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Confinement mechanisms

Two scenarios for quark confinement: monopole and center vortex

Dual superconductor picture Center-vortex proliferation [t Hooft ‘78, ...]

(monopole condensation)
[Nambu ‘74, ‘t Hooft ‘75, Mandelstam ‘76,...] i
Tl

monopole condensation = eoN
= dual Meissner effect I
= linear gg-potential

| Wilson loop

center vortex 2Tl
Center vortex: rotating Wilson loop by e v .

Proliferation = (W (C)) ~ e~9 (Area)

cf.) restoration of ZI[\}]: proliferation of co-dim-2 defects

//\_
q——— ¢

Connection between them? [Ambjgrn-Giedt-Greensite ‘99, Engelhardt-Reinhardt ‘99, Cornwall ’99, ...]
“monopole as junction of center vortices”



Summary

Quark confiners: monopole and center vortex

Weak-coupling semiclassical realizations:

3d monopole semiclassics 2d center-vortex semiclassics

[Unsal ’07, Unsal-Yaffe ’08,...] [Tanizaki-Unsal '22, ...]

SU(N) Yang-Mills on R3 x ST with SU(N) Yang-Mills on R? X T2 with ‘t
“center-stabilizing deformation” Hooft flux

= confinement by 3d monopole gas ‘ = confinement by 2d center-vortex gas

This work: Consider an interpolating setup on (R? x §1) x §1
\ Center vortex in 2d

Monopole in R? x S1 a

X34 I monopole —_ ®
“monopole as junction of / fxz 1 \ Center vortex

center vortices”
X1




Outline

Introduction (2 slides)
Monopole semiclassics and center-vortex semiclassics (7 slides)
Monopole-vortex continuity (9 slides)
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Semiclassical approaches to confinement

Motto: deforming SU(N) YM to weakly-coupled theory with keeping confinement.

center-stabilizing deformation

compactification (to avoid deconfinement transition)

3d monq_pole semiclassics 2d center-vortex semiclassics

[Unsal ‘07, Unsal-Yaffe ‘08, ...] [Tanizaki-Unsal ’22, ...]

SU(N) Yang-Mills on R3 x S§1 with SU(N) Yang-Mills on R? x T? with ‘t
“center-stabilizing deformation” Hooft flux (Z\' background)

= confinement by 3d monopole gas = confinement by 2d center-vortex gas

Ansatz: adiabatic continuity conjecture

size of compactified S* or T2

—
weak coupling
1 | wantto know

|
“adiabatic continuity” (confinement phase, w/o transition)




Adiabatic continuity

* With the naive compactification, there is a deconfinement transition somewhere

size of compactified S or T2

deconfined a E confined

Deconfinement transition (SSB of center symmetry)

e By adding “center-stabilizing deformation” (adding Polyakov-loop potential in 3d
semiclassics; inserting ‘t Hooft flux in 2d semiclassics), we expect the adiabatic
continuity.

size of compactified S* or T?

C —
weak[v coupled confined
confinement!



3d monopole semiclassics

[Unsal ’07, Unsal-Yaffe ’08,...] (cf. [Davies-Hollowood-Khoze-Mattis ’99, ...])

e SU(N) Yang-Mills on R3 x ST with ”cente[r-/s'ﬁabilizing deformation” [Unsal-vaffe '08]:
N/2

S=Syy+ Jd?’x Z a, |tr (P")|2 Add a potential for Polyakov loop (by
hand) to keep center symmetry

n=1

= Center symmetry is kept for small S* (, realizing weak-coupling confinement)

« 3d effective theory on R3

e.g.) clock matrixfor N = 3

The Polyakov loop behaves as an adjoint scalar field. 1 0 0
21
At the center symmetric vacuum, “(P) ~ C" (up to gauge) C=10 e3 0
4mi
= adjoint higgsing SU(N) - U(1)V~1 0 0 e3

3d effective theory = 3d U(1)"~! gauge theory + monopoles

* Polyakov confinement by dilute gas of monopoles (in 3d Abelian gauge theory) [Polyakov '77]

Magnetic Debye screening = area law (W (C)) ~ e~ (Area)



3d monopole semiclassics (some details)

“compactness of adjoint higgs”

* N kinds of monopoles: Q;,, = 1/N fractional instantons [Kraan-van Baal ‘98] [Lee-Lu "98]

(N-1) BPS monopoles + KK monopole
Magnetic charge: ¢ = dp ... CZN(— — = dy_q)

