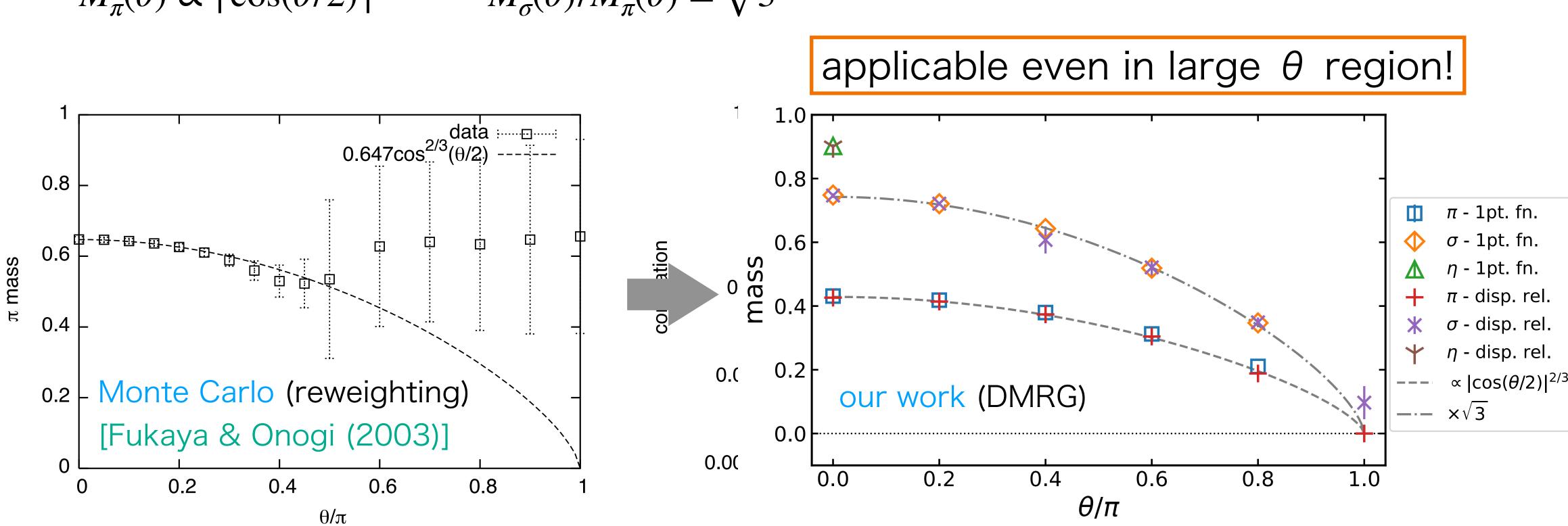
8.0

Outline

- 1. Three mesons in 2-flavor Schwinger model
- 2. Calculation strategy: MPS and DMRG
- 3. Correlation-function scheme at $\theta = 0$
- 4. Improved one-point-function scheme for $\theta \neq 0$
- 5. Dispersion-relation scheme
- 6. Summary

Summary

- The two schemes give consistent results and look promising •
- $M_{\pi}(\theta) \propto |\cos(\theta/2)|^{2/3}$ $M_{\sigma}(\theta)/M_{\pi}(\theta) = \sqrt{3}$



consistent with predictions by the bosonization [Coleman (1976)] [Dashen et al. (1975)]

Discussion

- (1) correlation-function scheme description descripti description description description description descript \bigotimes sensitive to the bond dimension of MPS —> \bigotimes quantum computer?
- (2) (improved) one-point-function scheme NOT sensitive to the bond dimension / easy to compute only the lowest state of the same quantum number as the boundary
- (3) dispersion-relation scheme

 - btain various states heuristically / directly see wave functions In the provide the state of the state of

