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How Do Quantum Systems Thermalize?

Thermalization: observable converge to values
independent of the initial details.

Scar: special initial conditions avoid thermalization.
(For a review: S. Moudgalya, B. A. Bernevig, N. Regnault. RPP (2022))
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Thermalization in Gauge Theories

How Quantum Many-Body Systems Thermalize?

Long-time dynamics in lattice gauge theories

• Fundamental question in quantum many-body physics;

• Real-time dynamics usually hard (e.g. sign problem);

• Scars challenge foundational aspects of thermalization;

• Playground for quantum simulators;

This Talk
Pure gauge, U (1), 2+1D.
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Outline

1. The Eigenstate Thermalization Hypothesis

2. U (1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook
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How Can a System under Unitary Evolution Thermalize?

State decomposed in the eigenbasis of the
Hamiltonian

|ψ⟩ =
∑
m

cm |Em⟩

Time evolution of the state

|ψ(t)⟩ = e−iHt |ψ⟩

Example observable (in the eigenbasis of the
Hamiltonian)

O = |EB⟩ ⟨EA| + |EA⟩ ⟨EB|

Observable expectation value

⟨O(t)⟩ = 2Re
(
c∗

AcBe
−it(EB−EA)

)
Depends on the initial state and on time (for arbitrary t)

This is too generic

No assumption on initial states Highly non-local observable
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The Intuition: Large system can serve as a thermal bath for its small
subsystems

Initial state (at t = 0) State at t = t1 > 0 State at t = t2 > t1
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Real Time-Evolution of Local Observables

Initial state |ψ⟩ = ∑
n cn |ψn⟩

⟨ψ (t)|O |ψ (t)⟩ =
∑

n

|cn|2 Onn +
∑

n̸=m

cnc
∗
l e

i(El−En)tOln

Three ingredients towards thermalization:

• Onn varies smoothly with the energy;

• Oln (l ̸= m) is very small;

• |ψ⟩ has high energy and has "small" variance;

⟨ψ (t)|O |ψ (t)⟩ → O(E), where E = ⟨ψ|H |ψ⟩
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Onn varies smoothly with the energy

⟨ψ (t)|O |ψ (t)⟩ =
∑

n

|cn|2 Onn +
∑

n̸=m

cnc
∗
l e

i(El−En)tOln

Onn = ⟨En|O |En⟩

We describe this continuum function as Onn = O (En)
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Oln (l ̸= m) is very small

⟨ψ (t)|O |ψ (t)⟩ →
∑

n

|cn|2 O (En) +
∑

n̸=m

cnc
∗
l e

i(El−En)t Oln

Oln = ⟨El|O |En⟩

We can drop those terms for sufficiently large times.
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|ψ⟩ has high energy and has "small" variance

⟨ψ (t)|O |ψ (t)⟩ =
∑

n

|cn|2 O(En)

We can approximate the sum by the average ⟨ψ (t)|O |ψ (t)⟩ → O (Em)
ETH, Institute for Theoretical Physics
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Motivating the Eigenstate Thermalization Hypothesis

What happens to the spectrum of a Hamiltonian under small changes of parameters H → H + δH?

Mid-spectrum states have
exponential small gaps

Small changes mix many of these
states

Highly entangled seemingly
"random" mid-spectrum states.
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Entanglement Entropy Across the Spectrum

Entanglement Entropy

Trace out subsystem B: ρA = trBρ

Compute entropy of entanglement: S = −trρA log ρA
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Quick Summary of Expectations

Local operators have continuous diagonal matrix elements

Local operators are ineffective in transforming one eigenstate into another

Mid-spectrum states have small gaps and are highly entangled.
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The Eigenstate Thermalization Hypothesis

Omn = O (Em)︸ ︷︷ ︸
continuous

δmn + e− 1
2 S(Em+En

2 )︸ ︷︷ ︸
exponentially small

fO (Em − En, Em + En)︸ ︷︷ ︸
continuous

Rmn︸ ︷︷ ︸
random

O (Em) = O (⟨ψ(0)|H |ψ(0)⟩) = 1
tr (e−βH) tr

(
Oe−βH

)

Strong breaking of ETH:

• Integrable models;
• Disordered systems.

NEXT: Weak breaking of ETH with Quantum Many-Body Scars
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Motivating the Eigenstate Thermalization Hypothesis

What happens to the spectrum of a Hamiltonian under small changes of parameters H → H + δH?

Mid-spectrum states have
exponential small gaps

Special scar state with low
entropy

Scar is not significantly mixing
with other states
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Signatures of Quantum Many-Body Scars

Scarred systems violate this picture for a few eigenstates

Some observables are no longer continuous There are exceptionally low entanglement entropy
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Quantum Many-Body Scars and Gauge Theories

• First found experimentally in the PXP model (Rydberg atoms);
H. Bernien et al. Nature (2017)

• PXP maps exactly to a U(1) gauge theory in 1+1D;
F. Surace et al. PRX (2020)

• Scars predicted in a variety of 1+1D gauge theories;
H.-Y. Wang et al. PRL (2022) J.Y. Desaules et al. PRX (2023) J. C. Halimeh et al. Quantum (2023) G. Calajo arXiv:2405.13112 ...

