$\pi\pi$ scattering on the lattice and its applications

work with RBC & UKQCD Collaborations

Masaaki Tomii (RBRC/UConn)

Nishinomiya-Yukawa Symposium Hadrons & Hadron Interactions in QCD 2024

RIKEN BNL Research Center

Introduction

ππ scattering near threshold

- Scattering property dominated by scattering length a_{ℓ}
- Can be determined both experimentally and on lattice

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

**All plotted here are from unphysical m_{π} simulations & chiral extrapolation \rightarrow See backup slides for our physical m_{π} calculation

ππ scattering above threshold

s-wave $(\ell = 0)$

Resonance

 $I = 0 \\ m_{\sigma} = 400-550 \text{ MeV}? \\ \Gamma_{\sigma} = 200-350 \text{ MeV}?$

PDG

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $p-wave (\ell = 1)$

2406.19193

I = 1 $m_{\rho} = 775.26(23) \text{ MeV}$ $\Gamma_{\rho} = 147.4(8) \text{ MeV}$ **PDG (neutral channel)**

Lüscher's FV method

- Finite volume \rightarrow discrete energy spectrum of multi-hadron states ► E₀, E₁, ...
- FV interacting momentum:

$$E_n = 2\sqrt{m_\pi^2 + k_n^2} \quad \Rightarrow k_n = \sqrt{\frac{E_n^2}{4} - m_\pi^2}$$

Lüscher's formula (valid in elastic region)

$$k_n \cot \delta(E_n) = \frac{2}{\sqrt{\pi}L} Z_{00}(1;q_n^2) \qquad q$$

By calculating finite-volume energy levels, we can determine phase shifts and discuss scattering properties Alternative approach – HAL QCD method [Doi's Lecture Fri Oct 18 and many other talks]

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

CMP104,177(1986) CMP105,153(1986) NPB354,531(1991)

(for rest frame)

 $4n = \frac{k_n L}{2\pi}$ $Z_{00}(s;q^{2}) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n} \in \mathbb{Z}^{3}} \frac{1}{(|\vec{n}|^{2} - q^{2})^{s}}$ (for periodic boundaries)

• $K \rightarrow \pi\pi$

- Direct CP violation measure ε' provides a great test of SM & constraint on CKM parameters
- Long-time challenge of lattice QCD
- $B \rightarrow \rho(\rightarrow \pi \pi) \ell v$ 2212.08833, 2401.02495 (lattice proceedings)
 - Resonance-contained variant of $B \rightarrow \pi \ell v$
 - Can give us a hint about the V_{ub}-V_{cb} anomaly (tension b/w inclusive & exclusive determinations)

It is important to well control two-pion states on the lattice in order to accomplish these calculations

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Application 1 – Weak decays

Application 2 – Muon g-2

• HVP contribution to g_{μ} -2

- Dominant error source of lattice prediction of g-2 Key to understanding the well-known tension b/w
- exp & SM

• HVP at LD dominated by $\pi\pi$ (where g-2 calculation on lattice is the noisiest)

Contents

- Introduction (\checkmark)
- $K \rightarrow \pi\pi$
- Long-distance HVP contribution to muon g-2
- Summary & Outlook

$K \rightarrow \pi \pi \& CP$ violation

- $|\varepsilon| = 2.228(11) \times 10^{-3}$ from "odd" mixing b/w K⁰ & \overline{K}^0
- ϵ' only found in decays **Discovered in 1999**
 - $\text{Re}(\epsilon'/\epsilon)_{\text{exp}} = 1.66(23) \times 10^{-3}$ (KTeV & NA48)
 - Consistent with SM?

$$\frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)} = 1 - 6 \operatorname{Re}(\epsilon')$$

• $s \rightarrow d$: most suppressed within SM $\text{Re}(\epsilon'/\epsilon) \propto \text{Im}(V_{td}V_{ts}^*)$

$$\begin{split} |V_{td}V_{ts}^*| &\sim 5 \times 10^{-4} &\ll |V_{td}V_{tb}^*| & \\ \textbf{s} \rightarrow \textbf{d} & \textbf{b} \rightarrow \textbf{d} \end{split}$$

• ϵ' highly sensitive to BSM & highly demanded by pheno

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

11

Sensitivity of ϵ' to BSM

Isospin decay modes & $\Delta I = 1/2$ rule

- Isospin-definite amplitudes $A_{I} = \langle (\pi \pi)_{I} | H_{W} | K \rangle \quad \begin{cases} I = 0 \rightarrow \Delta I = 1/2 \\ I = 2 \rightarrow \Delta I = 3/2 \end{cases}$
- $\Delta I = 1/2$ rule (experimental fact) $\frac{\text{Re }A_0}{\text{Re }A_2} = 22.45(6) \text{ : large suppression of } \Delta I = 3/2 \text{ (A}_2\text{) mode}$
 - Factor 2 can be responsible for Wilson coefs from pQCD [Gaillard & Lee, PRL 33,108 (1974)] Remaining factor 10 comes from QCD or BSM?

 - A lot of discussions happening already in 1970s
 - Firm understanding not established until lattice calculation of matrix elements wad done

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

- $| \left| \left((\pi \pi)_{I=2}^{I_{3}=0} \right) = -\sqrt{2/3} \langle \pi^{0} \pi^{0} | + \sqrt{1/3} \langle \pi^{+} \pi^{-} | \rangle \rangle$

12

Approach to weak decays

- Two typical scales
 - Electroweak scale: $m_W = 80$ GeV, $m_Z = 91$ GeV
 - ► QCD scale: Λ_{QCD} ~ 300 MeV
- Low-energy effective interactions @ QCD scale

• $H_W = \Sigma_i C_i(\mu) O_i(\mu)$

Wilson coefficients Effective operators

$\Delta S = 1$ effective operators

•
$$(\bar{s}q)_{V-A}(\bar{q}'q'')_{V\pm A} = \bar{s}\gamma_{\mu}(1-\gamma_5)q'\cdot\bar{q}'\gamma_{\mu}(1\pm\gamma_5)q''$$

