ETH zürich

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Quantum Many-Body Scars in 2+1D Gauge Theories

Joao C. Pinto Barros <u>Thea Budde, Marina Krstić Marinković</u> Lattice 2024 15th of November | Kyoto

How Do Quantum Systems Thermalize?

Thermalization: observable converge to values independent of the initial details.

How Do Quantum Systems Thermalize?

Thermalization: observable converge to values independent of the initial details.

Scar: special initial conditions avoid thermalization. (For a review: S. Moudgalya, B. A. Bernevig, N. Regnault. RPP (2022))

Thermalization in Gauge Theories

How Quantum Many-Body Systems Thermalize?

Thermalization in Gauge Theories

How Quantum Many-Body Systems Thermalize?

Long-time dynamics in lattice gauge theories

- Fundamental question in quantum many-body physics;
- Real-time dynamics usually hard (e.g. sign problem);
- Scars challenge foundational aspects of thermalization;
- Playground for quantum simulators;

Thermalization in Gauge Theories

How Quantum Many-Body Systems Thermalize?

Long-time dynamics in lattice gauge theories

- Fundamental question in quantum many-body physics;
- Real-time dynamics usually hard (e.g. sign problem);
- Scars challenge foundational aspects of thermalization;
- Playground for quantum simulators;

This Talk

Pure gauge, U(1), 2+1D.

Outline

- 1. The Eigenstate Thermalization Hypothesis
- 2. U(1) Pure Gauge Theories
- 3. Low Entropy Zero-Energy States
- 4. Conclusions and Outlook

Outline

1. The Eigenstate Thermalization Hypothesis

2. U(1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook

ETH, Institute for Theoretical Physics High Performance Computational Physics group

State decomposed in the eigenbasis of the Hamiltonian

$$\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$$

State decomposed in the eigenbasis of the Hamiltonian

Example observable (in the eigenbasis of the Hamiltonian)

$$\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$$

$$O = |E_B\rangle \langle E_A| + |E_A\rangle \langle E_B|$$

State decomposed in the eigenbasis of the Hamiltonian

 $\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$

Time evolution of the state

$$\left|\psi(t)\right\rangle = e^{-iHt} \left|\psi\right\rangle$$

Example observable (in the eigenbasis of the Hamiltonian)

$$O = |E_B\rangle \langle E_A| + |E_A\rangle \langle E_B|$$

State decomposed in the eigenbasis of the Hamiltonian

$$\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$$

Time evolution of the state

$$\left|\psi(t)\right\rangle = e^{-iHt} \left|\psi\right\rangle$$

Example observable (in the eigenbasis of the Hamiltonian)

$$O = |E_B\rangle \langle E_A| + |E_A\rangle \langle E_B|$$

Observable expectation value

$$\langle O(t) \rangle = 2 \operatorname{Re} \left(c_A^* c_B e^{-it(E_B - E_A)} \right)$$

State decomposed in the eigenbasis of the Hamiltonian

$$\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$$

Time evolution of the state

 $\left|\psi(t)\right\rangle = e^{-iHt} \left|\psi\right\rangle$

Example observable (in the eigenbasis of the Hamiltonian)

$$O = |E_B\rangle \langle E_A| + |E_A\rangle \langle E_B|$$

Observable expectation value

$$\langle O(t) \rangle = 2 \operatorname{Re} \left(c_A^* c_B e^{-it(E_B - E_A)} \right)$$

Depends on the initial state and on time (for arbitrary *t*) This is too generic

State decomposed in the eigenbasis of the Hamiltonian

$$\left|\psi\right\rangle = \sum_{m} c_{m} \left|E_{m}\right\rangle$$

Time evolution of the state

 $\left|\psi(t)\right\rangle = e^{-iHt} \left|\psi\right\rangle$

Example observable (in the eigenbasis of the Hamiltonian)

$$O = |E_B\rangle \langle E_A| + |E_A\rangle \langle E_B|$$

Observable expectation value

$$\langle O(t) \rangle = 2 \operatorname{Re} \left(c_A^* c_B e^{-it(E_B - E_A)} \right)$$

Depends on the initial state and on time (for arbitrary *t*) This is too generic

No assumption on initial states

Highly non-local observable

The Intuition: Large system can serve as a thermal bath for its small subsystems

Initial state (at t = 0)

State at $t = t_1 > 0$

State at $t = t_2 > t_1$

The Intuition: Large system can serve as a thermal bath for its small subsystems

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Real Time-Evolution of Local Observables

