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Convex geometry in quantum physics

⟨Ψ|Ψ⟩ ≥ 0

We’ll work with operators (and expectations) instead of states:

⟨O†O⟩ ≥ 0

This is a convex constraint.
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A historical note

A physics schoolbook circa 1880 supposedly contained a problem:

“Why can not a man lift himself by pulling up on his bootstraps?”

Prior to QCD: constrain strong interactions by

unitarity and various symmetries.

No Lagrangian needed!

The numerical “conformal bootstrap” finally succeeeded at this

(general) program last decade, via convex optimization.

Since then, we’ve started calling all convex optimization-based

numerical methods in physics “bootstrap”.

(See also: “booting” a computer, and the statistical bootstrap.)
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Part I

Bootstrap methods in quantum mechanics



The space of density matrices

For some set of N operators {Oi}...

⟨Oi ⟩ ≡ Tr ρOi

Now consider RN , the set of possible expectations of O•. Think of

this as a projection of the space of density matrices ρ.

• ⟨O†O⟩ ≥ 0 for all O
• ⟨I ⟩ = 1 (the trace of ρ)

The constrained space is convex!

Any projected density matrix obeys these constraints, and any

point in this set is the projection of some density matrix.

Finally, for computational convenience we re-write:

⟨O†O⟩ ≥ 0 =⇒ ⟨O†
i Oj⟩ ⪰ 0
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Convex optimization: interior-point methods

Intuitively, convex functions (over convex spaces) are easy to

minimize. How do we actually do this?

minimize f (x) subject to g(x) ≥ 0

1. Find any strictly feasible point (g(x) > 0)

2. Write down a barrier function :

ϕ(x) = − log g(x)

3. Set t = 1 and minimize

ft(x) = f (x) + t−1g(x)

4. Assign t → 2t and repeat until convergence

First (as far as I know) method like this described in [Dikin 1967].

Good introductory text is [Boyd-Vandenberghe 2004].
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“Bootstrapping” quantum mechanics

We can efficiently compute (quite tight, in practice) lower bounds

on ground state energies. Impose the usual constraints on ⟨O†O⟩,
and then minimize ⟨H⟩.

• The space to optimize over is convex (as discussed).

• The function being minimized is linear, and therefore convex.

• Why are these lower bounds? Any density matrix (including

the true ground state) has some projection consistent with

these bounds.

Dual to the variational method.
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Demonstration: ϕ4 on the lattice

For ϕ4 field theory in one spatial dimension, with m = 0.2, at

infinite volume. From [SL 2111.13007].
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Other (quantum mechanical) successes

Eigenstates: [Berenstein-Hulsey 2108.08757]

[Berenstein-Hulsey 2109.06251]

Matrix quantum mechanics: [Han-Hartnoll-Kruthoff 2004.10212]

PT-symmetric or non-Hermitian systems:
[Li 2202.04334]

[Khan+ 2202.05351]

[Khan-Rathod 2409.06784]

Finite fermion density: [Barthel-Hübener 2012]

[SL 2211.08874]

See also related ideas in [Heller+ 2305.07703] regarding

relativistic hydrodynamics, and the modern numerical S-matrix

bootstrap.
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Real-time dynamics

Instead of tracking only a density matrix, we can track

time-dependent expectations ⟨O⟩. There is an additional linear

constraint: d
dt ⟨O⟩ = i⟨[H,O]⟩.

Ĥ =
p̂2

2
+

1

2
x̂2 +

1

4
x̂4

Brian McPeak

Duff Neill
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The conformal bootstrap (briefly and crudely)

Positivity in radial quantization (inequalities), combined with

crossing symmetry, defines the convex space.

See [Kos+ 1603.04436], or [Poland-Rychkov-Vichi 1805.04405] for a review.
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Part II

Spectral inversion from Lagrange duality



Spectral reconstruction problems

C (E)(τ) =

∫ ∞

0
dω ρ(ω)

coshω
(
β
2 − τ

)
sinh βω

2

Given a finite set of measurements of the Euclidean correlator

Ci = C (E)(τi ), with (correlated) Gaussian errors Σij , estimate the

smeared spectral density:

ρ̃σ(ω0) ≡
∫ ∞

0
dω ρ(ω)e−

(ω−ω0)
2

σ2

Or, the (smeared) real-time correlator:

C̃σ(t) ≡
∫

dt ′e−
(t−t′)2

σ2

∫
dω ρ(ω) sinωt ′

There are some questions we do not ask. Neither ρ(ω) nor C (t)

can be meaningfully constrained.
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Spectral reconstruction as convex optimization

The spectral density functions ρ(ω) are constrained by ρ(ω ≥ 0).

