Recent highlights and future prospects of hypernuclear physics at J-PARC

Koji Miwa (Tohoku Univ.)

Contents

- Strangeness and hadron physics at J-PARC
- Hyperon-Nucleon Interaction
- Recent S=-2 studies
- Strangeness physics at extended hadron hall
- Summary

Particle and Nuclear Physics @ J-PARC 3

Neutrino Experimental Facility

Material and Life Science Experimental Facility

Particle and Nuclear Physics at HEF

Comprehensive research on the origin and evolution of matter and the universe

- **the mystery of the matter-dominated universe,**
- **the evolution from quarks to hadrons (the smallest composite particles)**
- **neutron star as a giant atomic nucleus.**

Intensity frontier accelerator providing intense and variety of secondary beams

Big Bang

Quark

? Birth of a matterdominated universe

Search for physics beyond the Standard Model

Particle and Nuclear Physics at HEF

Comprehensive research on the origin and evolution of matter and the universe

- **the mystery of the matter-dominated universe,**
- **the evolution from quarks to hadrons (the smallest composite particles)**
- **the neutron star as a giant atomic nucleus.**

µ→ e conversion measurement

Search for charged lepton flavor violation 100 times improvement over present upper limits

Rare decay of neutral kaon

Search for CP violation beyond the standard model The world's highest sensitivity exceeding the standard model

Elucidation of the mass acquisition mechanism of hadrons Mass modification of vector mesons in nuclei Vector meson in nuclei : 10 times more precision

Systematic study of Kaonic nuclei

Study of exotic hadron bound system including K-

Mass number dependence of kaonic nuclei

Elucidation of the appearance mechanism Spectroscopy of S=-1, -2 hypernuclei

of E , Λ hyperons in dense matter

Excellent mass resolution of 2 MeV for E **hypernuclei**

Quark matter?

Hypernuclear physics **Exercise 18**

Baryon-Baryon interaction Study of light A, E hypernuclei Spectroscopy of heavy hypernuclei

Progress of theory & experiment of BB int. study

Theoretical progress

Hyperon-Nucleon int. w/ chiral effective field theory

Hyperon potential by Lattice QCD

BB interaction at almost physical point for multistrangeness sector K. Sasaki et al.,

Improving accuracy w/ our new data

Experimental progress

BB interaction by femtoscopy

$$
c(k^*) = \int S(r^*) \left| \Psi(\overrightarrow{k^*}, \overrightarrow{r^*}) \right|^2 d^3r
$$

Fix source size($S(r^*)$) \rightarrow Study interaction from wave function $(\Psi(k^*,\overline{r^*}))$

125

100

75 50

 -25

 -50

 -75 _{0.0}

 0.5

V[MeV] 25

Σ p scattering experiment at J-PARC (E40)

Many Σ hyperons are produced in LH₂ target

Σ are tagged by π [±]p→K⁺X reaction

- Σ ⁻ beam : 17 M
- Σ^+ beam : ~65 M

Secondary p scattering events are detected by surrounding detectors

- Σ -p elastic scattering
- Σ −p→ Λ n reaction
- Σ^+ p elastic scattering

Systematic measurements of $\sum p \, d\sigma/d\Omega$

First accurate and systematic measurements of differential cross sections of Σ -proton channels

Quark model (fss2) and chiral EFT seem to be rather consistent with data, whereas Nijmegen (ESC) models is inconsistent at the forward angles.

$d\sigma/d\Omega$ of Σ^+ p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. **2022** 093D01

E40 data : much smaller than fss2 prediction and E289 results

Derived phase shift suggests that **the ³S¹ interaction is moderately repulsive**.