Initial state
$$|\psi\rangle = \sum_{n} c_{n} |\psi_{n}\rangle$$

 $\langle \psi(t)| O |\psi(t)\rangle = \sum_{n} |c_{n}|^{2} O_{nn} + \sum_{n \neq m} c_{n} c_{l}^{*} e^{i(E_{l} - E_{n})t} O_{ln}$

Three ingredients towards thermalization:

- O_{nn} varies smoothly with the energy;
- O_{ln} $(l \neq m)$ is very small;
- $|\psi\rangle$ has high energy and has "small" variance;

Real Time-Evolution of Local Observables

Initial state
$$|\psi\rangle = \sum_{n} c_{n} |\psi_{n}\rangle$$

 $\langle \psi(t)| O |\psi(t)\rangle = \sum_{n} |c_{n}|^{2} O_{nn} + \sum_{n \neq m} c_{n} c_{l}^{*} e^{i(E_{l} - E_{n})t} O_{ln}$

Three ingredients towards thermalization:

- O_{nn} varies smoothly with the energy;
- O_{ln} $(l \neq m)$ is very small;
- $|\psi\rangle$ has high energy and has "small" variance;

$$\langle \psi(t) | O | \psi(t) \rangle \rightarrow O(E), \text{ where } E = \langle \psi | H | \psi \rangle$$

 O_{nn} varies smoothly with the energy

We describe this continuum function as $O_{nn} = O(E_n)$

ETH zürich ETH, Institute for Theoretical Physics High Performance Computational Physics group O_{ln} ($l \neq m$) is very small

We can drop those terms for sufficiently large times.

ETH zürich ETH, Institute for Theoretical Physics High Performance Computational Physics group $|\psi\rangle$ has high energy and has "small" variance

We can approximate the sum by the average $\langle \psi(t) | O | \psi(t) \rangle \rightarrow O(E_m)$

ETH Zürich ETH, Institute for Theoretical Physics High Performance Computational Physics group

What happens to the spectrum of a Hamiltonian under small changes of parameters $H \rightarrow H + \delta H$?

Mid-spectrum states have exponential small gaps

What happens to the spectrum of a Hamiltonian under small changes of parameters $H \rightarrow H + \delta H$?

Mid-spectrum states have exponential small gaps

Small changes mix many of these states

What happens to the spectrum of a Hamiltonian under small changes of parameters $H \rightarrow H + \delta H$?

Mid-spectrum states have exponential small gaps

Small changes mix many of these states

Highly entangled seemingly "random" mid-spectrum states.

Entanglement Entropy Across the Spectrum

ETH zürich

stitute for Theoretical Physics High Performance Computational Physics group

Joan C. Pinto Barros 13/37 **Quick Summary of Expectations**

Local operators have continuous diagonal matrix elements

Local operators are ineffective in transforming one eigenstate into another

Mid-spectrum states have small gaps and are highly entangled.

Onn.

14/37

The Eigenstate Thermalization Hypothesis

$$O_{mn} = \underbrace{O(E_m)}_{\text{continuous}} \delta_{mn} + \underbrace{e^{-\frac{1}{2}S\left(\frac{E_m + E_n}{2}\right)}}_{\text{exponentially small}} \underbrace{f_O\left(E_m - E_n, E_m + E_n\right)}_{\text{continuous}} \underbrace{R_{mn}}_{\text{random}}$$

$$O(E_m) = O(\langle \psi(0) | H | \psi(0) \rangle) = \frac{1}{\operatorname{tr}(e^{-\beta H})} \operatorname{tr}(Oe^{-\beta H})$$

The Eigenstate Thermalization Hypothesis

$$O(E_m) = O(\langle \psi(0) | H | \psi(0) \rangle) = \frac{1}{\operatorname{tr}(e^{-\beta H})} \operatorname{tr}(Oe^{-\beta H})$$

Strong breaking of ETH:

- Integrable models;
- Disordered systems.

The Eigenstate Thermalization Hypothesis

$$O(E_m) = O(\langle \psi(0) | H | \psi(0) \rangle) = \frac{1}{\operatorname{tr}(e^{-\beta H})} \operatorname{tr}(Oe^{-\beta H})$$

Strong breaking of ETH:

- Integrable models;
- Disordered systems.

NEXT: Weak breaking of ETH with Quantum Many-Body Scars

What happens to the spectrum of a Hamiltonian under small changes of parameters $H \rightarrow H + \delta H$?