The lattice data provides further constraints. If there are no errors,

these are linear constraints (certain integrals of ρ(ω) are known).

With errors, these are convex inequalities:

v [ρ]TΣv [ρ] ≤ Fmax where v [ρ] ≡ Ci −
∫

ρ(ω)Ki (ω)

(Fmax must be chosen to define some confidence interval.)

The space {ρ(ω)}, consistent with positivity and the lattice

data, is convex.

Now consider some integral:

C[ρ] =
∫

K(ω)ρ(ω)

It’s a linear function of a convex (infinite-dimensional) space.
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Lagrangians

minimize f (x) subject to g(x) ≥ 0

We define a Lagrange function (or “Lagrangian”)

L(x , λ) = f (x)− λg(x)

Now notice that the optimal value p∗ is given by

p∗ = min
x

max
λ≥0

L(x , λ)

In general, we introduce one Lagrange multiplier (like λ) for every

inequality.

L[ρ(ω), λ(ω), µ] =

∫
ρ(ω) (K(ω)− λ(ω))−µ

(
Fmax − vT [ρ]Σv [ρ]

)
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The dual problem

p∗ = min
x

max
λ≥0

L(x , λ)

We can define a dual problem by swapping the order of

optimizations

d∗ = max
λ≥0

min
x

L(x , λ)

Under “reasonable” conditions, we have p∗ = d∗; and we always

have d∗ ≤ p∗.

The dual is generally more “pleasant” to work with.

Roughly speaking, dual degrees of freedom “come from” primal

constraints. In the spectral case, we get one Lagrange multiplier

for each Euclidean data point.
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Computing the Lagrange dual

For simplicity, restrict to the case with no statistical errors.

L[ρ(ω), λ(ω)] =

∫
ρ(ω) (K(ω)− λ(ω))

The primal optimum: p∗ = minρ maxλ≥0 L[ρ, λ].

Here the minimization over ρ is subject to
∫
ρKi = Ci .

Swapping the min/max order, the Lagrange dual function is defined:

g(λ) = min
ρ

∫
ρ(ω) (K(ω)− λ(ω))

The minimization is unbounded below unless the linear constraint tells us

the value. In other words, the only permitted λ are of the form

λ(ω) = K(ω) + ℓiKi (ω).

We can now evaluate g(ℓ) = ℓiCi , defining the dual optimization problem

maximize ℓiCi subject to K(ω)− ℓiKi (ω) ≥ 0 (for all ω)
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Enforcing an infinite number of constraints

With statistical errors, the dual problem reads:

maximize ℓTC − Fmax

4µ
ℓTM−1ℓ− µ

subject to K(ω)−
∑
i

ℓiKi (ω) ≥ 0

and µ ≥ 0

Recall the interior-point method at the beginning of this talk:

We need only write a barrier function!

b[λ, µ] = −
∫ ∞

0
dω log λ− logµ

Done.
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Check: Anharmonic oscillator

Computing Im ⟨x(t)x(0)⟩ with L =
1

2
(∂x)2 +

ω2

2
x2 +

λ

4
x4

Calculation done on a 100-site lattice, with ω2 = 10−4 and

λ = 10−5. A total of 3× 10−4 samples used.

[SL 2408.11766]
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Linear response in ϕ4 theory (2+1 dimensions)

Computing Im ⟨ϕ(t)ϕ(0)⟩ with L =
1

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ

4
ϕ4

Calculation done on a 162 × 80 lattice, with m2 = 0 and λ = 10−2.

A total of ∼ 2× 105 (imperfectly decorrelated) samples used.
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Moving to lattice QCD

Not all calculations respect reflection positivity!

Easy: ignore the first few data points. Correct: drop (in a

controlled way) positivity assumption on ρ(ω > ω0).

(MILC data, courtesy of Rajan Gupta and Jun-Sik Yoo)
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Lattice data: nucleon

From a 963 × 192 lattice with a = 0.057 fm; physical pion mass.

Spectral density smeared with σ = 0.05.

PRELIMINARY
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Some open problems

Quantum-mechanical bootstrap:

• How to bootstrap “non-analytic” interactions? Concrete

example: I give you a tabulation of V (x), and ask for the

ground state of Ĥ = p̂2 + V (x̂). Nota bene: Switching to

second quantization is cheating.

Spectral inversion:

• Demonstrate bounds on the off-diagonal spectral function

(from correlators ⟨O1(t)O2(0)⟩).
• How much does incorporating Schwinger-Dyson relations

tighten this bound?
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