Future prospect

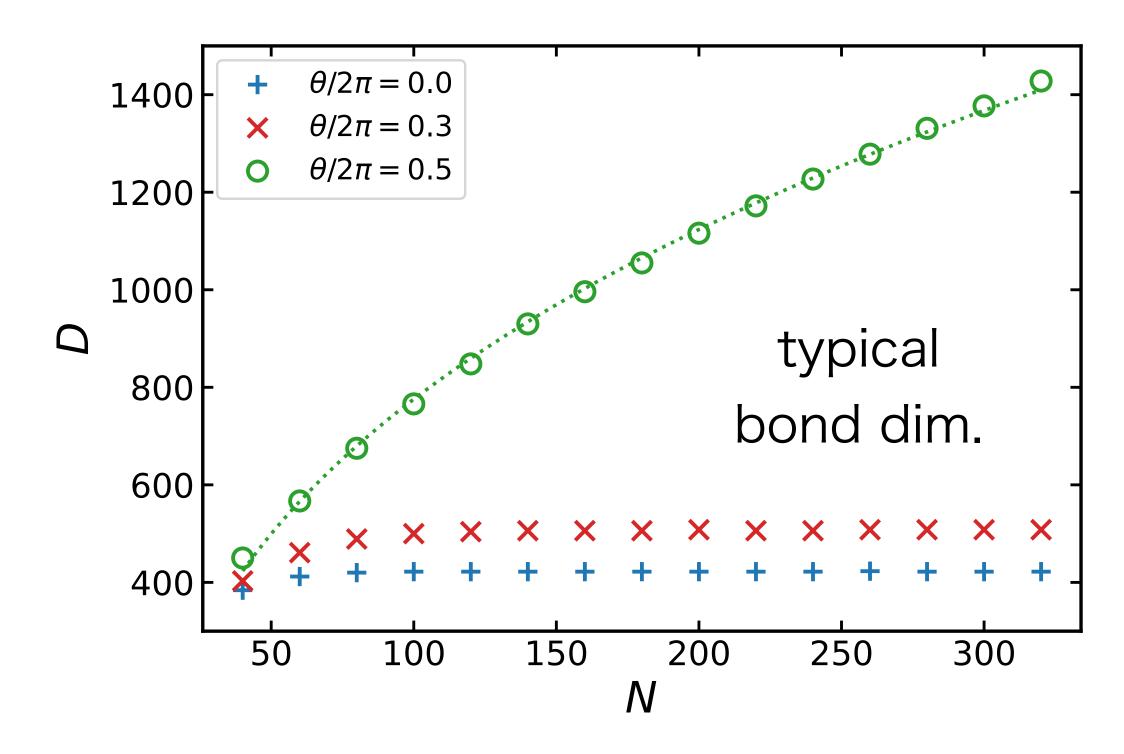
- Extension to 2+1 dimensions, where the gauge field is dynamical
- Application to the model with chemical potential: How the spectrum changes in the high-density region?
- Analyses using the wave functions of the excited states: scattering problem, entanglement property, etc.

Thank you for listening.

CFT-like behavior at $\theta = \pi$

bond dim. of MPS grows up with N at $\theta = \pi \rightarrow$ gapless?

- cf.) bond dim. D bounds the entanglement entropy of MPS: $S_{\rm EE} \leq \log D$
- 1+1d gapped : $S_{EE} \sim const$.
 - $\longrightarrow D$ is independent of the size N
- 1+1d gapless : $S_{\text{EE}} \sim \frac{c}{3} \log N$
 - —> increases by power $D \sim N^{c/3}$
- central charge c = 1 in this case (deviation due to the finite *a* exists)