Mid-spectrum states have exponential small gaps

Special scar state with low entropy

Scar is not significantly mixing with other states

Signatures of Quantum Many-Body Scars

Scarred systems violate this picture for a *few* eigenstates

Some observables are no longer continuous

There are exceptionally low entanglement entropy

Signatures of Quantum Many-Body Scars

Scarred systems violate this picture for a *few* eigenstates

Some observables are no longer continuous

There are exceptionally low entanglement entropy

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Quantum Many-Body Scars and Gauge Theories

• First found experimentally in the PXP model (Rydberg atoms);

H. Bernien et al. Nature (2017)

• PXP maps exactly to a U(1) gauge theory in 1+1D;

F. Surace et al. PRX (2020)

Quantum Many-Body Scars and Gauge Theories

• First found experimentally in the PXP model (Rydberg atoms);

H. Bernien et al. Nature (2017)

• PXP maps exactly to a U(1) gauge theory in 1+1D;

F. Surace et al. PRX (2020)

Scars predicted in a variety of 1+1D gauge theories;

H.-Y. Wang et al. PRL (2022) J.Y. Desaules et al. PRX (2023) J. C. Halimeh et al. Quantum (2023) G. Calajo arXiv:2405.13112 ...

• Also in 2+1D for spin-1/2;

D. Banerjee et al. PRL (2022) S. Biswas et al. SciPost. Phys. (2022) I. Sau et al. PRD (2024)

• See also the non-Abelian case;

T. Hayata, Y. Hidaka JHEP (2023) L. Ebner et al. PRD (2024) G. Calajo et al. arXiv:2405.13112

Quantum Many-Body Scars and Gauge Theories

• First found experimentally in the PXP model (Rydberg atoms);

H. Bernien et al. Nature (2017)

• PXP maps exactly to a U(1) gauge theory in 1+1D;

F. Surace et al. PRX (2020)

Scars predicted in a variety of 1+1D gauge theories;

H.-Y. Wang et al. PRL (2022) J.Y. Desaules et al. PRX (2023) J. C. Halimeh et al. Quantum (2023) G. Calajo arXiv:2405.13112 ...

• Also in 2+1D for spin-1/2;

D. Banerjee et al. PRL (2022) S. Biswas et al. SciPost. Phys. (2022) I. Sau et al. PRD (2024)

• See also the non-Abelian case;

T. Hayata, Y. Hidaka JHEP (2023) L. Ebner et al. PRD (2024) G. Calajo et al. arXiv:2405.13112

HERE: Quantum Many-Body Scars for arbitrary truncation in 2+1D pure gauge theories

MAIN FOCUS: T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892

ETH Zürich ETH, Institute for Theoretical Physics High Performance Computational Physics group

Outline

1. The Eigenstate Thermalization Hypothesis

2. U(1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook

Hamiltonian for U(1) Pure Gauge Theories

$$H = -t \sum_{n} \underbrace{U_{n1}^{\dagger} U_{n+\hat{1}2}^{\dagger} U_{n2} U_{n+\hat{2}1}}_{U_{\square}} + \text{h.c.} + \kappa \sum_{n} E_{n}^{2}$$

 $E_n \in \mathbb{Z}$

 U_n unitary raising operator $U_i |E_i\rangle = |E_i + 1\rangle$

Gauss' Law $E_i - E_k + E_j - E_l = 0$

ETH, Institute for Theoretical Physics High Performance Computational Physics group

ETH zürich

Symmetries

Symmetries

Winding symmetry: $\left[H, \sum_{a} \sum E_{n+a\hat{2}1}\right] = 0.$

Most of this talk: zero winding sector $\sum_{a} E_{n+a\hat{2}1} = 0$, $\sum_{a} E_{n+a\hat{1}2} = 0$

Spectral Symmetry for $\kappa = 0$

$$H = -t \sum_{n} \underbrace{U_{n1}^{\dagger} U_{n+\hat{1}2}^{\dagger} U_{n2} U_{n+\hat{2}1}}_{U_{\square}} + \text{h.c.} + \kappa \sum_{n} E_{n}^{2}$$

$$\begin{split} \zeta \left| \varepsilon \right\rangle &= (-1)^{\varepsilon} \left| \varepsilon \right\rangle \\ \mathcal{C} &= \prod_{a=0}^{L_1-1} \prod_{n=0}^{L_2/2-1} \zeta_{(n,2a)1} \text{ then } \{\mathcal{C}, H_{\Box}\} = 0. \end{split}$$

Then

$$\mathcal{C} |E\rangle \to |-E\rangle$$

An Index Theorem

$$H = -t \sum_{n} \underbrace{U_{n1}^{\dagger} U_{n+\hat{1}\hat{2}}^{\dagger} U_{n2} U_{n+\hat{2}\hat{1}}}_{U_{\square}} + \text{h.c.} + \kappa \sum_{n} E_{n}^{2}$$

There are an exponentially large number of zero-energy states

- Consider tr ($R_x C$) (R_x reflection with respect to *x* axis);
- Only zero modes contribute;
- Grows exponentially with the volume.