- - .
aq, ", An_q1: Simple roots
Ay (= —d, ——dy_y) : affine root

3d abelian duality: U(1)V~1 gauge field=> U(1)¥~1-valued compact boson & (d& = * f)
In terms of ¢ (dual photon/magnetic potential), the 3d effective theory is,

#gZ 812

— 3 212 T NAa2 - -

Monopole amplitude Y _[d X L |do|” —#e N9 z COS(C(i 10+ Q/N)
8m? i:l’...,N

[M;] ~ e NgZ oldio+i0/N -

* 3d effective theory




2d center-vortex semiclassics

[Tanizaki-Unsal ’22, ......] (cf. [Yamazaki-Yonekura ‘17])

X4
TZ
Setup: SU(N) Yang-Mills on R? X T2 with ‘t Hooft flux g0 [T
o ! 2 [1]
t Hooft flux for T“ (or Z,~ background) | I s
A unit ‘t Hooft flux & choose g5(0)g, (L)g;r (L)g;r(o) = e%.
(g3(x4), g4 (x3): transition functions on T2 ) #x3

Up to gauge, we can take g3 = S, g4 = C (shift and clock matrices of SU(N)). {a(f, X3+ L,x,) = g;ragg i g;‘ng

* Consequences from ‘t Hooft-twisted compactification a(®,x3,%, + 1) = glag, —igidgs
v'Center symmetry is kept at small T? S8 Nozf ; Lo o
Classically, P; = Sand P, = C = (tr P3) = (tr P,) = 0. S = (0 0 1>,c = (0 50 >
v'Perturbatively gapped gluons: O(1/NL) KK mass 0
v'Numerical evidence for center vortex/fractional instantons (as a local solution)

[Gonzalez-Arroyo—Montero ‘98, Montero '99, ...... ]. _
exists locally,

(not globally if ‘regularity’ at infinity is imposed)



2d center-vortex semiclassics mniakinsa 221

* Dilute gas of center vortices For calculating partition function, we
The center-vortex and anti-center-vortex vertices are: compactify R? without ‘t Hooft flux.
gn® .0 gm? = total topological charge is
——+i— ———160/N
[V] =Ke NG N, [V] = Ke Ng? constrained Q¢,p, € Z

with a dimensionful constant K.

Then, the dilute gas approximation yields, (only configurations with Q;,, € Z are admitted)

n 2 n
1 sm? .6 _sn®_ .0 .
Zyqg = z ﬁ&n—ﬁeNz(VKe Ng? N) (VKe Ng? N) E(6)
n,n =0 5
_Sn 0 — 2k

= z exp|—V | —2Ke N9° cos T ,

keZyn /
_ _ Energy density of k-th vacuum k=0 :

1 SEMIEESEE] Ve arE —>multibranch structure! [monopole]

L One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.



Summary of Backgrounds / Question

Motto: deforming SU(N) YM to weakly-coupled one with keeping confinement.

3d monopole semiclassics 2d center vortex semiclassics

[Unsal ’07, Unsal-Yaffe ’08,...] [Tanizaki-Unsal 22, ...]

SU(N) Yang-Mills on R3 x ST with SU(N) Yang-Mills on R? X T? with ‘t
“center-stabilizing deformation” Hooft flux

= 3d U(1)"~1! gauge theory = confinement by 2d center-vortex gas

+ monopole gas <)

Question: Relation between them?
How monopole transmutes to center vortex?



Outline

Introduction (2 slides)
Monopole semiclassics and center-vortex semiclassics (7 slides)
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Interpolating setup

‘t Hooft flux
|

| |
Interpolating setup: SU(N) Yang-Mills on R? X (51)3 X (51)4

(L4: always small)

center-stabilizing deformation
/ ts =

\L3 — Ly

3d monopole semiclassics 2d center vortex semiclassics
SU(N) Yang-Mills on R3 x ST with SU(N) Yang-Mills on R? x T? with
center-stabilizing deformation ‘t Hooft flux




‘t Hooft flux
|

What we will see: setup: SU(N) Yang-Mills on R? ><’(Sl)3 X (Sl))L
N

center-stabilizing deformation

1. 3d effective theory on R? x (S1); = 2d center-vortex gas on R?

