Gauging C on the Lattice

Theo Jacobson, UCLA

Based on [2406.12075]

Why study QFT on the lattice?

Numerical simulations

One of the few nonperturbative tools to study generic strongly-coupled QFTs

Explore strong coupling phenomena

Analytic access to strong coupling regimes

e.g. confinement and chiral symmetry breaking [Wilson, Banks, Kogut, Susskind] Higgs vs. confinement [Osterwalder, Seiler, Fradkin, Shenker]

Study kinematic features

- Dualities (e.g. Jordan-Wigner, Kramers-Wannier, Particle-Vortex, ...)
- **Global symmetries + anomalies** (focus of this talk)

Symmetry on the lattice

Continuum symmetries are often broken or modified by the lattice...

- Lorentz
- Chiral symmetries (Nielsen-Ninomiya)
- "Topological" symmetries requiring quantized topology in field space
 - e.g. winding symmetries of compact boson, magnetic symmetries in gauge theories

Symmetry on the lattice

Continuum symmetries are often broken or modified by the lattice...

... while other symmetry structures appear quite naturally

- Higher-form symmetries
- Discrete gauge theories, discrete anomalies
- Self-duality symmetries

Many recent works trying to clarify and understand generalized symmetries of various kinds on (various kinds of) lattices

Why charge conjugation?

Loosely speaking:

- **0**-form symmetries act on **local** operators
- 1-form symmetries act on line operators

• .

Charge conjugation acts intrinsically on **both** local and extended operators

Why gauge charge conjugation?

Question of how to understand what happens when we gauge / orbifold

Why gauge charge conjugation?

Gauging charge conjugation can lead to interesting generalized symmetries

Focus: $O(2) = U(1) \rtimes \mathbb{Z}_2$ gauge theory

- **Higher-group** symmetry [Hsin, Turzillo '19]
- Non-invertible symmetries [Nguyen, Tanizaki, Unsal '21, Heidenreich, McNamara, Montero, Reece, Rudelius, Valenzuela '21, ...]

Goal:

Construct a lattice theory that realizes these symmetries and study their implications

A sequence of gaugings

Lattice ingredients

Euclidean spacetime lattices (w/ periodic BCs)

Fields are p-forms or "p-cochains"

e.g. $a_\ell \in \mathbb{R}$ $(a^{(1)} \in \mathbb{R})$

• Lattice exterior derivative $d: p-\text{form} \to (p+1)-\text{form} \qquad (d^2=0)$

• Cup product $\cup: (p\text{-form}, q\text{-form}) \to (p+q)\text{-form}$ obeys Leibniz rule

Lattice building blocks: Villain gauge field

$$S_{\text{cont}} = \frac{1}{2e^2} \int (da)^2 \quad \longrightarrow \quad S_{\text{lat}} = \frac{\beta}{2} \sum_p (da)_p^2 \qquad \beta = \frac{1}{e^2}$$

• Action is gauge-invariant $(d^2 = 0)$

• Action is invariant under \mathbb{R} 1-form symmetry $a_\ell \to a_\ell + \epsilon_\ell$, $(d\epsilon)_p = 0$

Gauge-invariant operators: Wilson lines
$$W_q(\gamma) = e^{iq\sum_{\ell\in\gamma}a_\ell}$$
 $q\in\mathbb{R}$

Lattice building blocks: Villain gauge field

• Invariant under $U(1)_e^{(1)}$ 1-form symmetry $a_\ell o a_\ell + \epsilon_\ell \ , \ (d\epsilon)_p = 0$

Monopole proliferation

Modified Villain: removing monopoles

Introduce Lagrange multiplier to remove monopole configurations

 $(dn)_c=0$ [Gattringer, Sulejmanpasic '19]

$$S_{\text{Modified}} = S_{\text{Villain}} + i \sum_{d\text{-cells}} \tilde{a}^{(d-3)} \cup dn$$

