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Analytic access to strong coupling regimes 

e.g. confinement and chiral symmetry breaking  [ Wilson, Banks, Kogut, Susskind ]  
        Higgs vs. confinement [ Osterwalder, Seiler, Fradkin, Shenker ]
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Numerical simulations

Why study QFT on the lattice? 

• Dualities (e.g. Jordan-Wigner, Kramers-Wannier, Particle-Vortex, …)


• Global symmetries + anomalies (focus of this talk)

One of the few nonperturbative tools to study generic strongly-coupled QFTs 

Explore strong coupling phenomena

Study kinematic features



Symmetry on the lattice
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Continuum symmetries are often 
broken or modified by the lattice…

• Lorentz


• Chiral symmetries (Nielsen-Ninomiya)


• “Topological” symmetries requiring quantized topology in field space 


• e.g. winding symmetries of compact boson, magnetic 
symmetries in gauge theories



Symmetry on the lattice
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Continuum symmetries are often 
broken or modified by the lattice…

… while other symmetry structures 
appear quite naturally

• Higher-form symmetries 


• Discrete gauge theories, discrete anomalies


• Self-duality symmetries 

Many recent works trying to clarify and 
understand generalized symmetries of 

various kinds on (various kinds of) lattices



Why charge conjugation? 
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• 0-form symmetries act on local operators

• 1-form symmetries act on line operators

• …

Loosely speaking:

Charge conjugation acts intrinsically 
on both local and extended operators



Why gauge charge conjugation? 
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Question of how to understand what 
happens when we gauge / orbifold 

Local 
operators

Line 
operators

Gauge
Projected out 


(goes to twisted sector)

Gauge
???



Why gauge charge conjugation? 
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Gauging charge conjugation can lead to interesting 
generalized symmetries

gauge theory

• Higher-group symmetry  [ Hsin, Turzillo ’19 ] 

• Non-invertible symmetries [ Nguyen, Tanizaki, Unsal ’21, 
Heidenreich, McNamara, Montero, Reece, Rudelius, Valenzuela ’21, … ]

Focus:

Construct a lattice theory that realizes these 
symmetries and study their implications Goal:



A sequence of gaugings

8

Continuum:
Higgs SO(3) to O(2) using a 

spin-2 Higgs field

[ Kiskis ’78, Schwarz ’82 ]

Lattice:

gauge theory gauge theory gauge theory

(flat) gauging 
of 

1-form 
symmetry

charge conjugation 
symmetry

(flat) gauging 
of 

flat gauging = no monopoles flat gauging = no vortices

“Non-abelian Villain formulation”



Lattice ingredients
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Euclidean spacetime lattices

(w/ periodic BCs)

Fields are p-forms or “p-cochains” e.g. 

• Lattice exterior derivative 

• Cup product obeys Leibniz rule



Lattice building blocks: Villain gauge field
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Real (non-compact) 
gauge field

• Action is gauge-invariant      

• Action is invariant under       1-form symmetry

Gauge-invariant 
operators: Wilson lines



Lattice building blocks: Villain gauge field
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U(1) (compact) 
gauge field

Gauge shifts by       :

Integer gauge field:

Integer-quantized 
magnetic flux:

• Invariant under small                and large                 gauge transformations

• Invariant under       1-form symmetry

Action:



Monopole proliferation 
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All UV completions of U(1) gauge theory 
come with finite-action monopolesCommon lore:

Dirac string

Gapped, 
confining

Gapless, 
Coulomb

1st order 
transitiond = 4

Indeed, in the compact 
theory we sum over 

monopole configurations

Monopoles  
are light

Monopoles  
are heavy

Reason: the standard Villain discretization fails to preserve the

magnetic symmetry of Maxwell theory (                )



Modified Villain: removing monopoles
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Introduce Lagrange multiplier to 
remove monopole configurations

[ Gattringer, Sulejmanpasic ‘19 ]

• 3d

Dual photon

• 4d

Magnetic gauge field

Monopole operator

’t Hooft line



Modified Villain: removing monopoles
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Introduce Lagrange multiplier to 
remove monopole configurations

[ Gattringer, Sulejmanpasic ‘19 ]

• Without monopoles, theory is in the Coulomb phase for any coupling

• Exact electric-magnetic duality on the lattice

[ Gorantla, Lam, Seiberg, Shao ’21 ]

• Analogous construction exists for 2d compact boson 
(momentum + winding symmetries, mixed anomaly, T-duality)

Consequence of mixed anomaly between electric and magnetic symmetries 



Symmetries of the modified Villain theory
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(Continuum: Gauss law                       )

• Lattice: generated by

Replace



Symmetries of the modified Villain theory
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(Continuum: Gauss law                       )

• Acts on Wilson lines



Symmetries of the modified Villain theory
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(Continuum: Bianchi identity                  )

• Lattice: generated by

• Acts on monopole/’t Hooft operators



Charge conjugation symmetry
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• Global action:

• Turn on background gauge field 

Flatness:

0-forms

1-forms

2-forms



Covariant derivative
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0-forms



Covariant derivative
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1-forms

note: only if



Coupling to background fields 
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• Lagrange multiplier only sets 

• Similarly

• Mixed ’t Hooft anomaly (type III) for 

I

II



Coupling to background fields 
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• Lagrange multiplier only sets 

• Similarly

• Mixed ’t Hooft anomaly (type III) for 

I

II

I leads to a non-invertible symmetry 
when we dynamically gauge C

II leads to a higher-group symmetry 
when we dynamically gauge C



O(2) gauge theory

23

Promote background field to dynamical 
field, summed over in path integral

•                           is a Lagrange multiplier setting 

•

• Gauge-invariant provided



O(2) gauge theory
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Promote background field to dynamical 
field, summed over in path integral

• Sign problem?      In practice, no: propose updates satisfying constraints 


• Rotation invariance?       Not manifest, but preserved if   



New operators
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• C Wilson line  =  Wilson line in the “det” rep of O(2) 

• Twist vortex

Flat gauge field -> topological Wilson line 

generates a (d-2)-form symmetry which acts on:

Gukov-Witten operator for 
conjugacy class of reflections =

AKA “Alice” or 
“Cheshire” strings



New operators
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• C Wilson line  =  Wilson line in the “det” rep of O(2) 

• Twist vortex

Flat gauge field -> topological Wilson line 

generates a (d-2)-form symmetry

Gukov-Witten operator for 
conjugacy class of reflections =

Note: gauging                 condenses (trivializes)       

and ungauges charge conjugation

which acts on:



Fate of old operators
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Roughly, keep C-even operators and throw out C-odd operators

Local 
operators

Extended 
operators

e.g. keep 

e.g. keep ?

this expression is not 
locally gauge-invariant !

How to make extended operators fully gauge-invariant?



Constructing Wilson lines
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Approach inspired by [ Alford, Lee, March-Russell, Preskill ’92 ]
First make the Wilson line transform “like a local operator”

Ingredients: A closed curve A basepoint 
on the curve

A set of paths on the 
curve connecting each 
link to the basepoint

all terms transform 
differently under C

transforms covariantly 
at the basepoint



Constructing Wilson lines
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sum over gauge 
transformations at 
the basepoint

• C invariant !  

• Independent of choice of basepoint

• Not U(1) invariant 

• Depends on the choices of paths
Both solved if

projects onto states with trivial C holonomy



Consistency check: fusion 
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O(2) irreps Wilson lines

(b/c of projector)

(                      )

Fusion of lines can be performed directly on the lattice, without ambiguity



Twisted sector extended operators
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Fate of old operators
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Wilson line construction generalizes to any extended operator

     “condensation defect” which   
gauges              on 

(i.e. it ungauges C on          )

[ Roumpedakis, Seifnashri, Shao ’22 ]

e.g.



Non-invertible symmetries
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• Electric 1-form symmetry

• Magnetic (d-3)-form symmetry

Both become non-invertible symmetries (non-invertible b/c of projector)

Fusion

e.g. electric 1-form symmetry

labelled by conjugacy classes of rotations in O(2)

Action



Selection rules from non-invertible symmetries
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Peculiar action implies a difference in the nature of selection rules 

Charged under 
invertible 1-form 
symmetry

Charged under    
non-invertible 1-form 
symmetry



Higher-group symmetry
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Before gauging:

After gauging:

Higher group: cannot activate without also activating

cannot break 

without also breaking

(i.e. introduce dynamical twist vortices)



Revisiting the twist vortex
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• Twist vortex induces non-flat C gauge field=

Invariance of the action under requires 

There is anomaly inflow 
onto the twist vortex

Requires non-trivial 
worldvolume degrees of 
freedom to cancel anomaly

(Also follows from consistency w/ higher-group symmetry operators)



Anomaly matching on the twist vortex
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• d = 4    Twist-vortex = surface operator

mixed anomaly

Anomaly inflow can be cancelled with 
a compact boson on the worldsheet:

breaks preserves breaks preserves

(for which there is a symmetry-
preserving lattice discretization)

Exchanged by EM duality in the bulk / T-duality on the worldsheet!



Adding dynamical twist vortices
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Gapped, Higgs Gapless, Coulomb

?
Vortices 
are light

Vortices  
are heavy

(emergent non-invertible 
symmetries spontaneously broken)

(worldvolume degrees of 
freedom condense in the bulk)

the talk so far

Upshot: worldvolume degrees of freedom can affect bulk phases



Summary + conclusions
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• Hamiltonian formulation


• More exploration of non-invertible symmetries: anomalies, or 
higher-group type structure? 


• Topological theories (non-abelian TQFT)


• General story about higher-group charged objects


• Exploring phase diagram (numerically? sign-problem free)


• General non-abelian Villain formulation (next talk by Jing-Yuan) 

• Constructed O(2) gauge theory on the lattice


• preserving continuum symmetries


• tracked all operators through the gauging process


• explored implications of various generalized symmetries

Future directions