 $\ell = 0$ s u u u u d Pauli Forbidden ! Σ^+ p

NSC97f

fss2

0.6

 0.8

 Σ^+ momentum [GeV/c]

ESC16

 0.9

 \blacksquare A δ 3S1>0

 \leftarrow B δ 3S1 $<$ 0

 \pm B δ 3S1>0

 \bullet C δ 3S1 $<$ 0

 \bullet C δ 3S1>0

NSC971 f ss 2

 \cdots ESC16

$d\sigma/d\Omega$ of Σ^+ p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. **2022** 093D01

Derived phase shift suggest that **the ³S¹ interaction is moderately repulsive**.

New Σ p scattering data and progress of Chiral EFT

But, the interactions are not uniquely determined yet.

We need more data from additional channels (p, …) and additional differential observables (polarizations, …)

Updated $\triangle N$, ΣN chiral interaction

Toward Ap scattering

Reliable AN two-body interaction :

key to deepen Λ hypernuclear physics

Ξ Λ **? Neutron star hypernuclei** key to reveal ANN int.

Femtoscopy from HIC

ALICE Collaboration, arXiv:2104.04427

New cross section data from Jlab CLAS

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

New project at SPring-8, J-PARC

 Λ p scattering w/ (polarized) Λ

Λ p scattering experiment with polarized Λ beam (J-PARC E86)¹⁵

Advantage of scattering experiment: Spin observables can be measured thanks to self polarimeter of hyperon

• Left-Right asymmetry of Λ p scattering (Analyzing power)

 \rightarrow spin-orbit interaction

• Polarization change before and after the scattering (Depolarization)

 \rightarrow spin-spin interaction, tensor interaction

Essential constraint to determine spin-dependent AN interaction

Λ p scattering experiment with polarized Λ beam (J-PARC E86)¹⁶

Advantage of scattering experiment: Spin observables can be measured thanks to self polarimeter of hyperon

Building AN interaction from AN scattering experiment using photo-produced Λ Activity at

Building the realistic N interaction by providing N scattering data to chiral EFT theory

We plan to perform p scattering experiment at BL33LEP

Momentum tagged Λ particle produced $\gamma p\rightarrow K^+\Lambda$ reaction

Existing YN scattering detector system (CATCH)

CATCH J-PARCでの実験で使用された装置 反跳陽子 L 陽子 $\overline{\mathsf{p}}$ g K⁺ L 液体水素標的 CATCH検出器で検出 磁気スペクトロメータで検出 reconstructing the 0 100 200 300 400 500 600 700 800 900 1000 **1 1 -0.5 0 0.5 -11 -0.5 0 0.5 1 PMOMENTUM (K⁺ Momentum (K⁺ Momentum (K⁺** LEPS (simulation) Past data cEFT NLO 13 cEFT NNLO NSC97f Lp total cross section **p total cross section** Λ beam momentum (MeV/c) p_F in neutron stars Λ can be tagged cleanly by detecting only forward K+ Tagging low-middle energy Λ beam for nuclear study Clear Λ identification widen Δp scattering angular acceptance measurement_{: Ap scattering} range Liquid H_2 p_F in nucleus (mb/sr) $\overline{}$ -**1** -**0.5 0 0.5** -**11** -**0.5 0 0.5 1 0 1 2 3 4 50 1 2 3 4 5 0.30-0.40 (GeV/c) Ekin 54 (MeV) 0.40-0.50 (GeV/c) Ekin 87 (MeV) 0.50-0.60 (GeV/c) Ekin 128 (MeV) 0.60-0.70 (GeV/c) Ekin 176 (MeV)** ... NSC97f cEFT NLO 13 ... CEFT NNLO **-** LEPS (Simulation) *Ap* **differential cross section p** Scattering angle $(cos\theta)$ d
o
d (mb/sr) Data taking can start by existing systems. (Spectrometer, CATCH)

realistic AN interaction

Advantage at BL33LEP

gビーム

SPring-8

17

Density (radial) dependence of ΛN interaction Essential input for constructing

0.

10

20 F

30

40 F

Cross section (mb)

Cross section (mb)

50

60 F

70

80 F

Experimental setup of Λp scattering experiment at SPring-8

Activity at

Transported detectors from J-PARC to SPring-8

Collaborative research regarding the two-body ΛN , ΣN int.