• 3d
$$ilde{a}^{(0)} \sim ilde{a}^{(0)} + 2\pi$$

Dual photon

$$\mathcal{M}_k(s) = e^{ik\tilde{a}_s}$$

Monopole operator

• 4d
$$\tilde{a}^{(1)} \sim \tilde{a}^{(1)} + d\tilde{\lambda} + 2\pi$$

Magnetic gauge field

$$H_k(\gamma) = e^{ik\sum_{\ell\in\gamma}\tilde{a}_\ell}$$

Modified Villain: removing monopoles

Introduce Lagrange multiplier to remove monopole configurations

 $(dn)_c=0$ [Gattringer, Sulejmanpasic '19]

$$S_{\text{Modified}} = S_{\text{Villain}} + i \sum_{d\text{-cells}} \tilde{a}^{(d-3)} \cup dn$$

• Without monopoles, theory is in the Coulomb phase for any coupling

→ Consequence of mixed anomaly between electric and magnetic symmetries

• Exact electric-magnetic duality on the lattice

$$\frac{\beta}{2}\sum (d\mathbf{a} - 2\pi n)^2 + i\sum \tilde{\mathbf{a}} \cdot dn \qquad \longleftarrow \qquad \frac{1}{2(2\pi)^2\beta}\sum (d\tilde{\mathbf{a}} - 2\pi \tilde{n})^2 + i\sum \mathbf{a} \cdot d\tilde{n}$$

 Analogous construction exists for 2d compact boson (momentum + winding symmetries, mixed anomaly, T-duality)

[Gorantla, Lam, Seiberg, Shao '21]

Symmetries of the modified Villain theory

$$S_{\text{Modified}} = \frac{\beta}{2} \sum_{p} ((da)_p - 2\pi n_p)^2 + i \sum_{d\text{-cells}} \tilde{a} \cup dn$$

Replace
$$\frac{\beta}{2}((da)_p - 2\pi n_p)^2 \longrightarrow \frac{\beta}{2}((da)_p - 2\pi n_p \pm \theta)^2$$

15

Symmetries of the modified Villain theory

$$S_{\text{Modified}} = \frac{\beta}{2} \sum_{p} ((da)_p - 2\pi n_p)^2 + i \sum_{d\text{-cells}} \tilde{a} \cup dn$$

$$U(1)_e^{(1)}$$
 $a
ightarrow a + \epsilon \,, \; d\epsilon = 0$ (Continuum: Gauss law $d \star F = 0$)

• Acts on Wilson lines

Symmetries of the modified Villain theory

$$S_{\text{Modified}} = \frac{\beta}{2} \sum_{p} ((da)_p - 2\pi n_p)^2 + i \sum_{d\text{-cells}} \tilde{a} \cup dn$$

 $U(1)_m^{(d-3)}$ ${\tilde a} o {\tilde a} + {\tilde \epsilon}\,, \ d{\tilde \epsilon} = 0$ (Continuum: Bianchi identity dF=0)

- Lattice: generated by $V_{lpha}(S) = e^{i lpha \sum_{p \in S} n_p}$
- Acts on monopole/'t Hooft operators

$$\mathcal{M}_k = e^{iklpha} \mathcal{M}_k$$
 \bullet
 V_lpha
 V_lpha
 V_lpha

Charge conjugation symmetry

- Global action: $a \to -a, n \to -n, \tilde{a} \to -\tilde{a}$
- Turn on background gauge field $C_{\ell} \in \mathbb{Z}_2 = \{0,1\}$ $C_{\ell} \to C_{\ell} + (dG)_{\ell}$

Flatness: $dC = 0 \mod 2$

Covariant derivative

Covariant derivative

note: $d_C^2 = 0$ only if $dC = 0 \mod 2$

Coupling to background fields

$$S[C] = \frac{\beta}{2} \sum_{p} ((d_C a)_p - 2\pi n_p)^2 + i \sum_{d-\text{cells}} \tilde{a} \cup_C d_C n$$

Lagrange multiplier only sets $d_C n = 0 = dn \pmod{2}$

$$\longrightarrow \quad U(1)_m^{(d-3)} \to \mathbb{Z}_{2,m}^{(d-3)} \quad \bullet \quad \text{Similarly} \quad U(1)_e^{(1)} \to \mathbb{Z}_{2,e}^{(1)}$$

Mixed 't Hooft anomaly (type III) for $\mathbb{Z}_{2,\mathsf{C}}^{(0)} imes \mathbb{Z}_{2,e}^{(1)} imes \mathbb{Z}_{2,m}^{(d-3)}$