2. BPS/KK monopole in R? X (§1); (3d monopole-instanton)
= center vortex on R? (2d center-vortex-instanton)

/L AN

A 1 monopole - PS
/ X2 1 \ Center vortex
ﬁL,

X1




3d effective theory on R% X (51)3

‘t Hooft flux

: : 2 el 1) '
Interpolating setup: SU(N) Yang-Mills on R“ X (S )3 X (S )4
NS

L,: always small e .
(L4 y ) center-stabilizing deformation

l small L4, adjoint higgsing by P,

3d U(1)V~1 gauge theory + monopoles on R? X (51)3 x/ \>
with “shift-twisted” boundary conditions Z /¥ \ i (Sx_ 19653_&2))

X1

In the gauge (P,) = C (clock matrix), the transition function for (51)3 is gz = S (shift matrix).

or, ‘t Hooft flux = (Zz[\?]) d-twisted boundary condition (~ Weyl permutation for dual photon ¢ (x, x3))
3



Example: SU(2) case

* Adjoint higgsing by P,(x o3, up to gauge): SU(2) —» U(1) = one compactscalarg ~ g + 27
2 8m?
S3alo] = fd?’x l#i |do|? — # e N9? <cos (0 + 9) + cos <—O’ + Q))
L, 2 2

* the transition function for (51)3 is gz & gy (shift matrix):

= flipping the basis P, —» —P,, equivalentto o (x, x5 + L3) = —0 (x, x3)
3d U(1) gauge theory + monopoles on R?* x (51)3 x/ \>
‘2l “Ychift_t\asi ” ey 3 o(x,x3 + L3)
with “shift-twisted” boundary conditions /_sz; \ (s
1

L; < A™1: restricted to “zeromode”: 6 = —¢
=>2vacua:o =0,

identical to extrema of the

2d center-vortex gas monopole potential
_sm? ) N _—
4V, e 207 COS(9+§nk) (3d-2d adiabatic continuity)
ZRZX(51)3 ~ € = Z3d vortex gas

kEZ,



From 3d monopole gas to 2d center-vortex gas

N—-1 2 1
3d U(1) gauge theory + monopoles on R~ X (S )3 ya L
with “shift-twisted” boundary conditions X3 A G (x, x5 + L3)
S3al5] fd3 PP 7 > cos(@ &+ 0/N) e NG
dlo] = x| ——|do|*“ —#e N9 cos(a;j -0+ 0/N X1
’ L4 i=1,-,N
l L; < A7 1: restrictedtod = S~ !¢
- - 2k , > -
N vacua: o = g = %(u1+ et Un—1)

(k=0,-,N—1)
identical to extrema of the

monopole potential
(3d-2d adiabatic continuity)

2d center-vortex gas

812

“Na2 0+2nk
Znzo(s1y = |- DG eS3dl0] e~S3ald] = o Vaae M COS( N ) =754
R*X(S )3 o (x,x3+L3)

=S~15(x,x3) o=0} k€Zy
kEZN




How monopole looks like in R? X (51)3

X3

A

/-

* BPS/KK monopole in 3d effective theory: /a 1

magnetic charge @; = V%4 ~ 2rd; 6@ (x — x,) %3 = L / ) 3 =209,
boundary condition: & (x, x5 + L3) = S~a(x, x3) x
= “mirror image”: infinite chain of BPS/KK monopoles  *3 ~ 0 \!l/ I ® = 21V,
Z @i—n (modN) /“~ \a""l
|x — x, —nL; X3 |

nez
* A proper expression (with good convergence):

5~Z[

keZ

1 1
{; Vi-t (mod ) {Ix x, — (Nk + O)Ls £5| |x—x. — (Nk + 2+ 1)L, x;,l}]
N

V;: weight vector of defining representation
di = Vi = Vi41
outgomg magnetic flux incoming magnetic flux

—

@ = 21¥; d = 21V,



How monopole looks like in R? X (51)3

This solution explains:

The a;-monopole emits magnetic flux 2ma; = 2nv; — 2wV, 44

(size of magnetic qu>V0(NL3) \

=4
g -
X3 4 - I o = Zﬂvi O_'> (x, X3 + L3)
monopole a;

_ c-1p
f =570(x,%3)  Magnetic flux
/ X2 O = 27T17i+1 27'[1_/)1' - 271-17i+1
/

:xl

Suppose that the outgoing magnetic flux 2mv; goes upward

= Shift-twisted boundary condition: 2mv; = 2mv;,; = The incoming flux 27v;,; comes from bottom

The magnetic flux is localized in 2d (~ O(NL3)) .
N Species of monopole (BPS/KK) can be included in extended moduli x; € [0, NL3).



Example: SU(2) case

* One compactscalaro ~ o + 2m

* BPS monopole: magnetic charge +1, KK monopole: magnetic charge -1

* boundary condition: o (x, x5 + L3) = —0(x, x3) “mirror image” solution:
X3
A -/l
. / , KK (charge -1)
I o — charge-conjugation X3 = Lj I
=T
BPS monopoleu o (x,x3 + L3) xBPS (charge +1)
= —0 (x; x3) Xo = O

“Flux Fractionalization”:
1/N fractional magnetic flux, rotating the Wilson loop by a center element (-1)



3d BPS/KK monopoles become 2d center vortex

* The magnetic flux (of size O(NL3)) is indeed center vortex:
Wilson loop acquires e 27/N phase.