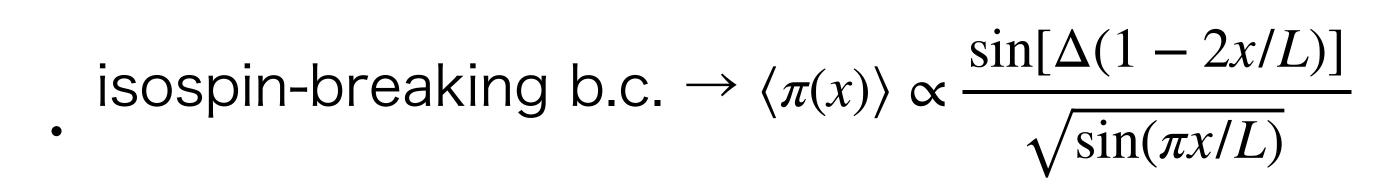


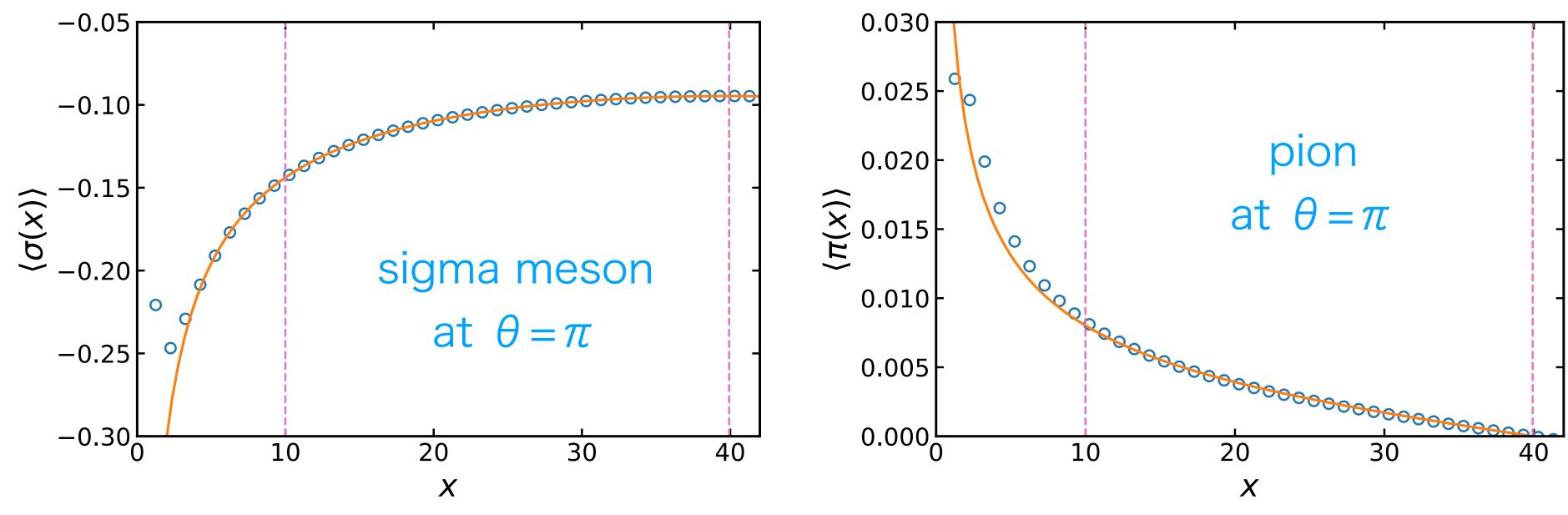
CFT-like behavior at $\theta = \pi$

- [Coleman (1976)] • At $\theta = \pi$, the mass gap is exponentially small ~ $e^{-\#g^2/m^2}$ [Dempsey et al. (2024)]
 - cf.) SU(2)₁ WZW model with marginally relevant $J_L J_R$ deformation
- For the finite size L, the energy scale below O(1/L) is invisible $me^{i\frac{\theta}{2}}$ complex plane $\theta = \pi$ —> system is CFT-like if $L < e^{\#g^2/m^2}/g$ our setup : L = 80, m = 0.1, g = 1tiny mass gap • compare the numerical result of 1pt. functions m = 0with the analytic calc. of WZW model SPT trivially (Haldane) gapped phase

1 pt. function of π and σ at $\theta = \pi$

Dirichlet b.c. $\rightarrow \langle \sigma(x) \rangle \propto \frac{1}{\sqrt{\sin(\pi x/L)}}$



