### Gravitational waves from binary neutron stars and the equation of state

Koutarou Kyutoku Chiba University

#### Plan of the talk

- 1. Introduction
- 2. Neutron star in astrophysics
- 3. Inspiral: neutron-star equation of state
- 4. Postmerger: crossover vs. 1st-order phase transition
- 5. Summary

## 1. Introduction

#### **Gravitational-wave detectors**

http://gwcenter.icrr.u-tokyo.ac.jp/wp-content/themes/lcgt/images/img\_abt\_lcgt.jpg

#### KAGRA (Kamioka, Japan)

#### Advanced LIGO (Hanford/Livingston, USA)

https://www.advancedligo.mit.edu/graphics/summary01.jpg



#### Advanced Virgo (Pisa, Italy)

http://virgopisa.df.unipi.it/sites/virgopisa.df.unipi.it.virgopisa/files/banner/virgo.jpg

#### Binary black holes: GW150914



#### What we learned from GW150914

#### Masses of individual stars are measured Many "massive" black holes have been found

#### The luminosity distance is measured directly

| Primary black hole mas | SS                                             | $36^{+5}_{-4} M_{\odot}$        |
|------------------------|------------------------------------------------|---------------------------------|
| Secondary black hole r | nass                                           | $29^{+4}_{-4} {M}_{\odot}$      |
| Final black hole mass  |                                                | $62^{+4}_{-4} M_{\odot}$        |
| Final black hole spin  |                                                | $0.67\substack{+0.05 \\ -0.07}$ |
| Luminosity distance    | 1Mpc ~ 3 million light years<br>~ 3 x 10^24 cm | $410^{+160}_{-180}$ Mpc         |

#### Binary neutron stars: GW170817

#### First Cosmic Event Observed in Gravitational Waves and Light

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

avitational wave lasted over 100 secon

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is the first detection of spacetime ripples from neutron stars.

Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

https://www.ligo.org/detections/GW170817/images-GW170817/gatech-moviestill2.png-O

2024/11/7

#### Neutron star binary coalescence

#### **Gravitational waves**

high-density matter signature: equation of state test of the theory of gravitation in a non-vacuum

#### Formation of a hot massive remnant (star/disk)

central engine of short-hard gamma-ray bursts

#### Mass ejection of neutron-rich material

r-process nucleosynthesis

radioactively-driven "kilonova/macronova"

#### **Observed event by the end of O3**

~90 binary black holes vs. 2 binary neutron stars



#### **Observation plan and the status**

O4b will continue until the middle of 2025

O5 will be 2027-2030, and then detectors are upgraded

| Updated<br>2024-07-11 | <b>—</b> 01       | - 02                   | 2 <b>—</b> O3  | <b>—</b> 04                           | <b>—</b> O5         |
|-----------------------|-------------------|------------------------|----------------|---------------------------------------|---------------------|
| LIGO                  | 80<br>Mpc         | 100<br>Мрс             | 100-140<br>Мрс | <i>150</i> -1 <mark>60+</mark><br>Мрс | 240-325<br>Mpc      |
| Virgo                 |                   | 30<br>Мрс              | 40-50<br>Мрс   | 50-80<br>Mpc                          | See text            |
| KAGRA                 | - line over (rele |                        | 0.7<br>Мрс     | 1-3 ≃10<br>Mpc Mpc                    | 25-128<br>Mpc       |
| G2002127-v26          | s.ligo.org/pla    | n/<br>i i<br>2017 2018 | 2019 2020 2021 | 2022 2023 2024 2025 2026              | 2027 2028 2029 2030 |

#### **Candidate from O4**

#### ~150 binary black holes vs. **0 binary neutron stars** (a few black hole-neutron star merger candidates)

|        | GraceDB     | Public Alerts   Latest Search               | Documenta   | tion Login                   |                                        | https://graced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b.ligo.org/supereve       | ents/public/O4/# |
|--------|-------------|---------------------------------------------|-------------|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|
| Ticust | SORT: EVENT | ID (A-Z)                                    |             |                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | •                |
|        | Event ID    | Possible Source (Probability)               | Significant | UTC                          | GCN                                    | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAR                       | Comments         |
|        | S241104a    | Terrestrial (49%), NSBH (29%), BBH<br>(22%) | Yes         | Nov. 4, 2024<br>03:32:21 UTC | GCN Circular<br>Query<br>Notices   VOE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4349 per year           | RETRACTED        |
|        | S241102cy   | BBH (>99%)                                  | Yes         | Nov. 2, 2024<br>14:47:29 UTC | GCN Circular<br>Query<br>Notices   VOE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 per 2.0842 years        |                  |
|        | S241102br   | BBH (99%)                                   | Yes         | Nov. 2, 2024<br>12:40:58 UTC | GCN Circular<br>Query<br>Notices   VOE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 per 2.7753e+33<br>years |                  |
|        | S241101ee   | BBH (>99%)                                  | Yes         | Nov. 1, 2024                 | GCN Circular<br>Query                  | HARDING THE REAL PROPERTY OF T | 1 per 2304.8 years        |                  |

#### Thought and concern

#### **Binary-neutron-star mergers are "less frequent than binary-black-hole mergers"** This is not particularly surprising at least for me (and probably most gravitational-wave astronomers)

#### "in fact, two orders of magnitude less frequent"

Unexpected at least for me, unlikely to be a fluke

- consistent with short-hard gamma-ray bursts?
- consistent with r-process elements in the universe?