• α, β : color indices

$$Q_{1} = (\bar{s}_{\alpha}u_{\beta})_{V-A}(\bar{u}_{\beta}d_{\alpha})_{V-A},$$

$$Q_{2} = (\bar{s}u)_{V-A}(\bar{u}d)_{V-A},$$

$$Q_{3} = (\bar{s}d)_{V-A}\sum_{q}(\bar{q}q)_{V-A},$$

$$Q_{4} = (\bar{s}_{\alpha}d_{\beta})_{V-A}\sum_{q}(\bar{q}gq_{\alpha})_{V-A},$$

$$Q_{5} = (\bar{s}d)_{V-A}\sum_{q}(\bar{q}gq_{\alpha})_{V+A},$$

$$Q_{6} = (\bar{s}_{\alpha}d_{\beta})_{V-A}\sum_{q}(\bar{q}gq_{\alpha})_{V+A},$$

$$Q_{7} = \frac{3}{2}(\bar{s}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V+A},$$

$$Q_{8} = \frac{3}{2}(\bar{s}\alpha d_{\beta})_{V-A}\sum_{q}e_{q}(\bar{q}gq_{\alpha})_{V+A},$$

$$Q_{9} = \frac{3}{2}(\bar{s}d)_{V-A}\sum_{q}e_{q}(\bar{q}gq_{\alpha})_{V-A},$$

$$Q_{10} = \frac{3}{2}(\bar{s}\alpha d_{\beta})_{V-A}\sum_{q}e_{q}(\bar{q}gq_{\alpha})_{V-A},$$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

urrent operators $\bar{s}_{\alpha}c_{\beta})_{V-A}(\bar{c}_{\beta}d_{\alpha})_{V-A} \& Q_2^c = (\bar{s}c)_{V-A}(\bar{c}d)_{V-A}$

hen $n_f \ge 4$

guin operators

er q runs for all active quarks

in operators

$K \rightarrow \pi \pi Amplitude and \epsilon'$

$\pi\pi$ phase shifts at m_K

$$\varepsilon' = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left[\frac{ImA_2}{ReA_2} - \frac{1}{2} \right]$$

$$A_{I} = \frac{G_{F}}{\sqrt{2}} V_{us}^{*} V_{ud} \sum_{i,j} \frac{[z_{i}(\mu) + \tau y_{i}(\mu)] Z_{ij}(\mu) \langle (\pi \pi)_{I} | Q_{j}^{lat} | K \rangle}{\frac{Wilson \ coefs.}{pQCD} \frac{LQCD}{(+pQCD)}} LQCD}$$

A₂ already reached sufficient precision RBC/UKQCD PRD91 (2015) 074502

- cf: $(\text{Re }A_2)_{\text{exp}} = 1.479(4) \times 10^{-8} \text{ GeV}$
- A₀ still challenging because of many difficulties

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

$\frac{mA_0}{ReA_0}$	$(\omega = \text{ReA}_2/\text{ReA}_0)$
Renormalizatio	n matrix

• Re $A_2 = 1.50(4)_{stat}(14)_{sys} \times 10^{-8} \text{ GeV}, \text{ Im } A_2 = -6.99(20)_{stat}(84)_{sys} \times 10^{-13} \text{ GeV}$

Challenges confronted for past few decades

Computational cost/Statistics

- disconnected diagrams
- challenge enhanced due to the other difficulties

Chiral symmetry

- 10 four-quark operators
- strongly desired to prevent mixing with other operators
- domain wall fermions preferable and used by RBC/UKQCD

Charm-loop effects

- expected significant
- ◆ directly on lattice? → am_c not small on current lattices
 ↓ window problem
- absorb into WCs? \rightarrow NLO pQCD at $\mu = m_c$ not ideal

Today's focus

• Two-pion final state on the euclidean lattice

e.g. in the rest frame

- only $E \approx 2m_{\pi} \approx 280$ MeV state extracted in a straightforward manner
- $E = m_K \approx 500$ MeV state needed

Realizing on-shell kinematics

- The lightest $\pi\pi$ state with "2 stationary pions" in Euclidean rest frame
 - $E_{\pi\pi,0} \approx 280 \text{ MeV} \rightarrow \text{off-shell}$
 - need | $E_{\pi\pi} = m_K \approx 500 \text{ MeV}$ state
- Possible approaches
- Finite volume \rightarrow two-pion spectrum not continuous
 - Moving frame (Ishizuka et al [PRD98,114512(2018)])

e.g.
$$\sqrt{m_{K}^{2} + p_{tot}^{2}} = m_{\pi} + \sqrt{m_{\pi}^{2} + p_{tot}^{2}}$$

- ground state possible [G-parity BC (GPBC) led by C. Kelly]
 - moving [PRL108,141601(2012), PRD91,074502(2015)]

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Analyze correlation functions taking multiple states into account (GEVP, led by MT)

Manipulate boundary conditions \rightarrow pions anti-periodic \rightarrow must move \rightarrow 500 MeV

* For A₂ imposing anti-periodic BC on d quark was enough to make relevant pion

17

First physical m_{π} result w GPBC PRL 115,212001

$\text{Re}(\epsilon'/\epsilon)_{2015} = 1.38(5.15)(4.59) \times 10^{-4}$

- Physics or just stat/sys error?
- Needed to make lattice calculation more accurate

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $\int 2.1\sigma tension$

 $Re(\epsilon'/\epsilon)_{exp} = 16.6(2.3) \times 10^{-4}$

The "ππ puzzle"

Large discrepancy b/w lattice & exp

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Southampton

The "ππ puzzle"

Large discrepancy b/w lattice & exp

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Southampton UNIVERSITY OF

The "ππ puzzle"