* 3d BPS/KK monopole-instanton = 2d center-vortex-instanton:
The 3d/2d semiclassical confinement mechanisms are essentially same!

* “monopole as junction of center vortex” (realizing the old expectation!)

/< > \ Wilson loop (abelianized): W (C) —_Zfez,v elve Jea — — @~ 2mi/N
w(C)

1 monopole &; u I = 2mv, G (x,x3 + L3) — o
/ l =5 U(x X ) Center vortex
]CI) = 21V,
> xl
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Summary

Quark confiners: monopole and center vortex

Weak-coupling semiclassical realizations:

3d monopole semiclassics 2d center vortex semiclassics

[Unsal ’07, Unsal-Yaffe ’08,...] [Tanizaki-Unsal '22, ...]

SU(N) Yang-Mills on R3 x ST with SU(N) Yang-Mills on R? X T2 with ‘t
“center-stabilizing deformation” Hooft flux

= confinement by 3d monopole gas ‘ = confinement by 2d center-vortex gas

This work: Consider an interpolating setup on (R? x §1) x §1
\ Center vortex in 2d

Monopole in R? x S1 a

X34 I monopole —_ ®
“monopole as junction of / fxz 1 \ Center vortex

center vortices”
X1




Further developments / future directions

* Interplay between 3d/2d semiclassics

« N =1 SYM, QCD(adj) [YH-Misumi-Tanizaki ‘24]: 3d semiclassics is well developed,
but 2d semiclassics was somewhat puzzling

Perimeter-law in 2d (< 3d double string picture), fate of bion mechanism.
 QCD(F) (2d semiclassics unexpectedly works well, why?)
e Other gauge groups...

* Monopole-vortex complex as soliton (in Higgs phase) [in progress, with Misumi-
Nitta-Ohashi-Tanizaki]

* Resurgence?
* Analytic solution of the center vortex/fractional instanton on R2xT2?



Wilson loop transmutes to domain wall

e Let us consider SU(2) ' = 1 SYM.

* (From mixed anomaly,) Wilson loop should behave as a domain wall of discrete chiral
symmetry in the 2d semiclassics. = perimeter law falloff?

* Double string picture: dual photon potential ~ cos(2a) from magnetic bion
The Wilson loop (defect 0 ~ 0 4+ 2m) emits two kinks (Ao = 1) [Anber-Poppitz-Sulejmanpasic ‘15]
e Reduction from 3d to 2d

Dominant configuration for |C| > L; / S 4 O\

This is domain wall!




	Slide 1: Bridging two semiclassical confinement mechanisms: monopole and center vortex
	Slide 2: Confinement mechanisms
	Slide 3: Summary
	Slide 4: Outline
	Slide 5: Semiclassical approaches to confinement
	Slide 6: Adiabatic continuity
	Slide 7: 3d monopole semiclassics  [Ünsal ’07, Ünsal-Yaffe ’08,…] (cf. [Davies-Hollowood-Khoze-Mattis ’99,…])
	Slide 8: 3d monopole semiclassics (some details)
	Slide 9: 2d center-vortex semiclassics  [Tanizaki-Ünsal ’22, ……] (cf. [Yamazaki-Yonekura ‘17])
	Slide 10: 2d center-vortex semiclassics [Tanizaki-Ünsal ‘22]
	Slide 11: Summary of Backgrounds / Question
	Slide 12: Outline
	Slide 13: Interpolating setup
	Slide 14: What we will see:
	Slide 15: 3d effective theory on double-struck cap R to the bold 2  times open paren bold italic cap S to the bold 1 , , close paren sub bold 3 
	Slide 16: Example: SU(2) case
	Slide 17: From 3d monopole gas to 2d center-vortex gas
	Slide 18: How monopole looks like in double-struck cap R to the bold 2  times open paren bold italic cap S to the bold 1 , , close paren sub bold 3 
	Slide 19: How monopole looks like in double-struck cap R to the bold 2  times open paren bold italic cap S to the bold 1 , , close paren sub bold 3 
	Slide 20: Example: SU(2) case
	Slide 21: 3d BPS/KK monopoles become 2d center vortex
	Slide 22: Outline
	Slide 23: Summary
	Slide 24: Further developments / future directions
	Slide 25: Wilson loop transmutes to domain wall

