YITP long-term and Nishinomiya-Yukawa memorial workshop Hadrons and Hadron Interactions in QCD 2024 (HHIQCD 2024) -- Experiments, Effective theories, and Lattice --14th Oct. - 15th Nov., 2024

Effective range expansion with the left-hand cut

Meng-Lin Du (UESTC)

University of Electronic Science and Technology of China

In collaboration with A. Fillin, V. Baru, X.-K. Dong, E. Epelbaum, F.-K. Guo, C. Hanhart, A. Nefediev, J. Nieves, Q. Wang, and B. Wu

Based on PRL 131,131903 (2023), and arXiv:2408.09375[hep-ph]

Oct. 18, 2024 @ Yukawa Institute for Theoretical Physica, Kyoto University, Kyoto, Japan Hadrons and Hadron Interactions in QCD 2024 (HHIQCD2024)

Doubly charmed tetraquark (Tcc)

Breit-Wigner fit

LHCb, Nature Phys. 18, (2022) 751

 $\mathbb{R} \mathfrak{R} \sim 400 \text{ keV}.$

Unitarized and analytical LHCb, Nature Commun. 13 (2022), 3351 $\delta m{=}m_{T_{cc}^{+}}{\text{-}m_{D^{*}}}{\text{-}m_{D^{0}}}$ $\delta m_{\rm pole} = -360 \pm 40^{+4}_{-0} \text{ keV}$ $\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV}$

- $\mathbb{R} I = 0$: isoscalar
- $\hookrightarrow D^+D^0\pi^+$, D^+D^+ X
- **■** T_{cc}^+ resides near D^*D thresholds LHCb,
 \hookrightarrow approximate 90% of $D^0D^0\pi^+$ events contain a D^{*+} .

LHCb, Nature Commun. 13 (2022)

The three-body cut

Description of the experimental data

Du et al., PRD 105, 014024(2022)

Doubly Charm Tetraquark on the Lattice

Padmanath et al, PRL129,032002(2022)

$$
-20 -15 -10 -5
$$

\n
$$
-15 -10 -5
$$

\n
$$
m_{\pi} \approx 280 \text{ MeV}
$$

\n
$$
-0.03
$$

\nLHCb
\n
$$
-0.03
$$

\nLHCb
\n
$$
-0.03
$$

 $\delta m_{\mathcal{F}} = \text{Re}(E) - m_{\mathcal{F}^0} - m_{\mathcal{F}^+}$ [MeV]

 $t = \frac{E_{\rm cm}}{2} \frac{1}{p \cot \delta - i p},$ $p \cot \delta = \frac{1}{a_0} + \frac{1}{2} r_0 p^2,$

The three-body cut vs. left-hand cut

The left-hand cut

 $m_{\pi} = 280$ MeV \mathbb{R} two-body branch point: $E = M_D + M_{D^*}$ $\Rightarrow p_{\text{rhc}_2}^2 = 0$ \mathbb{R} three-body branch point: $E = M_D + M_D + m_{\pi}$ $\implies \left(\frac{p_{\text{rhc}_3}}{E_{DD^*}}\right)^2 = +0.019$ \mathbb{R} left-hand cut branch point: $\Rightarrow \left(\frac{p_{\text{lhc}}^{1\pi}}{E_{DD^*}}\right)^2 = -0.001$ $\left(\frac{\tilde{p}_{\rm lhc}^{1\pi}}{E_{DD^*}}\right)^2 = -0.190$

Phase shift with the left-hand cut: LSE

Pole trajectory

 $M_D = 1927$ MeV, $M_{D^*} = 2049$ MeV, $m_{\pi} = 280$ MeV

bound state \longrightarrow virtual state \longrightarrow resonances below threshold

Related recent works on FV w/ the lhc...