M. Schecter and T. ladecola PRB (2018)

T. Budde, M. Marinkovic, JPB - arXiv:2403.08892

An Index Theorem

$$H = -t \sum_{n} \underbrace{U_{n1}^{\dagger} U_{n+\hat{1}\hat{2}}^{\dagger} U_{n2} U_{n+\hat{2}\hat{1}}}_{U_{\square}} + \text{h.c.} + \kappa \sum_{n} E_{n}^{2}$$

There are an exponentially large number of zero-energy states

- Consider tr (*R_xC*) (*R_x* reflection with respect to *x* axis);
- Only zero modes contribute;
- Grows exponentially with the volume.

M. Schecter and T. ladecola PRB (2018)

T. Budde, M. Marinkovic, JPB - arXiv:2403.08892

Density of States

An exponential number of zero modes

Can we use the exponential number of zero-energy states to build low-entropy states?

ETH zürich

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Non-Integrability and Level Statistics

Integrable systems leave their imprint on spectrum statistics. Is this model integrable?

- Resolve symmetries of the model;
- Compute the spectrum for one sector $\{E_m\}_m$;
- Compute consecutive level ratios $r_n = \min\left\{\frac{E_n E_{n-1}}{E_{n+1} E_n}\right\};$
- Compute the distribution p(r) with $r \in [0, 1]$.

Integrable: $p(r) = \frac{2}{(1+r)^2}$

Non-Integrable: $p(r) = \frac{27}{4} \frac{r+r^2}{(1+r+r^2)^{5/2}}$

Non-Integrability and Level Statistics

Integrable systems leave their imprint on spectrum statistics. Is this model integrable?

- Resolve symmetries of the model;
- Compute the spectrum for one sector $\{E_m\}_m$;
- Compute consecutive level ratios $r_n = \min\left\{\frac{E_n E_{n-1}}{E_{n+1} E_n}\right\};$
- Compute the distribution p(r) with $r \in [0, 1]$.

Integrable: $p(r) = \frac{2}{(1+r)^2}$

Non-Integrable: $p(r) = \frac{27}{4} \frac{r+r^2}{(1+r+r^2)^{5/2}}$

We will analyze this in detail for a ladder system

Non-Integrability of the Ladder - Numerical Results

- · Break translations using open boundaries;
- Include an electric field term $\lambda \sum_{l \text{ in top row}} E_l$ breaks vertical reflections;
- Resolve horizontal reflection.

ETH Zürich ETH, Institute for Theoretical Physics High Performance Computational Physics group

Non-Integrability of the Ladder - Numerical Results

Address integrability:

- Resolve symmetries;
- Compute level space distribution.

$$p(r), r_n = \min\left\{\frac{E_{n+1} - E_n}{E_n - E_{n-1}}, \frac{E_n - E_{n-1}}{E_{n+1} - E_n}\right\}$$

+ Parity Symmetry Sector

Integrable systems: expected Poisson

Non-integrable: expected Gaussian Orthogonal Ensemble (GOE)

Outline

1. The Eigenstate Thermalization Hypothesis

2. U(1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook

We construct a two-plaquette state (7 spins)

$$|\text{Blue}\rangle = \frac{1}{\sqrt{2}}$$

ZERO-ENERGY

$$\sum_{n} \left(U_{n1}^{\dagger} U_{n+\hat{1}2}^{\dagger} U_{n2} U_{n+\hat{2}1} + \text{h.c.} \right) |\text{Blue}\rangle = 0$$

ETH, Institute for Theoretical Physics High Performance Computational Physics group

We construct a two-plaquette state (7 spins)

ZERO-ENERGY

$$\sum_{n} \left(U_{n1}^{\dagger} U_{n+\hat{1}2}^{\dagger} U_{n2} U_{n+\hat{2}1} + \text{h.c.} \right) |\text{Blue}\rangle = 0$$

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Two-plaquette states

 $|\text{Blue}\rangle = \frac{1}{\sqrt{2}} \bigoplus_{n=1}^{\infty} - \bigoplus_{n=1}^{\infty} |\text{Red}\rangle = \frac{1}{\sqrt{2}} \bigoplus_{n=1}^{\infty} - \bigoplus_{n=1}^{\infty} \sum_{n} \left(U_{\Box} + U_{\Box}^{\dagger}\right) |\text{Blue}\rangle = \sum_{n} \left(U_{\Box} + U_{\Box}^{\dagger}\right) |\text{Red}\rangle = 0$