Coupling to background fields

$$S[C] = \frac{\beta}{2} \sum_{p} ((d_C a)_p - 2\pi n_p)^2 + i \sum_{d-\text{cells}} \tilde{a} \cup_C d_C n$$

Lagrange multiplier only sets $d_C n = 0 = dn \pmod{2}$

$$\longrightarrow \quad U(1)_m^{(d-3)} \to \mathbb{Z}_{2,m}^{(d-3)} \quad \bullet \quad \text{Similarly} \quad U(1)_e^{(1)} \to \mathbb{Z}_{2,e}^{(1)}$$

Ш

Mixed 't Hooft anomaly (type III) for $\mathbb{Z}_{2,C}^{(0)} \times \mathbb{Z}_{2,e}^{(1)} \times \mathbb{Z}_{2,m}^{(d-3)}$

leads to a **non-invertible** symmetry when we dynamically gauge C leads to a **higher-group** symmetry when we dynamically gauge C

O(2) gauge theory

Promote background field to dynamical field, summed over in path integral

$$C \to c$$

$$S_{O(2)} = \frac{\beta}{2} \sum_{p} ((d_c a)_p - 2\pi n_p)^2 + i \sum_{d\text{-cells}} \tilde{a}^{(d-3)} \cup_c (d_c n)$$
$$+ i\pi \sum_{d\text{-cells}} v^{(d-2)} \cup dc$$

- $v^{(d-2)} \in \mathbb{Z}_2$ is a Lagrange multiplier setting $dc = 0 \mod 2$
- $v \to v + du$

$$v \cup dc = \frac{0}{v} \frac{\partial c}{\partial c} - \frac{\partial c}{v} + \frac{\partial c}{v}$$

• Gauge-invariant $a \to a + d_c \lambda, \ \tilde{a} \to \tilde{a} + d_c \tilde{\lambda}$ provided $dc = 0 \mod 2$

O(2) gauge theory

Promote background field to dynamical field, summed over in path integral

$$C \to c$$

$$S_{O(2)} = \frac{\beta}{2} \sum_{p} ((d_c a)_p - 2\pi n_p)^2 + \mathbf{i} \sum_{d\text{-cells}} \tilde{a}^{(d-3)} \cup_c (d_c n) + \mathbf{i}\pi \sum_{d\text{-cells}} v^{(d-2)} \cup dc$$

- Sign problem? In practice, no: propose updates satisfying constraints
- Rotation invariance? Not manifest, but preserved if $dc = 0 \mod 2$

New operators

• C Wilson line $\eta(\gamma) = e^{i\pi \sum_{\ell \in \gamma} c_{\ell}}$ = Wilson line in the "det" rep of O(2)

Flat gauge field -> topological Wilson line $\eta(\gamma + \partial \Sigma) = \eta(\gamma)$

 η generates a (d-2)-form symmetry

 $\mathbb{Z}_{2,v}^{(d-2)}$ which

which acts on:

• Twist vortex
$$T(\Gamma_{d-2}) \stackrel{?}{=} e^{i\pi \sum_{\Gamma} v^{(d-2)}} =$$

Gukov-Witten operator for conjugacy class of reflections

New operators

• C Wilson line $\eta(\gamma) = e^{i\pi \sum_{\ell \in \gamma} c_{\ell}}$ = Wilson line in the "det" rep of O(2)

Flat gauge field -> topological Wilson line $\eta(\gamma + \partial \Sigma) = \eta(\gamma)$

 η generates a (d-2)-form symmetry $\mathbb{Z}_{2}^{(d-2)}$

$$_{z,v}^{d-2)}$$
 which ac

cts on:

• Twist vortex $T(\Gamma_{d-2}) \stackrel{?}{=} e^{i\pi \sum_{\Gamma} v^{(d-2)}} = \begin{array}{c} \text{Gukov-Witten operator for} \\ \text{conjugacy class of reflections} \end{array}$

Note: gauging $\mathbb{Z}_{2,v}^{(d-2)}$ condenses (trivializes) η and ungauges charge conjugation

Fate of old operators

Roughly, keep C-even operators and throw out C-odd operators

How to make extended operators fully gauge-invariant?