The N/D method

$$
T(s) = \frac{N(s)}{D(s)}
$$

$$
\mathrm{Im}D = \mathrm{Im}\frac{N}{T} = N\mathrm{Im}\frac{1}{T} = \begin{cases} -N\rho, & s > s_{\mathrm{thr}}\\ 0, & s < s_{\mathrm{thr}} \end{cases}
$$

$$
\text{Im}N = \begin{cases} \text{Im}TD, & s < s_{\text{lhc}} \\ 0, & s > s_{\text{lhc}} \end{cases}
$$

$$
D(s) = \sum_{i} \frac{\gamma_{i}}{s - s_{i}} + \sum_{m=0}^{n-1} a_{m} s^{m} - \frac{(s - s_{0})^{n}}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\rho(s')N(s')}{(s' - s)(s' - s_{0})^{n}}, \quad N=1
$$
\n
$$
N(s) = \sum_{i} \frac{\gamma_{i}}{s - s_{i}} + P(s) + G(s)
$$
\n
$$
N(s) = \sum_{m=0}^{n-\ell-1} b_{m} s^{m} + \frac{(s - s_{0})^{n-\ell}}{\pi} \int_{-\infty}^{s_{\text{left}}} ds' \frac{\text{Im}T(s')D(s')}{(s' - s_{0})^{n-\ell}(s' - s)}.
$$
\n
$$
T(s) = \frac{1}{D(s)}
$$
\n
$$
d(k^{2}) = P(k^{2}) - ik = \frac{1}{a} + \frac{1}{2}rk^{2} + O(k^{4}) - ik
$$
\nNon-relativistic
Neglect CDD

The N/D method

$$
T(s) = \frac{N(s)}{D(s)}
$$

$$
\mathrm{Im}D = \mathrm{Im}\frac{N}{T} = N\mathrm{Im}\frac{1}{T} = \begin{cases} -N\rho, & s > s_{\mathrm{thr}}\\ 0, & s < s_{\mathrm{thr}} \end{cases}
$$

$$
\text{Im}N = \begin{cases} \text{Im}TD, & s < s_{\text{lhc}} \\ 0, & s > s_{\text{lhc}} \end{cases}
$$

$$
D(s) = \sum_{i} \frac{\gamma_i}{s - s_i} + \sum_{m=0}^{n-1} a_m s^m - \frac{(s - s_0)^n}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\rho(s')N(s')}{(s' - s)(s' - s_0)^n},
$$

$$
N(s) = \sum_{m=0}^{n-\ell-1} b_m s^m + \frac{(s - s_0)^{n-\ell}}{\pi} \int_{-\infty}^{s_{\text{left}}} ds' \frac{\left(\text{Im} T(s')D(s')\right)}{(s' - s_0)^{n-\ell}(s' - s)}.
$$

$$
\frac{1}{T_{\ell}^{\text{II}}} = \frac{1}{T_{\ell}} + 2i\rho \xrightarrow{\hspace{0.5cm}} T^{\text{II}} = \frac{1}{\frac{D}{N} + 2i\rho} = \frac{N}{D + 2i\rho N}
$$

lhc

12 ERE w/ the left-hand cut 2024/10/18

 \boldsymbol{S}

s-channel unitarity

The left-hand cut arising from OPE

For a *t*-channel exchange at low-energies, an S -wave amplitude reads

$$
L_t(s) = \frac{1}{2} \int \frac{1}{t - m_5^2} d\cos\theta = -\frac{s}{\lambda(s, m_1^2, m_2^2)} \log\left(\frac{s - 2(m_1^2 + m_2^2) + m_5^2 + \frac{(m_1^2 - m_2^2)^2}{s}}{m_5^2}\right),
$$

with m_5 the mass of changed particle. Likewise, the *u*-channel exchanged S-wave amplitude reads

$$
L_u(s) = \frac{1}{2} \int \frac{1}{u - m_5^2} d\cos\theta = -\frac{s}{\lambda(s, m_1^2, m_2^2)} \left(\log(s + m_5^2 - 2(m_1 + m_2)^2) - \log(m_5^2 - \frac{(m_1^2 - m_2^2)^2}{s}) \right).
$$