Two-plaquette states

$$|\text{Blue}\rangle = \frac{1}{\sqrt{2}} \bigoplus_{n=1}^{\infty} - \bigoplus_{n=1}^{\infty} |\text{Red}\rangle = \frac{1}{\sqrt{2}} \bigoplus_{n=1}^{\infty} - \bigoplus_{n=1}^{\infty} \sum_{n} \left(U_{\square} + U_{\square}^{\dagger} \right) |\text{Blue}\rangle = \sum_{n} \left(U_{\square} + U_{\square}^{\dagger} \right) |\text{Red}\rangle = 0$$

Larger Volumes: tiling

An Interlude on Tatami

Auspicious

Inauspicious

An Interlude on Tatami

Determining whether a large room has an auspicious arrangement using only full mats is NP-complete.

An Interlude on Tatami

Determining whether a large room has an auspicious arrangement using only full mats is NP-complete.

This is a NP-complete problem we don't have to worry about here!

The Periodic Ladder

$$H = \sum_{n} \left(U_{\Box} + U_{\Box}^{\dagger} \right) + \lambda \sum_{l \text{ top row}} E_{l}$$

The Periodic Ladder

$$H = \sum_{n} \left(U_{\Box} + U_{\Box}^{\dagger} \right) + \lambda \sum_{l \text{ top row}} E_{l}$$

Bipartite Entanglement Entropy $\lambda = 0.2$

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Scars for Arbitrary Volumes and Truncations

$$|\psi_s^{(i,T)}\rangle = \frac{1}{(S+1)^{|T|/2}} \prod_{(n,n')\in T} \left(\sum_{k=0}^{S} (-1)^k (U_{\Box n})^{i-S+k} (U_{\Box n'})^{i-k} \right) |\mathbf{0}\rangle$$

 $|\mathbf{0}
angle \equiv$ State where all links are zero

T_1	T_2	T_3	T_4
T_5	T_6		T_8
	T_7		

Scars for Arbitrary Volumes and Truncations

$$|\psi_{s}^{(i,T)}\rangle = \frac{1}{(S+1)^{|T|/2}} \prod_{(n,n')\in T} \left(\sum_{k=0}^{S} (-1)^{k} (U_{\Box n})^{i-S+k} (U_{\Box n'})^{i-k} \right) |\mathbf{0}\rangle$$

 $|\mathbf{0}
angle \equiv$ State where all links are zero

For details and other types of scars see T. Budde, M. Marinkovic, JPB - arXiv:2403.08892

ETH zürich High

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Effect of Scars in Observables

The expectation value of the magnetization of the top row is not continuous with respect to the energy

Scars with the E^2 Term (S = 1)

$$H = \sum_{n} \left(U_{\Box} + U_{\Box}^{\dagger} \right) + \kappa \sum_{l} E_{l}^{2}$$

Half of the links are 0 and the other half ± 1

Outline

1. The Eigenstate Thermalization Hypothesis

2. U(1) Pure Gauge Theories

3. Low Entropy Zero-Energy States

4. Conclusions and Outlook

Are These States Relevant?

NO

For ground state or finite temperature physics

Are These States Relevant?

NO

For ground state or finite temperature physics

YES

For long-time dynamics starting from physically relevant initial states

- Scar states are ground-states of different local Hamiltonians;
- State preparation does not need to be perfect (at least at finite volume).

Conclusions

Scars violate ETH and can spoil thermalization

Scars appear in pure $U\left(1\right)$ gauge theories for arbitrary volumes

T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892

- For S = 1 Quantum Link Models;
- For truncated models, with arbitrary truncation.

Conclusions

Scars violate ETH and can spoil thermalization

Scars appear in pure $U\left(1\right)$ gauge theories for arbitrary volumes

T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892

- For S = 1 Quantum Link Models;
- For truncated models, with arbitrary truncation.

Ongoing work:

- Other winding sectors;
- Connections to integrability;
- Non-zero-mode scars.

Conclusions

Scars violate ETH and can spoil thermalization

Scars appear in pure $U\left(1\right)$ gauge theories for arbitrary volumes

T. Budde, M. K. Marinkovic, JPB; PRD 110 (2024) 9, 094506, arXiv:2403.08892

- For S = 1 Quantum Link Models;
- For truncated models, with arbitrary truncation.

Ongoing work:

- Other winding sectors;
- Connections to integrability;
- Non-zero-mode scars.

Some other interesting directions:

- Parent Hamiltonians: scars as ground states;
- Connection between gauge symmetry and scarring?
- Any consequence in the continuum limit?