19

Topics with S=−2 hypernuclei

Performed experiment Future experiment

- s-shell $\Lambda\Lambda$ hypernuclei
	- $5\overline{}_{\Lambda\Lambda}$ H : Possible lightest $\Lambda\Lambda$ hypernucleus (E75)
- $A=6-17$ $\Lambda\Lambda$ hypernuclei
	- Confirmation of $\Lambda\Lambda$ interaction and nuclear structure effect such as shrinkage due to Λ (E07)
- \cdot Ξ hypernuclei
	- Emulsion (E07) & spectroscopy (E70)
- Ξ N interaction with X-ray from Ξ -atoms (E03, E07)
	- EN interaction at nuclear surface
- $\Lambda\Lambda$ p-wave interaction
	- excited $\Lambda\Lambda$ hypernuclear state with one Λ hyperon in p-orbit
	- Direct production of $\Lambda\Lambda$ hypernuclei via (K⁻, K⁺) reaction (E70?)
- Search for H-dibaryon state (E42)
	- Sharp resonance just below EN threshold is predicted by LQCD

Double Λ hypernuclei at J-PARC and KEK

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02 (2019)

The value of ΔB_{AA} seems to be inconsistent with that of the NAGARA event

E hypernuclei 22

Confirm the attractive -nuclear potential from observation of hypernuclei in emulsion

E hypernuclei 23

Confirm the attractive -nuclear potential from observation of hypernuclei in emulsion

EA potential around nuclear surface.

M. Yoshimoto et al., PTEP. 2021, 073D02

First attempt to measure Ξ Atomic X-ray in E07 24

E-Ag/Br atomic X rays in emulsion

Triple-coincidence hybrid method

- E production by spectrometers
- 2. Ξ stop ID by emulsion
- 3. X-ray measurement with Ge detectors

X-ray peaks were not observed due to lower emulsion and Ge detector efficiencies than expected

 σ -stop (Nuclear fragment from Ξ^- stop) (Absorption by heavy elements) -stop with Auger electron

E [–] Fe atomic X-ray (E03) 25

 $n=7 \rightarrow 6$: X-ray energy = 172 keV \leftarrow small shift/width **n=6→5 : X-ray energy = ~286 keV ← finite shift/width due to ΞN interaction expected shift ~ 4keV, width(Γ) ~ 4keV**

No clear peak structures are found at present.

BG level is consistent with our expectation

X ray yields are found to be smaller than expectation?

→ Good S/N measurement may have advantage **than high statistics measurement.**

Future measurement w/ Ξ stop identification using active target

Spectrum Fitting

Not decisive data but some hints

Y. Ichikawa *et al., PTEP* 2024 (2024) 9, 091D01

E70 experiment with S-2S spectrometer

E70 experiment with S-2S spectrometer

[−] ¹²C X-ray measurement with AFT

Construction of S-2S has been completed!

Aerogel

In E03, we found that X ray yields is smaller than expectation. → Good S/N measurement may have advantage **than high statistics measurement.**

• **Ξ- stop ID w/ Active Fiber Target** 95% background reduction! (w/ 70% survival ratio) • **We have chance to take X-ray data in parallel with E70 (Ξ hypernuclear spectroscopy w/ S-2S) physics data-taking**

Extract density dependent AN interaction

• **Ultra-high-resolution hypernuclear spectroscopy**

intense dispersion matched π beam

Systematic Λ **N scattering measurement**

intense polarized Λ beam

Investigate diquarks in baryons

K10

• **High-resolution charm baryon spectroscopy**

- intense high-momentum π beam • **High-resolution multi-strange baryon spectroscopy**
	- intense high-momentum separated K beam

Search for new physics beyond the SM

- **Most sensitive** $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$ **measurement**
	- intense neutral K beam