Large discrepancy b/w lattice & exp

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Southampton Southampton

Let's see what $E_{\pi\pi}^{eff}$ is

S/N problem of Euclidean 2pt functions

• How to extract the lowest energy from Euclidean 2pt functions

$$G_{\pi\pi}(t) = \int d^3x \langle O_{\pi\pi}(t,\vec{x})O_{\pi\pi}(0,\vec{y})^{\dagger} \rangle = \sum_{n} \langle 0|O_{\pi\pi}|\pi\pi,n\rangle \langle \pi\pi,n|O_{\pi\pi}^{\dagger}|0\rangle e^{-E_{\pi\pi,n}t}$$

zero-momentum projection ($e^{i\vec{p}\cdot\vec{x}}=1$)

larg

S/N problem

- Signal ~ $e^{-m_{K}t}$ at large t
- S/N declines by ~ $e^{-(m_K 2m_\pi)t}$

$$\mathsf{E}_{\pi\pi}^{\text{eff}}(\mathsf{t}) = \ln \frac{\mathsf{G}_{\pi\pi}(\mathsf{t})}{\mathsf{G}_{\pi\pi}(\mathsf{t}+1)} \xrightarrow{\text{large } \mathsf{t}} \mathsf{E}_{\pi\pi}$$

- Noisy at large t
- NOT always a reliable indicator of ground-state saturation

____ all possible zero-(total)momentum states that have the same quantum numbers as $O_{\pi\pi}$

$$\xrightarrow{\text{ge t}} \langle 0|O_{\pi\pi}|\pi\pi,0\rangle\langle\pi\pi,0|O_{\pi\pi}^{\dagger}|0\rangle e^{-\frac{\mathsf{E}_{\pi\pi,0}\mathsf{t}}{\approx \mathsf{m}_{\mathsf{K}}}} \leq \frac{\mathsf{m}_{\mathsf{K}}}{\mathsf{GPBC}} \text{ w tuned volume}$$

• Noise: $\sqrt{\langle \mathcal{O} \mathcal{O}^{\dagger} \rangle - \langle \mathcal{O} \rangle \langle \mathcal{O}^{\dagger} \rangle} \sim e^{-2m_{\pi}t}$ even with GPBC [PRD101,014506(2020)]

τ,0

Resolving the $\pi\pi$ puzzle

- Introduce multiple $\pi\pi$ operators
 - ► In 2015 $O_{\pi\pi} = \pi\pi(1, 1, 1) = O_a$
 - Additions in 2020 $\pi\pi(3,1,1) \equiv O_{b} \qquad \sigma = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d) \equiv O_{c}$
- 2pt functions $G_{ij}(t) = \langle O_i(t)O_j(0)^{\dagger} \rangle = \sum_n A_{i,n}A_{j,n}^{\dagger}e^{-E_n t}$ n
 - better way to isolate excited-state contamination

Result compatible with ph+exp:

Effect of multi operators on $\pi\pi$

RBC/UKQCD PRD 104,114506 (2021)

- This $\pi\pi$ state realizing near on-shell kinematics of K $\rightarrow \pi\pi$ overlaps with the σ resonance
- We learned that states near a resonance energy should be isolated by introducing the corresponding composite operator

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

ε' with GPBC

35

Desire

- Independent calculations
- Smaller error of lattice prediction

Systematic errors on Im A₀

Finite lattice spacing

Wilson coefficients/charm-loop effects

Lelloch-Lüscher FV correction

Residual FV correction

Parametric error

Off-shellness

Renormalization

Missing G₁ operator

TOTAL

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Systematic errors in 2020

12%
12%
1.5%
7%
6%
5%
4%
3%
21%

24

Systematic errors on Im A₀

Finite lattice spacing

Wilson coefficients/charm-loop effects

Lelloch-Lüscher FV correction

Residual FV correction

Parametric error

Off-shellness

Renormalization

Missing G₁ operator

TOTAL

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Improvement desired

Systematic errors in 2020

Improvement desired [MT, LATTICE2019]

also see backup slide

Systematic errors on Im A₀

Finite lattice spacing

Wilson coefficients/charm-loop effects

Lelloch-Lüscher FV correction

Residual FV correction

Parametric error

Off-shellness

Renormalization

Missing G₁ operator

TOTAL

- In addition
 - ϵ' could be significantly affected by EM/IB effects ($\Delta I = 1/2$ rule $\rightarrow 25\%$)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Systematic errors in 2020

Improvement desired

Improvement desired [MT, LATTICE2019]

also see backup slide

Hope to compute near future

- Can be resolved by taking continuum limit
 - Results with different lattice spacings needed

G-parity BC

- ► $32^3 \times 64$, $a^{-1} \approx 1.4$ GeV: Done (2020)
- GPBC ensemble generation speed-up algorithm [Lat23, C. Kelly]
- $40^3 \times 64$, $a^{-1} \approx 1.7$ GeV: Calculation on-going
- $48^3 \times ??$, $a^{-1} \approx 2.1$ GeV: in the future as needed

Fine ensembles already generated for PBC

- Can be resolved by taking continuum limit
 - Results with different lattice spacings needed

G-parity BC

- ► $32^3 \times 64$, $a^{-1} \approx 1.4$ GeV: Done (2020)
- GPBC ensemble generation speed-up algorithm [Lat23, C. Kelly]
- $40^3 \times 64$, $a^{-1} \approx 1.7$ GeV: Calculation on-going
- $48^3 \times ??$, $a^{-1} \approx 2.1$ GeV: in the future as needed

Fine ensembles already generated for PBC

- Can be resolved by taking continuum limit
 - Results with different lattice spacings needed

G-parity BC

- ► $32^3 \times 64$, $a^{-1} \approx 1.4$ GeV: Done (2020)
- GPBC ensemble generation speed-up algorithm [Lat23, C. Kelly]
- $40^3 \times 64$, $a^{-1} \approx 1.7$ GeV: Calculation on-going
- $48^3 \times ??$, $a^{-1} \approx 2.1$ GeV: in the future as needed

Fine ensembles already generated for PBC

- Can be resolved by taking continuum limit
 - Results with different lattice spacings needed