Constructing Wilson lines

Approach inspired by [Alford, Lee, March-Russell, Preskill '92] First make the Wilson line transform "like a local operator"

Constructing Wilson lines

$$W_q(\gamma) \stackrel{?}{=} \sum_{G_*=\pm 1} \exp\left(iq \, G_* \sum_{\ell \in \gamma} \eta(\gamma_{\ell,*}) \, a_\ell\right)$$

sum over gauge transformations at the basepoint

- C invariant !
- Independent of choice of basepoint

• Not U(1) invariant

Both solved if $\eta(\gamma) = +1$

• Depends on the choices of paths

$$W_q(\gamma) = \frac{1 + \eta(\gamma)}{2} \sum_{G_* = \pm 1} \exp\left(iq \, G_* \sum_{\ell \in \gamma} \eta(\gamma_{\ell,*}) \, a_\ell\right)$$

$$P(\gamma) \text{ projects onto states with trivial C holonomy}$$

Consistency check: fusion

Fusion of lines can be performed directly on the lattice, without ambiguity

Twisted sector extended operators

$$\left(\begin{array}{c} "W_q - W_{-q}" \\ \widetilde{W}_q(\gamma) = \frac{1 + \eta(\gamma)}{2} \sum_{G_* = \pm 1} G_* \eta(\gamma_{*,\infty}) \exp\left(iq \, G_* \sum_{\ell \in \gamma} \eta(\gamma_{\ell,*}) \, a_\ell\right) \right)$$

Fate of old operators

Wilson line construction generalizes to any extended operator

$$\mathcal{O}(M_j) = e^{i \sum_M X^{(j)}} \longrightarrow P(M_j) \sum_{G_* = \pm 1} e^{i G_* \sum_M \eta(\gamma_{j,*}) X^{(j)}}$$

$$P(M_j) = \frac{1}{|H^1(M_j, \mathbb{Z}_2)|} \sum_{\gamma \in H^1(M_j, \mathbb{Z}_2)} \eta(\gamma)$$

"condensation defect" which gauges $\mathbb{Z}_{2,v}^{(d-2)}$ on M_j [Roumpedakis, Seifnashri, Shao '22] (i.e. it ungauges C on M_j)

Non-invertible symmetries

• Electric 1-form symmetry
$$"U_{\theta}(\tilde{\Gamma}_{d-2}) + U_{-\theta}(\tilde{\Gamma}_{d-2})"$$

- Magnetic (d-3)-form symmetry " $V_{lpha}(S) + V_{-lpha}(S)$ "

Both become non-invertible symmetries (non-invertible b/c of projector) e.g. electric 1-form symmetry $U_{\theta} = U_{-\theta} = U_{\theta+2\pi}$ labelled by conjugacy classes of rotations in O(2)

Selection rules from non-invertible symmetries

Peculiar action implies a difference in the nature of selection rules

Higher-group symmetry

Revisiting the twist vortex

• Twist vortex
$$T(\Gamma_{d-2}) \stackrel{?}{=} e^{i\pi \sum_{\Gamma} v^{(d-2)}} =$$

induces non-flat C gauge field

Invariance of the action under

 $\begin{array}{ll} a \to a + d_c \lambda \\ \tilde{a} \to \tilde{a} + d_c \tilde{\lambda} \end{array} \mbox{ requires } dc = 0 \mbox{ mod } 2 \end{array}$

There is **anomaly inflow** onto the twist vortex

Requires non-trivial worldvolume degrees of freedom to cancel anomaly

(Also follows from consistency w/ higher-group symmetry operators)

 $T(\Gamma$

Anomaly matching on the twist vortex

• **d = 4** Twist-vortex = surface operator

Anomaly inflow can be cancelled with a **compact boson** on the worldsheet:

(for which there is a symmetrypreserving lattice discretization)

Exchanged by **EM duality** in the bulk / **T-duality** on the worldsheet!

Adding dynamical twist vortices

Upshot: worldvolume degrees of freedom can affect **bulk** phases

Summary + conclusions

- Constructed O(2) gauge theory on the lattice
 - preserving continuum symmetries
 - tracked all operators through the gauging process
 - explored implications of various generalized symmetries

Future directions

- Hamiltonian formulation
- More exploration of non-invertible symmetries: anomalies, or higher-group type structure?
- Topological theories (non-abelian TQFT)
- General story about higher-group charged objects
- Exploring phase diagram (numerically? sign-problem free)
- General non-abelian Villain formulation (next talk by Jing-Yuan)