Expanded Research Programs

at the Extended Facility

high-p (*π***20)**

HIHR

KL2

K1.1

K10

32

From Quarks to Neutron stars

towards unified understanding of strongly interacting systems over 10¹⁹ scale difference

Summary

- J-PARC is a powerful accelerator facility for particle and nuclear physics.
	- A lot of hadron and strangeness nuclear physics programs
- Recent highlights
	- Accurate measurement of Σp scattering cross sections
	- Clear observation of kaonic nuclear system
	- Systematic compiling of double Λ hypernuclei from KEK to J-PARC
	- Clear identification of E hypernucler states
	- New data of ¹²C(K⁻, K⁺) spectrum to search for 12 _EBe
- Near future programs
	- Ξ hypernuclear spectroscopy with S-2S spectrometer and Ξ atomic X-ray measurement.
- Facility upgrade
	- Hadron extension project is under consideration
	- Ultra high-resolution hypernuclear spectroscopy with dispersion matching method at HIHR.

Result of the Spectrum Fitting

⁴⁰ Hypertriton puzzle Heavy ion experimental results settle down?

Heavy ion experimental results settle down ?

B_{Λ} measurement

- MAMI: decay pion spectroscopy
- JLab: 3 He (e, e'K⁺) missing mass spectroscopy
- J-PARC E07 : hyperfragment at K- interaction on emulsion

Lifetime measurement by direct time measurement

- ELPH : 3 He(γ , K⁺) reaction
- J-PARC E73 : 3 He (K⁻, π^{0}) reaction

E73 has stated data taking of 3_A H run 41

Lifetime measurement by direct time measurement between production and decay

T. Akaishi et al., PLB 845 (2023) 138128

3 H production was confirmed from the decay π ⁻'s momentum

273kW*Day executed in May, 2021 K^- + 3 He $\rightarrow \frac{3}{4}$ H + π^0 slows down and decays at rest $_{\Lambda}^{3}H \rightarrow ^{3}He + \pi^{-}$ $_{\Lambda}^{3}H\rightarrow^{2}H+p+\pi^{-}$ 450 400 $13.3 \pm 0.4 {\rm (stat.)}$ 350 δE correction counts/2MeV/c 300 Λ/Σ^0 contribution 250 200 150 Σ^- contribution 100 50 -0.25 -0.2 -0.15 -0.1 -0.05
pion momentum * pion charge[GeV/c] -0.25 -0.05 Ω 11

H dibaryon (SU(3) flavor singlet hexaquark state)

Progress on analysis of HypTPC 43

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

- Mass dependence of Kbar-nucleon system from K-p to K-ppnn
- Aiming to clarify the origin of QCD mass and the mysteries of highdensity nuclear matter by measuring changes in the properties of Kmesons in nuclear matter.

K⁻p and K^on mass thresholds

J-PARC E31 @ K1.8BR

• First derivation of S-wave KbarN scattering amplitude in I=0 channel from 3 $\pi\Sigma$ decay modes.

Resonance pole was found at

1417.7−7.4 +6.0 $^{+1.1}_{-1.0}$ + $[-26.1^{+6.0}_{-7.9}]$ −2.0 $^{+1.7}_{-2.0}$]*i* MeV/ c^2 S. Aikawa et al., Phys. Lett. B 837 (2023) 137637

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

[−]+ ¹⁴N hypernucleus

$1st$ discovery of clear E nuclear state

- B_{Ξ^-} (¹⁰_{Λ}Be_{g.s.}) = 3.87 \pm 0.21 MeV
- $B_{\Xi^-}(^{10}{}_{\Lambda}Be_{1st.Ex.}) = 1.03 \pm 0.18$ MeV

S. H. Hayakawa et al., Physical Review Letters, 126, 062501 (2021)

$1st$ uniquely identified Ξ nuclear state

One reaction process satisfied kinematica pernucleus consistency.