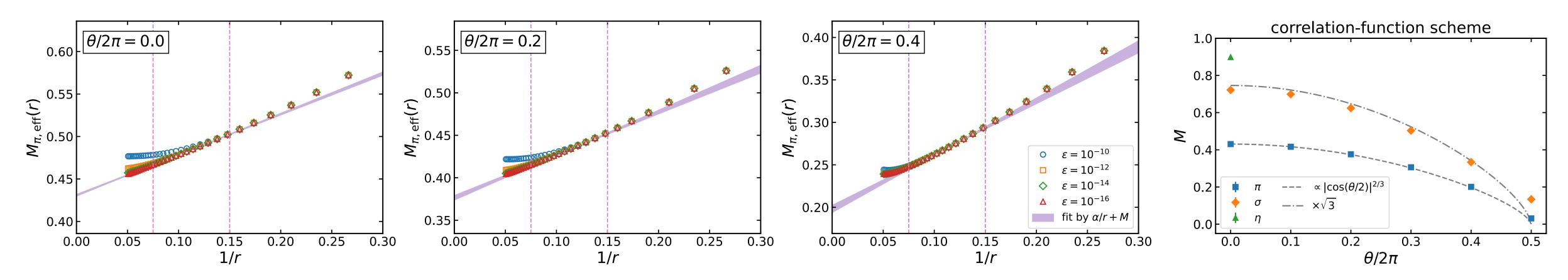


mirror-image method cf.) appendix A of JHEP09 (2024) 155

consistent with WZW model in the bulk

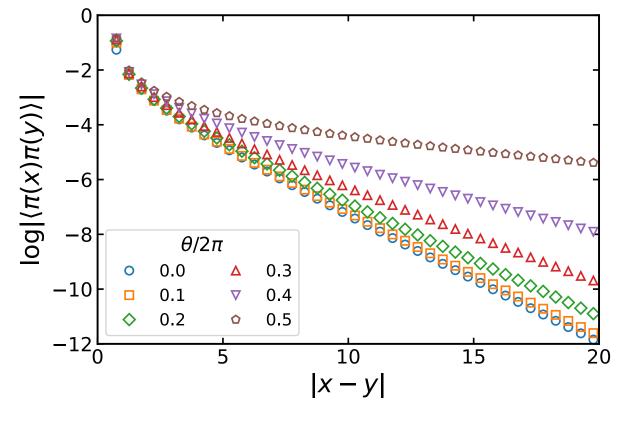
Correlation-function sheme

- spatial 2-point correlation function:
- effective mass: $M_{\pi,\text{eff}}(r) = -\frac{d}{dr} \log C_{\pi}(r)$
- 1/r behavior is observed only when the bond dim. is large
- mass is given by $r \rightarrow \infty$ extrapolation



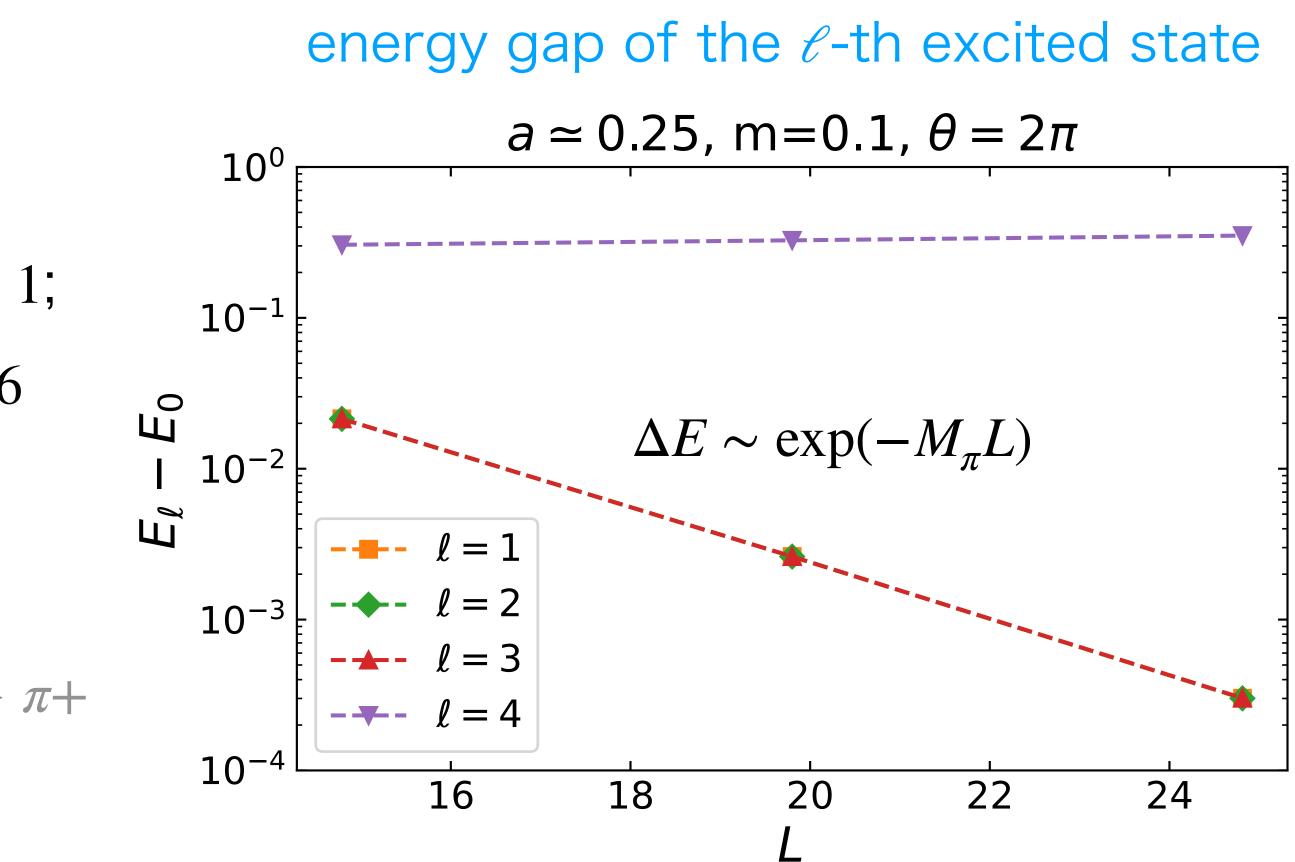
$$C_{\pi}(r) = \langle \pi(x)\pi(y) \rangle \sim \frac{1}{r^{\alpha}} e^{-Mr} \quad r = |x - y|$$