13 ERE w/ the left-hand cut 2024/10/18

 3.970

The left-hand cut: nonrelativistic

The N/D method: nonrelativistic

$$
n(k^{2}) = n_{m}(k^{2}) + \frac{(k^{2})^{m}}{\pi} \int_{-\infty}^{k_{\text{inc}}^{2}} \frac{(d(k'^{2}) \text{Im } f(k'^{2})}{(k'^{2} - k^{2})(k'^{2})^{m}} dk'^{2}
$$
\nNo singularity along the\n
\n
$$
n(k^{2}) = n'_{m}(k^{2}) + \frac{P(k^{2})}{\pi} \int_{-\infty}^{k_{\text{inc}}^{2}} \frac{\text{Im } f(k'^{2})}{k'^{2} - k^{2}} dk'^{2} = n'_{m}(k^{2}) + P(k^{2}) \tilde{g} L(k^{2})
$$
\n
$$
n(k^{2}) = n_{0} + n_{1}k^{2} + \frac{k^{2}}{\pi} \int_{-\infty}^{k_{\text{inc}}^{2}} \frac{(d_{0} + d_{1}k'^{2}) \text{Im } f(k'^{2})}{(k'^{2} - k^{2})k'^{2}} dk'^{2}
$$
\n
$$
= n_{0} + n_{1}k^{2} - cL_{0} + (d_{0} + d_{1}k^{2}) \frac{c}{\pi} \int_{-\infty}^{k_{\text{inc}}^{2}} \frac{\text{Im } f(k'^{2})}{k'^{2} - k^{2}} dk'^{2}
$$
\n
$$
n(k^{2}) = \tilde{n}(k^{2}) + \tilde{g}(L(k^{2}) - L_{0})
$$
\n
$$
L_{0} = L(k^{2} = 0) = -1/\mu_{\text{ex}}^{2}
$$

The N/D method: nonrelativistic

$$
d(k^{2}) = d_{n}(k^{2}) - \frac{(k^{2} - k_{0}^{2})^{n}}{\pi} \int_{0}^{\infty} \frac{k' n(k'^{2}) dk'^{2}}{(k'^{2} - k^{2})(k'^{2} - k_{0}^{2})^{n}}
$$

$$
d(k^{2}) = \tilde{d}(k^{2}) - ik(\tilde{n}(k^{2}) - \tilde{g}L_{0}) - \frac{\tilde{g}}{\pi} \int_{0}^{\infty} \frac{k' L(k'^{2})}{k'^{2} - k^{2}} dk'^{2}
$$

$$
= \tilde{d}(k^{2}) - ik n(k^{2}) - \tilde{g}d^{R}(k^{2})
$$

$$
d_{u}^{R}(k^{2}) = \frac{i}{4k} \left(\log \frac{\mu + 2 + ik}{\mu + 2 - ik} - \log \frac{\mu + 2 + i\eta k}{\mu + 2 - i\eta k} \right)
$$

It is worth stressing that $d(k^2)$ is free of lhc, as the lhc associated with $n(k^2)$ below the threshold is counterbalanced by $d^R(k^2)$, which is crucial to ensure that $f(k^2)$ exhibits the correct lhc behavior. Along the rhc, both $n(k^2)$ and $d^R(k^2)$ are real such that $\text{Im}d(k^2) = -k n(k^2)$.

Effective range expansion with the left-hand cut

$$
\frac{1}{f(k^2)} = \frac{\tilde{d}(k^2) - \tilde{g}d^R(k^2)}{\tilde{n}(k^2) + \tilde{g}(L(k^2) - L_0)} - ik
$$
\n
$$
\frac{1}{f(k^2)} = \frac{1}{\tilde{n}(k^2) + \tilde{g}(L(k^2) - L_0)} - ik
$$
\n
$$
L(k^2) = -\frac{1}{4k^2} \log \frac{\mu_+^2/4 + k^2}{\mu_+^2/4 + \eta^2 k^2}
$$
\n
$$
L(k^2) = -\frac{1}{4k^2} \log \frac{\mu_+^2/4 + k^2}{\mu_+^2/4 + \eta^2 k^2}
$$
\n
$$
I + \sum_{j=1}^m \tilde{n}_j k^{2j} + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
f_{[0,1]}(k^2) = \left[\frac{\tilde{d}_0 + \tilde{d}_1 k^2 - \tilde{g}d^R(k^2)}{1 + \tilde{g}(L(k^2) - L_0)} - ik \right]^{-1}
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L_0) - ik
$$
\n
$$
I + \tilde{g}(L(k^2) - L
$$