G-parity BC

- ► $32^3 \times 64$, $a^{-1} \approx 1.4$ GeV: Done (2020)
- GPBC ensemble generation speed-up algorithm [Lat23, C. Kelly]
- $40^3 \times 64$, $a^{-1} \approx 1.7$ GeV: Calculation on-going
- $48^3 \times ??$, $a^{-1} \approx 2.1$ GeV: in the future as needed

Fine ensembles already generated for PBC

- Can be resolved by taking continuum limit
 - Results with different lattice spacings needed

G-parity BC

- ► $32^3 \times 64$, $a^{-1} \approx 1.4$ GeV: Done (2020)
- GPBC ensemble generation speed-up algorithm [Lat23, C. Kelly]
- $40^3 \times 64$, $a^{-1} \approx 1.7$ GeV: Calculation on-going
- $48^3 \times ??$, $a^{-1} \approx 2.1$ GeV: in the future as needed

Fine ensembles already generated for PBC

EM/IB effects

Usually O(1%) but ...

$$\frac{\varepsilon'}{\varepsilon} = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{ImA_2}{ReA_2} - \frac{ImA_0}{ReA_0} \right] = -\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \frac{ImA_0}{ReA_0} \left[1 - \frac{1}{\omega} \frac{ImA_2}{ImA_0} \right] \qquad (\omega = ReA_2/ReA_2/ReA_2/ReA_0)$$

$$\frac{1}{V_2} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ \text{NLO ChPT + large N}_c \\ (example estimation)}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ \text{NLO ChPT + large N}_c \\ (example estimation)}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ \text{NLO ChPT + large N}_c \\ (example estimation)}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ \text{(example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ \text{(example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (1/\omega \approx 22.5: \Delta I = 1/2 \text{ rule})}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (1/\omega \approx 22.5: \Delta I = 1/2 \text{ rule})}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example estimation)}} \sum_{\substack{\text{cligriano et al, JHEP 02, 032 (2020) \\ (example$$

 $\frac{\varepsilon'}{\varepsilon} = \frac{i\omega_{+}e^{i(\omega_{2}-\omega_{0})}}{\sqrt{2}\varepsilon} \left[\frac{ImA_{2}^{(0)}}{ReA_{2}^{(0)}} - \frac{ImA_{0}^{(0)}}{ReA_{0}^{(0)}}(1-\hat{\Omega}_{e}) \right]$

Developing approaches to introduce QED/IB effects on the lattice

- Extension of Lüscher's formalism for treatment of $\pi\pi$ state in a finite box
- Coulomb correction to $\pi^+\pi^+$ scattering [Christ et al, PRD106 (2022), 014508]
- Contribution of transverse radiation getting understood
- PBC appear necessary to introduce these effects

$$\left. \hat{\Omega}_{eff} = 0.170 \begin{pmatrix} +91\\ -90 \end{pmatrix} \right.$$

With PBC & rest frame, $\pi\pi$ excited state is necessary to realize on-shell kinematics of $K \rightarrow \pi\pi$

Variational method [NPB339,222(1990)]

Solving GEVP (Generalized Eigenvalue Problem)

$$C(t)v_n(t,t_0)=\lambda_n(t,t_0)C(t_0)v_n$$

• $O'_n = \sum_a v^*_{n,a} O_a$ couples mostly with n-th state

$$\lambda_{n}(t,t_{0}) = e^{-E_{n}(t-t_{0})}$$

 $\pi\pi$ operators used in this work:

- $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & &$
- $\sigma \sim \overline{u}u + \overline{d}d$
- KK ~ $\overline{K}K + K^+K^-$: turned out insignificant for K $\rightarrow \pi\pi$

 (t, t_0) $C(t): N \times N$ correlator matrix $C_{ab}(t) = \langle O_a(t)O_b(0)^{\dagger} \rangle$

Overlap b/w GEVP signals

- Energies from GEVP unresolved with insufficient statistics (107confs, 32³)
- Plateau not well seen for excited states
- Possible problem of traditional GEVP $Av_n = \lambda_n Bv_n$ $\mathsf{B}^{-1/2}\mathsf{A}\mathsf{B}^{-1/2}(\mathsf{B}^{1/2}\mathsf{v}_{\mathsf{n}}) = \lambda_{\mathsf{n}}(\mathsf{B}^{1/2}\mathsf{v}_{\mathsf{n}})$

small statistics

 \rightarrow B becomes singular (zero-consistent eval(s))

 \rightarrow GEVP singular

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

aE_{ππ,n} from 3x3 GEVP 0.8 0.6 ∍ 0.4 × × × × 0.0 2 3 5 8 9 6 aE_{ππ,n} from 5x5 GEVP 1.0 Γ 0.8 0.6 ∍ 0.4 0.2 ground st. \rightarrow 1st excited st. 2nd excited st. 3rd excited st. ⊢△─ 0.0 2 3 5 8 9 6 4 4th excited st. to

Rebased GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent
- Example:

- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations

Rebased GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent
- Example:

- couples well with the ground st.
- couples well with the 1st excited st.
- ...
- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations

Rebased GEVP

Re-based GEVP

- Large size GEVP at short time separations
- Example:

Masaaki Tomii (UConn/RBRC) HHIQCD 2024

Switch to smaller-size GEVP at larger time any eigenvalue is becoming zero-consistent

- couples well with the ground st.
- couples well with the 1st excited st.

. . .