$$\sim \frac{\alpha}{r} + M$$



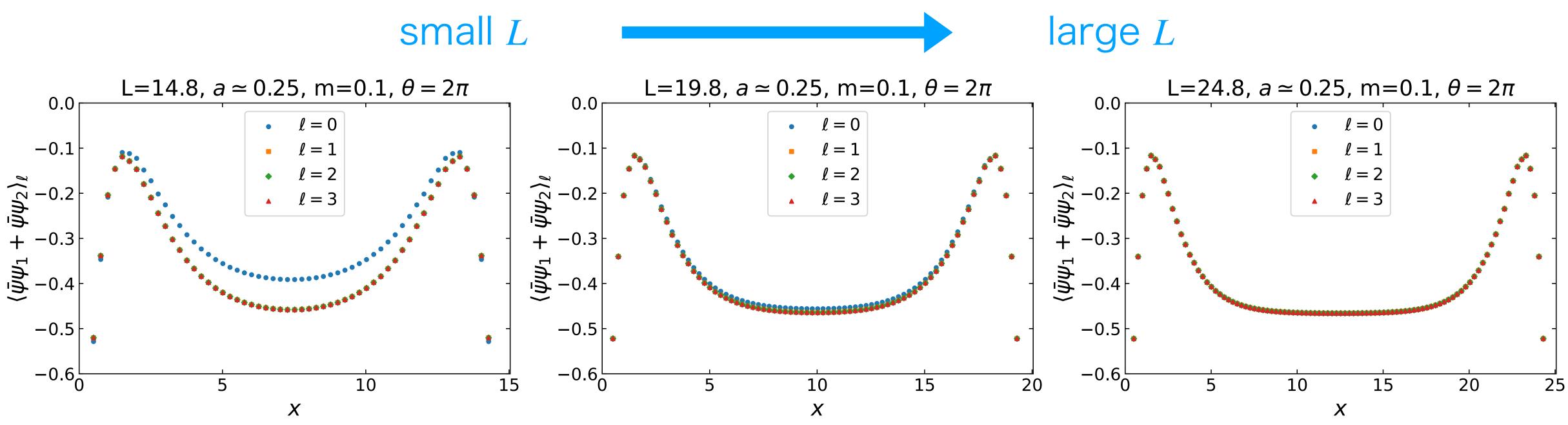
Degeneracy of the ground states

- one ground state + three 1st excited states are observed by DMRG at $\theta = 2\pi$.
- energy gap $\sim \exp(-M_{\pi}L) \rightarrow 0$
- . solve $\Delta E_{\ell} = C_0 + \exp(-ML + C_1)$ for $\ell = 1$; $M = 0.41767, C_0 = -0.00002, C_1 = 2.33326$
- cf.) $M_{\pi} = 0.4175(9)$ by 1pt-fn. scheme
- DMRG is hard when L is small or $\theta \rightarrow \pi +$