Scattering length
$$
a = f(k^2 = 0) = \left[\tilde{d}_0 + \frac{\tilde{g}}{\mu_+} (1 - \eta)\right]^{-1}
$$

 $r = \frac{d^2(1/f + ik)}{dk^2}\Big|_{k=0} = 2\tilde{d}_1 - \frac{8\tilde{g}}{3\mu_+^3}\left(1 - \eta^3\right) - \frac{4\tilde{g}}{\mu_+^4 a_u}\left(1 - \eta^4\right)$ Effective range

Example: Tcc on the Lattice [3 parameters]

$$
f_{[0,1]}(k^2) = \left[\frac{\tilde{d}_0 + \tilde{d}_1 k^2 - \tilde{g} d^R(k^2)}{1 + \tilde{g}(L(k^2) - L_0)} - ik \right]^{-1}
$$

Couplings to the exchanged-particle

The amplitude zero

At leading order, i.e., $\tilde{n}(k^2) = 1$,

$$
f_{[0,1]}(k^2) = \left[\frac{\tilde{d}_0 + \tilde{d}_1 k^2 - \tilde{g} d^R(k^2)}{1 + \tilde{g}(L(k^2) - L_0)} - ik\right]^{-1}
$$

For a general u -channel exchange,

$$
1 + \tilde{g} \left[L_u \left(k_{u, \text{zero}}^2 \right) + \frac{1}{\mu_{\text{ex}}^2} \right] = 0,
$$

for the case $|\Delta| \ll m_{\text{th}}$ such that $\eta \ll 1$, \Box the *t*-channel exchange

$$
k_{t, \text{zero}}^2 = -\frac{m_{\text{ex}}^2}{4} \left[1 + \frac{1}{y} W(-e^{-y}y) \right]
$$

where $y \equiv 1 + m_{\text{ex}}^2/\tilde{g}$ and W is the Lambert W function.

$$
y = 1 + \frac{1 + \frac{4}{3}a_t m_{\text{ex}} (1 - \log 4) - \frac{4\pi a_t m_{\text{ex}}^2}{\mu g_P \mathcal{F}_{\ell}}}{2 + a_t m_{\text{ex}} (1 - m_{\text{ex}} r_t / 4)}.
$$

Summary

- The three-body cut: one-pion exchange + self-energy of D^*
- \star Unphysical pion masses on the Lattice $M_D = 1927$ MeV, $M_{D^*} = 2049$ MeV, $m_{\pi} = 280$ MeV \hookrightarrow the three-body cut above the two-body cut ($\sqrt{s_{\text{lhc}}}$ = 3968 MeV) \hookrightarrow The traditional ERE valid only in a very limited range \hookrightarrow An accurate extraction of the pole requires the OPE implemented The ERE with the left-hand cut

$$
f_{[0,1]}(k^2) = \left[\frac{\tilde{d}_0 + \tilde{d}_1 k^2 - \tilde{g} d^R(k^2)}{1 + \tilde{g}(L(k^2) - L_0)} - ik\right]^{-1}
$$

 \hookrightarrow correct behavior of the left-hand cut

 \hookrightarrow can be used to extract the couplings of the exchanged particle to the scattering particles

 \rightarrow amplitude zeros caused by the interplay between the short- and long-range interactions

Thank you very much for your attention!

Thank you very much for your attention!

Without $d^R(k^2)$

The left-hand cut

$$
t = -2\mathbf{p}^2(1-\cos\theta)
$$

S-wave

$$
\frac{1}{2} \int_{-1}^{+1} d\cos\theta \frac{1}{-2\mathbf{p}^2 (1 - \cos\theta) - m_\rho^2 + i\varepsilon} = -\frac{1}{4\mathbf{p}^2} \log\left(\frac{4\mathbf{p}^2 + m_\rho^2}{m_\rho^2} + \frac{4\mathbf{p}^2}{m_\rho^4} i\varepsilon\right)
$$