 $B_{\pi-}$ = 1.27 \pm 0.21 MeV

+
$$
^{14}N
$$
 \rightarrow $^{5}_{\Lambda}$ He + $^{5}_{\Lambda}$ He + 4 He + n
IRRAWADDY event
10 cm

 Ξ^-

M. Yoshimoto et al., PTEP. 2021, 073D02

 $1st$ observation of nuclear s-sate of Ξ

• $B_{\pi-} = 6.27 \pm 0.27$ MeV

Level scheme of E hypernuclus (E⁻⁺¹⁴N)

Number of Ξ^- captured by ¹⁴N \sim 300 IRRAWADDY event is assumed to be s state

 Ξ^- capture probability in s orbit ~ 0.33%

Much larger than theoretical calculations

- 0.0001%-0.02% w/ W_0^{Ξ} = 0.5-8 MeV (T. Koike)
- 0.00% 0.03% (Zhu et al.)

T. Nagae et al., AIP conf. proc., 2030, 020015 (2019) Binding energy ¹²C(K, K⁺) (Carbon + CH2) Counts /2 MeV $E05 @ J-PARC$ $20⁵$ **Unphysical Background** \rightarrow To be updated in E70 with S-2S

 $80-160-140-120-100-80$ -60 -20 $\bf{0}$ -40 20 $-B.E.$ [MeV]

 E hypernuclear spectroscopic studies are highly important to spin-dep. EN interaction.

Support weak $EN-AA$ coupling predicted by HAL QCD

48

Hyperfragment at K- interaction on emulsion

Succeeded in finding hypertriton w/ Machine Learning in the E07 nuclear emulsion (RIKEN, Gifu Univ. + α)

T. R. Saito et al., Nature Review Physics 3, 803 (2021)

 4 _{Λ}H and 3 _{Λ}H can be separated clearly from the π ⁻'s range information

 B_{Λ} measurements of ${}^{4}{}_{\Lambda}$ H and ${}^{3}{}_{\Lambda}$ H are ongoing \rightarrow Nakagawa's talk in detail

Evolution of experiments with hybrid emulsion method for S=-2 50

Slide from J. Yoshida

- $*$ ~80 Ξ stop events
- * Existence of double Lambda hypernucleus

* At least \sim 650 Ξ stop events; Prog. Theor. Exp. Phys. 2019, 021D01

* NAGARA, KISO

 $\sqrt{3}$ **x10**

New events are being accumulated successfully and rapidly.

Slide from K. Nakazawa

$Light \nE$ hypernuclear systems 53

The spin, isospin averaged EN interaction was confirmed to be attractive by E07 experiment. \rightarrow Study of spin, isospin dependence of Ξ N interaction is essential

$$
V_{\Xi N} = V_0 + \sigma \cdot \sigma V_{\sigma \cdot \sigma} + \tau \cdot \tau V_{\tau \cdot \tau} + (\sigma \cdot \sigma) (\tau \cdot \tau) V_{\sigma \cdot \sigma \tau \cdot \tau}
$$
 After E75

Future programs

- $5\overline{h}$ H from $7\overline{E}$ H decay (E75)
	- Study of lightest $\Lambda\Lambda$ nuclei
- \triangle N- Σ N cusp measurement (E90)
	- Low-energy ΣN (S=1, T=0) interaction, ΛN - ΣN coupling
- High resolution (π^+, K^+) spectroscopy for light Λ hypernuclei (E94)
	- Confirmation of energy calibration point by 7_A Li for (π^+, K^+) spectroscopy
- Nucleon resonance by π induced reaction (E45)
	- Missing resonance
- New Λ^* resonance study by Λ n decay (E72)
	- P or D-wave resonance state just above the threshold
- Kaonic deuterium X-ray measurement (E73)
	- Isospin dependence of KbarN interaction
- γ -ray spectroscopy of Λ hypernuclei (E63)
	- Modification Λ property in nuclear medium, CSB study for ${}^4_{\Lambda}$ H