Local observables

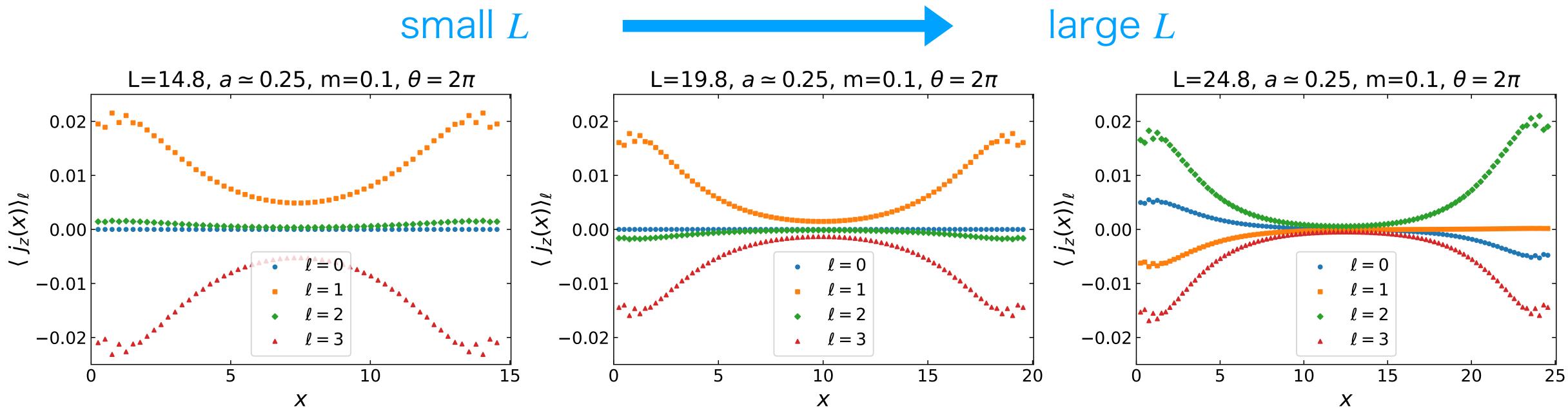
- . local scalar condensate $\bar{\psi}_1\psi_1 + \bar{\psi}_2\psi_2$ (isospin singlet) at $\theta = 2\pi$
- degeneracy in $L \to \infty$



Local isospin

local isospin $j_z(x) = \frac{1}{2}(\psi_1^{\dagger}\psi_1 - \psi_2^{\dagger}\psi_2)$ at $\theta = 2\pi$

• finite L : singlet + triplet $\longrightarrow L \rightarrow \infty$: doublet × doublet

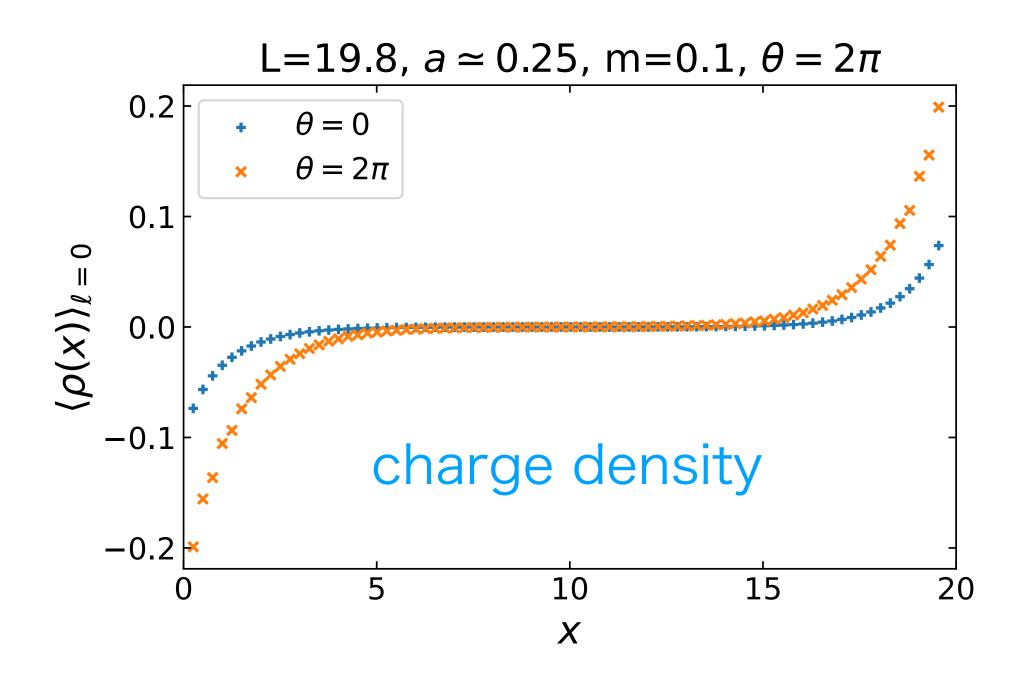


interaction is suppressed exponentially and the edge modes are decoupled

Electric charge and electric field

. charge density: $\rho(x) = \psi_1^{\dagger} \psi_1 + \psi_2^{\dagger} \psi_2$

induced electric field: $L(x) = \int_0^x dy \rho(y)$



cancel the background electric field $E = \theta/2\pi = +1$ from θ term

L(x) = -1