• Also in 2+1D for spin-1/2;
D. Banerjee et al. PRL (2022) S. Biswas et al. SciPost. Phys. (2022) I. Sau et al. PRD (2024)

• See also the non-Abelian case;
T. Hayata, Y. Hidaka JHEP (2023) L. Ebner et al. PRD (2024) G. Calajo et al. arXiv:2405.13112

HERE: Quantum Many-Body Scars for arbitrary truncation in 2+1D pure gauge theories

MAIN FOCUS: T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892
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Outline

1. The Eigenstate Thermalization Hypothesis

2. U (1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook
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Hamiltonian for U (1) Pure Gauge Theories

H = −t∑n U
†
n1U

†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n E
2
n

En ∈ Z

Un unitary raising
operator

Ui |Ei⟩ = |Ei + 1⟩

Gauss’ Law
Ei −Ek +Ej −El = 0

ETH, Institute for Theoretical Physics
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Symmetries

H = −t∑n U
†
n1U

†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n E
2
n

Translations Reflections Windings

Winding symmetry:
[
H,
∑

a

∑
En+a2̂1

]
= 0.

Most of this talk: zero winding sector
∑

a
En+a2̂1 = 0,

∑
a
En+a1̂2 = 0
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Spectral Symmetry for κ = 0

H = −t∑n U
†
n1U

†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n E
2
n

Define

ζ |ε⟩ = (−1)ε |ε⟩

C =
∏L1−1

a=0

∏L2/2−1
n=0 ζ(n,2a)1 then {C, H□} = 0.

Then

C |E⟩ → |−E⟩

ETH, Institute for Theoretical Physics
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An Index Theorem

H = −t∑n U
†
n1U

†
n+1̂2Un2Un+2̂1︸ ︷︷ ︸

U□

+h.c.+ κ
∑

n E
2
n

There are an exponentially large number of zero-energy states

• Consider tr (RxC) (Rx reflection with respect
to x axis);

• Only zero modes contribute;

• Grows exponentially with the volume.

M. Schecter and T. Iadecola PRB (2018)

T. Budde, M. Marinkovic, JPB - arXiv:2403.08892

Density of States

An exponential number of zero modes
Can we use the exponential number of zero-energy states to build low-entropy states?
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Non-Integrability and Level Statistics

Integrable systems leave their imprint on spectrum statistics. Is this model integrable?
• Resolve symmetries of the model;

• Compute the spectrum for one sector {Em}m;

• Compute consecutive level ratios rn = min
{

En−En−1
En+1−En

}
;

• Compute the distribution p (r) with r ∈ [0, 1].

Integrable: p(r) = 2
(1+r)2 Non-Integrable: p(r) = 27

4
r+r2

(1+r+r2)5/2

We will analyze this in detail for a ladder system

ETH, Institute for Theoretical Physics
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Non-Integrability of the Ladder - Numerical Results

H =
∑

n

(
U□ + U †

□

)
+ λ

∑
l top row

El

• Break translations using open boundaries;

• Include an electric field term λ
∑

l in top row El breaks vertical reflections;

• Resolve horizontal reflection.
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Non-Integrability of the Ladder - Numerical Results

Address integrability:
• Resolve symmetries;
• Compute level space distribution.

p (r) , rn = min
{
En+1 − En

En − En−1
,
En − En−1

En+1 − En

}
− Parity Symmetry Sector + Parity Symmetry Sector

Integrable systems: expected Poisson
Non-integrable: expected Gaussian Orthogonal Ensemble (GOE)
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Outline

1. The Eigenstate Thermalization Hypothesis

2. U (1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook
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Spin-1 QLM: Two Plaquettes Zero Mode

We construct a two-plaquette state (7 spins)

ZERO-ENERGY

∑
n

(
U †

n1U
†
n+1̂2Un2Un+2̂1 + h.c.

)
|Blue⟩ = 0
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Spin-1 QLM: Two Plaquettes Zero Mode

Two-plaquette states

∑
n

(
U□ + U †

□

)
|Blue⟩ = ∑

n

(
U□ + U †

□

)
|Red⟩ = 0

Larger Volumes: tiling
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An Interlude on Tatami

Auspicious Inauspicious

Determining whether a large room has an auspicious arrangement using only full mats is NP-complete.

This is a NP-complete problem we don’t have to worry about here!
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The Periodic Ladder

H =
∑

n

(
U□ + U †

□

)
+ λ

∑
l top row

El

Bipartite Entanglement Entropy λ = 0.2
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Scars for Arbitrary Volumes and Truncations

|ψ(i,T )
s ⟩ = 1

(S + 1)|T |/2

∏
(n,n′)∈T

(
S∑

k=0

(−1)k(U□n)i−S+k(U□n′ )i−k

)
|0⟩

|0⟩ ≡ State where all links are zero

Entanglement entropy for
S = 1 and 6 × 2 volume

Entanglement entropy for a
S = 2 ladder

For details and other types of scars see T. Budde, M. Marinkovic, JPB - arXiv:2403.08892
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Effect of Scars in Observables

Non-scarred Ladder Scarred Ladder

The expectation value of the magnetization of the top row is not continuous with respect to the energy
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Scars with the E2 Term (S = 1)

H =
∑

n

(
U□ + U †

□

)
+ κ

∑
l

E2
l

Half of the links are 0 and the other half ±1 All links are ±1
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1. The Eigenstate Thermalization Hypothesis

2. U (1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook
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Are These States Relevant?

NO
For ground state or finite temperature physics

YES
For long-time dynamics starting from physically relevant initial states

• Scar states are ground-states of different local Hamiltonians;

• State preparation does not need to be perfect (at least at finite volume).
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Conclusions

Scars violate ETH and can spoil thermalization

Scars appear in pure U (1) gauge theories for arbitrary volumes

T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892

• For S = 1 Quantum Link Models;
• For truncated models, with arbitrary truncation.

Ongoing work:
• Other winding sectors;
• Connections to integrability;
• Non-zero-mode scars.

K. Keršič J. Dong

Some other interesting directions:
• Parent Hamiltonians: scars as ground states;

• Connection between gauge symmetry and scarring?

• Any consequence in the continuum limit?
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