- incorporating 5th op and hence 5th state can spoil the signal of lower states at larger time separations 3 operators to form next basis
 - 1 operator to be excluded from next basis

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

10

$aE_{\pi\pi}^{eff}$ with more statistics

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

All preliminary with new data set

$aE_{\pi\pi}^{eff}$ with more statistics

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

All preliminary with new data set

Current status of ε'/ε

* Result from another group, Ishizuka et al 2018: $Re(\epsilon'/\epsilon) = (19 \pm 57) \times 10^{-4}$ (calculated at unphysical m_{π}, m_K)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

starting calculation at $a^{-1} \approx 1.73$ GeV

Experimental fact

 $\frac{\text{Re}\,A_0}{\text{Re}\,A_2} = 22.45(6) \, : \text{large suppression of} \, \, \Delta I = 3/2 \, (A_2) \, \text{mode}$

Significant suppression of ReA₂ (2012/2015)

- C₁, C₂ contributions of different color structure to $K \rightarrow \pi\pi$ correlation function most significant to ReA₂
- Naïvely $C_1 = -3C_2$ based on color counting
- Significant cancellation at physical m_{π} observed
- Numerical confirmation of the $\Delta I = 1/2$ rule with the lattice result for A₀ (2020)

$$\frac{\text{ReA}_{0}}{\text{ReA}_{2}} = 19.9(2.3)_{\text{stat}}(4.4)_{\text{sys}}$$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

The $\Delta I = 1/2$ rule

Long-distance HVP contribution to muon g-2

Muon anomalous magnetic moment

Magnetic moment

Anomalous magnetic moment

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Actually $g_{\mu} \neq 2$

Experiment vs theory

- Experiment (2023):
- Theory white paper (2020): $10^{10} a_{\mu} = 11659181.0(4.3)$
 - 11658471.893(10) ► QED:
 - 15.36(10) ► EW:
 - QCD
 - LO HVP: lacksquare
 - NLO HVP:
 - NNLO HVP:
 - HLbL:

693.1(4.0) • data-driven -98.3(7) 12.4(1)9.0(1.7)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $10^{10} a_{\mu} = 11659205.9(2.2)$

PRL131,161802(2023)

2006.04822

• dominant uncertainty

BMW (2020): 707.5(5.5) Nature593,51(2021)

Practically convenient to treat separately

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

$G(t) = \frac{1}{3} \sum_{\mu=1}^{3} \left\langle J_{\mu}^{em}(t) J_{\mu}^{em}(0)^{\dagger} \right\rangle$

What parts cause significant error?

$$a_{\mu}^{LO-HVP} = \sum_{\substack{q=(ud),s,c,b}} a_{\mu,conn}^{LO-HVP}(q) + a_{\mu,dis}^{LO-HVP}(q)$$

from 2020 WP [10⁻¹⁰]

$a_{\mu}^{\mathrm{HVP, \ LO}}(ud)$	$a_{\mu}^{\mathrm{HVP, \ LO}}(s)$	$a_{\mu}^{\mathrm{HVP, \ LO}}(c)$
650.2(11.6)	53.2(0.3)	14.6(0.1)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $-HVP + a_{\mu,SIB}^{LO-HVP}$

$$a_{\mu,\text{disc}}^{\text{HVP, LO}} = \delta a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{NLO-HVP}} + a_{\mu}^{\text{NNLO-HVP}} + a_{\mu}^{\text{NNLO-HVP$$

** final precision goal: ~1.5x10⁻¹⁰

** a^{LO-HVP}(ud) : Dominant error source of lattice calculation (focus of this work)

LO HVP contribution to a_{μ}

 $a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt t^3 G(t) \frac{\widetilde{K}(t)}{k_{\text{now}}}$

$$\xrightarrow{\rightarrow \text{lattice}} \sum_{t} G(t) W_t$$
we function
$$t = t$$

$$t = t$$

- ~ t^-1 at $m_{\mu} t \gg 1$
 - Window method [PRL121,022003(2018)]

$$\begin{aligned} a_{\mu}^{LO-HVP} &= a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD} \\ \begin{pmatrix} a_{\mu}^{SD} \\ a_{\mu}^{W} \\ a_{\mu}^{LD} \\ a_{\mu}^{LD} \end{pmatrix} = \sum_{t} G(t) w_{t} \begin{pmatrix} 1 - \Theta(t, t_{1}, \Delta t) \\ \Theta(t, t_{1}, \Delta t) - \Theta(t, t_{2}, \Delta t) \\ \Theta(t, t_{2}, \Delta t) \\ \Theta(t, t_{2}, \Delta t) \end{pmatrix} \\ \text{step function with width } \Delta t \end{aligned}$$

- Calculate G(t) with a way suitable for the respective region
- $(t_1, t_2, \Delta t) = (0.4 \text{ fm}, 1.0 \text{ fm}, 0.15 \text{ fm})$

- Precision goal: ~ 1.5×10^{-10}
- SD & W reaching the goal
- LD desired to be as precise on lattice to achieve full first-principle prediction
- Challenges
 - Large error of long tail
 - Finite-volume effects

Status after WP

New paper by RBC/UKQCD 2410.20590

The long-distance window of the hadronic vacuum polarization for the muon g-2

T. Blum,¹ P. A. Boyle,^{2,3} M. Bruno,^{4,5} B. Chakraborty,⁶ F. Erben,⁷ V. Gülpers,³ A. Hackl,⁸ N. Hermansson-Truedsson,³ R. C. Hill,³ T. Izubuchi,^{2,9} L. Jin,¹ C. Jung,² C. Lehner,⁸, * J. McKeon,⁶ A. S. Meyer,¹⁰ M. Tomii,^{1,9} J. T. Tsang,⁷ and X.-Y. Tuo² (RBC and UKQCD Collaborations)

¹Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA ²Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA ³School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK ⁴Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy ⁵INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy ⁶School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK ⁷CERN, Theoretical Physics Department, Geneva, Switzerland ⁸ Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany ⁹RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA ¹⁰Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (Dated: October 29, 2024)

Boito et al. 2022 and 1.7σ larger compared to the lattice QCD result of BMW20.