K1.8

K1.8BR

K1.1

54

Hadron property in nuclear medium Baryon spectroscopy

Perform physics not accessible in the present hadron hall Perform physics programs in parallel with twice more beam lines

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei 56

Nuclear density is different for each orbital state

Two directions for study of the density dependence of N interaction

- **Mass number dependence of B** $_{\wedge}$
- Λ orbital dependence of B_{Λ}

Accurate B measurement

Energy spectra of 13 _{Λ}C, 16 _{Λ}O, 28 _{Λ}Si, 51 _{Λ}V, 89 _{Λ}Y, 139 _{Λ}La, 208 _{Λ}Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Calculation w/ only AN int : Over bound

ANN repulsive interaction is introduced to explain Λ hypernuclear binding energy

This density dependence should be explained from $\triangle NN$ force.

Effect of **density dependence**

Difference

 \rightarrow Predict AN int. in higher density nuclear matter.

of N interaction

High-resolution Λ hypernuclear spectroscopy at HIHR

HIHR Study with Geant4 is ongoing

K⁺ momentum measurement option at HIHR

HIHR dose NOT need to measure K+ momentum for mass measurement thanks to dispersion matching. But, K⁺ momentum information would help us with the initial commissioning and widen physics cases.

Idea to install position detector downstream MPS

Step-1

Focal plane info. (X_{FP} , Y_{FP} , θ_{FP} , ϕ_{FP})

+ Matix (FP \rightarrow position detector) + position info. \rightarrow Determination of K+ momentum (δ)

K⁺ momentum measurement option at HIHR

HIHR dose NOT need to measure K+ momentum for mass measurement thanks to dispersion matching. But, K⁺ momentum information would help the initial commissioning and widen physics cases.

Idea to install position detector downstream MPS

Step-1

Focal plane info. (X_{FP} , Y_{FP} , θ_{FP} , ϕ_{FP})

+ Matix (FP \rightarrow position detector) + position info. \rightarrow Determination of K+ momentum (δ)

Step-2

Updated focal plane info. (X_{FP} , Y_{FP} , θ_{FP} , ϕ_{FP} , δ)

- + Matix (FP \rightarrow target) + position info.
	- \rightarrow Determination of reaction information at target

 $(x_{TGT}, y_{TGT}, \theta_{TGT}, \phi_{TGT})$

- \rightarrow Dispersive relation at target
	- x_{TGT} \rightarrow determination of beam momentum

Missing mass can be calculated

K⁺ momentum measurement option at HIHR

HIHR dose NOT need to measure K+ momentum for mass measurement thanks to dispersion matching. But, K⁺ momentum information would help the initial commissioning and widen physics cases.

By using thin detector, reasonable resolution can be obtained.

Idea to install position detector downstream MPS

Step-1

Focal plane info. (X_{FP} , Y_{FP} , θ_{FP} , ϕ_{FP})

+ Matix (FP \rightarrow position detector) + position info. \rightarrow Determination of K+ momentum (δ)

Step-2

Updated focal plane info. (X_{FP} , Y_{FP} , θ_{FP} , ϕ_{FP} , δ)

- + Matix (FP \rightarrow target) + position info.
	- \rightarrow Determination of reaction information at target

 $(x_{TGT}, y_{TGT}, \theta_{TGT}, \phi_{TGT})$

- \rightarrow Dispersive relation at target
	- x_{TGT} \rightarrow determination of beam momentum

Missing mass can be calculated

(π, K^0) spectroscopy at HIHR

Combination of HIHR and additional spectrometers will open the (π⁻, K⁰) spectroscopy at HIHR

 (π, K^0) spectroscopy at HIHR

Combination of HIHR and additional spectrometers will open the (π⁻, K⁰) spectroscopy at HIHR

HIHR as hypernuclear factory

HIHR CAN explore various hypernucler species using all possible reactions with high resolution.

Realistic YN interaction

Accurate and systematic data of hypernuclei +

open new era of hypernuclear physics