2024

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

CERN-TH-2024-182

We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon g-2 and find $a_{\mu}^{\text{LD,iso,conn,ud}} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution, $a_{\mu}^{\rm iso, conn, ud} =$ $666.2(4.3)(2.5) \times 10^{-10}$, which is more than 4σ larger compared to the data-driven estimates of

Reconstruction of G(t) at LD EPJWC175,06031 (2018) PoSLat2019,239 (2019)

$$G(t) = \langle V_{\mu}(t) V_{\mu}(0)^{\dagger} \rangle = \sum_{n} \langle 0 | V_{\mu}(0)^{\dagger} \rangle$$

- If we know $< 0 | V_{\mu} | n >$ and E_n for n = 0, 1, 2, ..., N, we can approximate G(t) as a finite sum

 - Contribution from n > N suppressed exponentially at LD • The long-tail noise will be small enough if $< 0 | V_{\mu}(t) | n > and E_n$ are determined with a sufficient precision
- This work is focused on light-quark connected contribution $\rightarrow I = 1$ GEVP method capable of determining $< 0 | V_{\mu} | n > and E_{n}$
- $\pi\pi$ -like operators: $\pi_{p=(0,0,1)}\pi_{p=(0,0,-1)}$, $\pi_{p=(0,1,1)}\pi_{p=(0,-1,-1)}$, ...
 - quark currents: V_{μ} (local & smeared), ...

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $/_{\mu}|n\rangle\langle n|V_{\mu}^{\dagger}|0\rangle e^{-E_{n}t}$

Reconstruction of G(t) at LD

a = 0.073 fm L = 7.0 fm

Reconstruction of G(t) at LD

a = 0.073 fm L = 7.0 fm

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Unblind and result

Comparison with other results

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Unblind and result

Comparison with other results

Absolute unblinding (BMW20 World)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Unblind and result

Comparison with other results

Absolute unblinding (BMW20 World)

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Unblind and result

Comparison with other results

Similar calculation done by Mainz group (see KEK workshop last month)

Summary

- $\pi\pi$ system related to various remarkable topics
- Scattering lengths (see backup slides for our physical m_{π} calculation)
- Resonance ($\rho \& \sigma$)
- $K \rightarrow \pi\pi$
 - Long-standing challenge for LQCD
 - SM prediction for ε' : 4x larger error than experiment
 - Working on main error sources: 1. O(a²) 2. charm-loop, 3. EM/IB correction
- LD HVP contribution to g-2
 - Necessary for LQCD to improve to achieve the precision similar to Fermilab exp
 - Exclusive reconstruction method significantly improves lattice calculation
 - Next steps: 1. increase statistics, 2. disconnected contribution, 3. IB & EM corrections, 4. strange & charm contributions

Backup slides

Phase shifts &

Lüscher 1991 (valid in $2m_{\pi} < E_{\pi\pi} < 4m_{\pi}$)

$$\tan \delta_{\rm I} = -\frac{\pi^{3/2} q}{Z_{00}(1;q^2)} \equiv -\phi(c)$$

$$q = \frac{L}{2\pi} \sqrt{\frac{E_{\pi\pi}^2}{4} - m_{\pi}^2}$$

$$Z_{00}(s;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n}} (|\vec{n}|^2 - q^2)^{-s}$$

Phase shifts &

• Lüscher 1991 (valid in $2m_{\pi} < E_{\pi\pi} < 4m_{\pi}$)

$$\tan \delta_{\rm I} = -\frac{\pi^{3/2} q}{Z_{00}(1;q^2)} \equiv -\phi(c)$$

$$q = \frac{L}{2\pi} \sqrt{\frac{E_{\pi\pi}^2}{4} - m_{\pi}^2}$$

$$Z_{00}(s;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n}} (|\vec{n}|^2 - q^2)^{-s}$$

Phase shifts &

Lüscher 1991 (valid in $2m_{\pi} < E_{\pi\pi} < 4m_{\pi}$)

$$\tan \delta_{\rm I} = -\frac{\pi^{3/2} q}{\mathsf{Z}_{00}(1;q^2)} \equiv -\phi(\mathbf{q})$$

$$q = \frac{L}{2\pi} \sqrt{\frac{E_{\pi\pi}^2}{4} - m_{\pi}^2}$$

 $Z_{00}(\mathbf{s};\mathbf{q}^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n}} (|\vec{n}|^2 - \mathbf{q}^2)^{-\underline{s}} - \mathbf{q}^2$ ń

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Scattering lengths

$$\left(k = \sqrt{\frac{\mathsf{E}_{\pi\pi}^2}{4}} - \mathsf{m}\right)$$

$$\left(k = \sqrt{\frac{\mathsf{E}_{\pi\pi}^2}{4}} - \mathsf{m}\right)$$

Chiral extrapolation of $a_0^{\dagger}m_{\pi}$

Fit functions (in earlier works using ChPT)

$$m_{\pi}a_{0}^{0} = \frac{7m_{\pi}^{2}}{16\pi f_{\pi}^{2}} \left\{ 1 - \frac{m_{\pi}^{2}}{16\pi^{2} f_{\pi}^{2}} \left[9\ln\frac{m_{\pi}^{2}}{f_{\pi}^{2}} - 5 - l_{\pi}^{0} \right] \right\}$$
$$m_{\pi}a_{0}^{2} = -\frac{m_{\pi}^{2}}{8\pi f_{\pi}^{2}} \left\{ 1 + \frac{m_{\pi}^{2}}{16\pi^{2} f_{\pi}^{2}} \left[3\ln\frac{m_{\pi}^{2}}{f_{\pi}^{2}} - 1 - l_{\pi}^{0} \right] \right\}$$

- with only $l_{\pi\pi}^{I}$ as the free parameter
- input m_{π}/f_{π} gives precise LO
- Iattice data only contribute to NLO
- Result from physical m_{π} simulations meaningful
- Ambitious for physical m_{π} simulations to try to surpass the precision

$a_0^{l}m_{\pi}$ with physical m_{π} from 2023

I = **2**

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

I = **0**

$a_0^{\prime}m_{\pi}$ with physical m_{π} from 2023

| = 2

Improving the signal of the ground state crucial

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

I = **0**

Extra contributions to $\pi\pi$ 2pt functions

More precise evaluation of 2pt functions on the lattice

$$C_{ab}(t) = \sum_n A_{n,a} A_{n,b}^* e^{-E_n t}$$

– vacuum effect

- thermal effect

$$+\langle O_a \rangle \langle O_b \rangle$$

 $+\langle \pi | \mathbf{O}_{\mathsf{a}} | \pi \rangle \langle \pi | \mathbf{O}_{\mathsf{b}} | \pi \rangle e^{-\mathsf{E}_{\pi}\mathsf{T}} + \dots$

– thermal effect 2

$$+\sum_{n} A_{n,a} A_{n,b}^{*} e^{-E_{n}(T-t)}$$

+...

Subtraction of vacuum & 1st thermal effects $C_{ab}(t) \rightarrow C_{ab}(t) - C_{ab}(t + \delta t) = \sum_n A_{n,a} A_{n,b}^* (1 - e^{-E_n \delta t}) e^{-E_n t}$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

- needs to be subtracted for I = 0

single pion propagating backward

- two pions propagating backward

taken into account after GEVP

Non-interacting ππ 2pt func

Interacting $\pi\pi$ correlators

Non-interacting ones

same value, but statistical correlation not maximized

$$+(2\pi/L)^2n$$

Non-interacting ππ 2pt func

Interacting $\pi\pi$ correlators

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

$$+ (2\pi/L)^2 n$$

same value, but statistical correlation not maximized

Non-interacting ππ 2pt func

Interacting $\pi\pi$ correlators

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

same value, but statistical correlation not maximized

$E_{\pi\pi,n=0} \ vs \ \Delta E_{\pi\pi,n=0}$

- $I = 2, 32^3 \times 64$
- Error drastically decreased
 107 configurations (data in 2023)

53

Translation average

- Average can be taken diagram by diagram with different Ntsrc
- No cost to increase Ntsrc for D but C is pretty expensive
- D is dominant for I = 2 signal & noise
- Increasing Ntsrc for D is interesting

54

Ntsrc-dependence

- 236 confs
- Very small error for $N_{tsrc}(D) = 64$
 - Effective energy $\sim \ln \frac{C(t)}{C(t+1)}$
 - Correlation b/w numerator & denominator 0.215 enhanced when average is taken every time translation
- Now error from C diagram significant
 - Ntsrc(C) → 64 for ππ(000) & ππ(001) oprs (from next slides)

Ntsrc-dependence

- 236 confs
- Very small error for $N_{tsrc}(D) = 64$
 - Effective energy $\sim \ln \frac{C(t)}{C(t+1)}$
 - Correlation b/w numerator & denominator 0.215 enhanced when average is taken every time translation
- Now error from C diagram significant
 - Ntsrc(C) → 64 for ππ(000) & ππ(001) oprs (from next slides)

Two-pion backward propagating effect

Subtraction of constant artifacts (vacuum & thermal effects)

 $C_{ab}(t) \rightarrow C_{ab}(t) - C_{ab}(t + \delta_t) = \sum_n A_{n,a} A_{n,b}^* (1 - e^{-E_n \delta_t}) e^{-E_n t}$

- GEVP eigenvalue $\lambda_{n}(t,t_{0}) \rightarrow rac{e^{-E_{n}t} - e^{-E_{n}(T'-t)}}{e^{-E_{n}t_{0}} - e^{-E_{n}(T'-t_{0})}}$ (*) $(\mathsf{T}' = \mathsf{T} - 2\Delta - \delta_{\mathsf{t}})$
- Effective energy definitions
 - def1: $\ln(\lambda_n(t, t_0)/\lambda_n(t+1, t_0))$
 - def2: $-\ln(\lambda_n(t,t_0))/(t-t_0)$
 - def3: solution for (*)

- Error drastically decreased

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

• Plateau from $t_0 = 16$ (see also next slide)

Preliminary result for $a_0^{I}m_{\pi}$

ΔE ₀	fit	0.
$E_0 = 2m_{\pi} + \Delta E_0$		C
phase shift & scattering length	Lüscher formalism	$\delta_0 =$ $a_0^2 m_\pi$

- I = 0 needs more investigation (signal loses before $t_0 = 16$)
- I = 2 reaching the FLAG precision of 2%
- need investigation of systematic error
- may need scaling correction wrt $(m_{\pi}/f_{\pi})^2$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 ΔE^{eff} , L=32, I=2, n=0, 2x2 GEVP, t-t₀=1

Preliminary result

- Reaching the FLAG precision (5% for I = 0, 2% for I = 2)
- again, all other works are done at unphysical m_{π} and input LO as $(m_{\pi}/f_{\pi})^2$
- need investigation of systematic error (expecting not significant though)

MEs from correlation functions

Euclidean correlation function (0-momentum case)

$$\int d^3 x_{\pi\pi} d^3 x_{\rm K} \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})Q \rangle$$

zero-momentum projection ($e^{ip \cdot x} = 1$)

$$= \sum_{\underline{m,n}} \langle 0|O_{\pi\pi}|\pi\pi, \mathbf{m}\rangle \langle \pi\pi, \mathbf{m}|Q_{\mathsf{i}}|\mathsf{K}, \mathbf{n}\rangle \langle \mathbf{m}, \mathbf{m}|\mathsf{k}, \mathbf{n}\rangle \langle \mathbf{m}, \mathbf{m}|\mathsf{k}, \mathbf{n}\rangle \langle \mathbf{m}, \mathbf{n}|\mathsf{k}, \mathbf{n}\rangle \langle \mathbf{m}, \mathbf{n}|\mathsf{k}\rangle \langle \mathbf{n}|\mathsf{k}\rangle$$

• If we were interested in the lightest (lowest-energy) states ... look at large $t_{\pi\pi}$ - t & t - t_K: $\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle \langle \pi\pi,0|Q_{i}|K,0\rangle \langle K,0|O_{K}^{\dagger}|0\rangle e^{-\mathsf{E}_{\pi\pi,0}(\mathsf{t}_{\pi\pi}-\mathsf{t})} e^{-\mathsf{m}_{\mathsf{K},0}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})}$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $O_i(t, \vec{0})O_K(t_K, \vec{x}_K)^{\dagger}$

- $\langle K, n | O_{\kappa}^{\dagger} | 0 \rangle e^{-E_{\pi\pi,m}(t_{\pi\pi}-t)} e^{-m_{K,n}(t-t_{K})}$
- all possible zero-(total)momentum states that have the same quantum numbers as $O_{\pi\pi}/O_{K}$

MEs from correlation functions

Euclidean correlation function (0-momentum case)

$$\int d^3 x_{\pi\pi} d^3 x_{\rm K} \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})Q \rangle$$

zero-momentum projection ($e^{ip \cdot x} = 1$)

$$= \sum_{\underline{m,n}} \langle 0|O_{\pi\pi}|\pi\pi, \mathbf{m}\rangle \langle \pi\pi, \mathbf{m}|Q_{\mathsf{i}}|\mathsf{K}, \mathsf{n}\rangle \langle \mathbf{m}, \mathbf{m}|\mathsf{k}, \mathsf{n}\rangle \langle \mathbf{m}, \mathbf{m}|\mathsf{k}, \mathsf{n}\rangle \langle \mathbf{m}, \mathsf{k}, \mathsf{n}\rangle \langle \mathsf{k}\rangle \langle \mathsf{k}, \mathsf{n}\rangle \langle \mathsf{k}\rangle \langle \mathsf{k}, \mathsf{n}\rangle \langle \mathsf{k}\rangle \langle$$

• If we were interested in the lightest (lowest-energy) states ... look at large $t_{\pi\pi}$ - t & t - t_K:

 $\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle\langle\pi\pi,0|Q_{i}|K,0\rangle$

ME of ground states

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $O_i(t, \vec{0})O_K(t_K, \vec{x}_K)^{\dagger}$

- $\langle K, n | O_{\kappa}^{\dagger} | 0 \rangle e^{-E_{\pi\pi,m}(t_{\pi\pi}-t)} e^{-m_{K,n}(t-t_{K})}$
- all possible zero-(total)momentum states that have the same quantum numbers as $O_{\pi\pi}/O_{K}$

$$\langle \mathsf{K}, 0 | \mathsf{O}_{\mathsf{K}}^{\dagger} | 0 \rangle e^{-\mathsf{E}_{\pi\pi,0}(\mathsf{t}_{\pi\pi}-\mathsf{t})} e^{-\mathsf{m}_{\mathsf{K},0}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})} e^{\mathsf{s}}$$

For extraction of ground-state ME

$$\mathsf{M}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}^{\pi\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}}}{\mathsf{C}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t}_{2})} \right]$$

Excited (n-th) $\pi\pi$ state needed for on-shell kinematics with PBC

$$\mathsf{M}_{n}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}_{n}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}_{n}^{\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}_{1}}}{\mathsf{C}_{n}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t}_{2})} \right]$$

 $C_n^{\pi\pi}$: 2-pt function of $\pi\pi$ operators diagonalized by GEVP

 $C_n^{(3)}$: K $\rightarrow \pi\pi$ 3-pt function with $\pi\pi$ operator used in $C_n^{\pi\pi}$

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

Matrix elements

0	
n	

Effective matrix elements

$$M_{n,i}^{eff}(t_2, t_1) = C_{n,i}^{(3)}(t_2, t_1) \left[\frac{e^{E_n^{\pi} t_2} e^{E^K t_1}}{C_n^{\pi\pi}(t_2) C^K(t_1)} \right]^{1/2}$$

n: state index
i: operator index
$$\xrightarrow{\text{large } t_1 \& t_2} M$$

- Weighted average over $t_1 = t_{op} t_K$ taken
- RGEVP ($5 \rightarrow 4 \rightarrow 3$ operator basis) plateauing from $t_2 = 3$ or 4
 - smaller error than 4x4
 - potential excited-state contamination in 3x3
 - ► GEVP statistically near singular for 5x5

Translating to more physical ME

Renormalization (RI/SMOM scheme)

Interpolation	0.15
Examples of interpolation of renormalized ME	0.10
 Linear & quadratic in E_{ππ}/m_K Systematic error estimated as lin vs 	0.05
quad is small as 1st excited st. close to on-shell	0.00
	at lattice physical

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

 $\mu'^2 = p_1^2 = p_2^2 = (p_1 - p_2)^2$

Result for A₀

- O(a²) scaling violation potentially significant
 - Extrapolation with $c_0 + c_2 a^2 + c_4 a^4$ with a constraint $|c_2 a^2| = 2 |c_4 a^4|$ at $a^{-1} = 1.0$ GeV corresponding to the coarser lattice did not change the result beyond statistical error

- Nonperturbative matching underway [MT, LATTICE2019]

HHIQCD 2024 Masaaki Tomii (UConn/RBRC)

NNLO matching only partially done [Cerda-Sevilla et al. Acta Phys.Polon.B 4 (2018) 1087-1096]

NP matching of WCs

Basic idea

> $O_i^{4f} \rightarrow \sum_i M_{ij} O_i^{3f}$ i.e. $\langle E_{out} | O_i^{4f} | E_{in} \rangle = \sum_i M_{ij} \langle E_{out} | O_i^{3f} | E_{in} \rangle$ for small $E_{out} \& E_{in}$ compared to m_c

- Strategy
 - Consider many 3pt functions on fine lattice (w unphysical m_{π}) $C_{i,ab}^{3f/4f}(t_{out}, t, t_{in}) = \langle \mathcal{O}_{a}(t_{out})O_{i}^{3f/4f}(t)\mathcal{O}_{b}(t_{in}) \rangle$
 - Perform fit with many pairs of O_a & O_b at large t_{out} t & t t_{in} Trying with ~ 200 relevant pairs of O_a & O_b

 - Automatic Wick contractor in use

$$\begin{split} H_W = \sum_i w_i^{4f} O_i^{4f} = \sum_{i,j} w_i^{4f} M_{ij} O_j^{3f} \\ \hline w_j^{3f} \end{split}$$

$$C^{4f}_{i,ab} = M_{ij}C^{3f}_{j,ab}$$

Energy spectrum (for HVP)

Good signal observed for $E_n < 1$ GeV