# 2. Neutron star in astrophysics

#### **Neutron star**

Remnant of massive stars (mass range is uncertain)

Mostly consists of neutrons 1.4 solar mass, ~10km The density is higher than nuclear saturation values "a huge nucleus" Arena for nuclear physics



#### Supernova: birth of a compact object

When the massive star dies, a supernova explosion could occur and leave a black hole or a neutron star



(Two outcomes may be distinguishable w/ neutrinos for nearby [Galactic] supernovae)

#### **Neutron-star cooling**

Rapid enough to realize  $T \ll E_F$  (Fermi energy >> MeV) depend on mass, surface composition, superfluidity, etc.



#### **QCD** phase diagram

Neutron stars are in the low-T, high- $\mu$  regime



#### Neutron star equation of state

We want to know the realistic equation of state, that uniquely determines the mass-radius relation



#### **Other macroscopic observables**

The binary dynamics, i.e., the orbital motion are affected more directly by other quantities such as



#### **Astronomical observation**

Maximum mass from radio pulsars J1614-2230, J3048+0432, J0740+6620

**Tidal deformability from gravitational waves** GW170817(, GW190425: not so informative)

**Compactness=mass/radius from X-ray pulsations** J0030+0451, J0740+6620

+ moment of inertia from radio pulsars in the future?

#### **Current constraint**

~ 11.5 - 13.5km for typical-mass neutron stars?





# 3. Inspiral: neutron-star equation of state

#### Various phases of coalescence



#### Binary as a two-body problem

Both gravitational-wave and radio observations basically analyze gravitational two-body problems



http://asd.gsfc.nasa.gov/blueshift/wp-content/uploads/2016/02/htbinarypulsar-1024x835.jpg 2024/11/7

#### Quadrupolar tidal deformability

Leading-order finite-size effect on orbital evolution (strongly correlated with the neutron-star radius)

$$\Lambda = G\lambda \left(\frac{c^2}{GM}\right)^5 = \frac{2}{3}k \left(\frac{c^2R}{GM}\right)^5 \propto R^5$$

 $k \sim 0.1$ : (second/electric) tidal Love number



#### **Different orbital evolution**





#### Numerical waveform

Binaries merge earlier for stiffer equations of state This allows us to measure the tidal deformablity



#### GW170817

The longest signal ever (longer than 100 second) Detected by LIGO Hanford/Livingston detectors Virgo did not detect, but informative for localization



#### Parameters of GW170817

The chirp mass is determined to  $10^{-3}M_{\odot}$  precision The masses suggest that both are neutron stars Tidal deformability was measured for the first time

| Binary inclination $\theta_{JN}$                      | $146^{+25}_{-27}$ deg                                |                                                                                                       |
|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Binary inclination $\theta_{JN}$ using EM             | $151_{-11}^{+15}$ deg                                |                                                                                                       |
| distance constraint [108]                             | 11 -                                                 |                                                                                                       |
| Detector-frame chirp mass $\mathcal{M}^{det}$         | $1.1975^{+0.0001}_{-0.0001} \mathrm{M_{\odot}}$      | $m_{1}^{3/5}m_{2}^{3/5}$                                                                              |
| Chirp mass $\mathcal{M}$                              | $1.186^{+0.001}_{-0.001} \ \mathrm{M}_{\odot}$       | $\mathcal{M} \coloneqq \frac{\mathcal{M}_1}{\mathcal{L}_2} \xrightarrow{\mathcal{M}_2} \mathcal{M}_2$ |
| Primary mass $m_1$                                    | $(1.36, 1.60)  \mathrm{M}_{\odot}$                   | $(m_1 + m_2)^{1/5}$                                                                                   |
| Secondary mass $m_2$                                  | $(1.16, 1.36) \ \mathrm{M}_{\odot}$                  |                                                                                                       |
| Total mass m                                          | $2.73^{+0.04}_{-0.01}~{ m M}_{\odot}$                |                                                                                                       |
| Mass ratio $q$                                        | (0.73, 1.00)                                         |                                                                                                       |
| Effective spin $\chi_{eff}$                           | $0.00\substack{+0.02\\-0.01}$                        |                                                                                                       |
| Primary dimensionless spin $\chi_1$                   | (0.00, 0.04)                                         | LIGO&Virgo (2019)                                                                                     |
| Secondary dimensionless spin $\chi_2$                 | (0.00, 0.04)                                         |                                                                                                       |
| Tidal deformability $\tilde{\Lambda}$ with flat prior | $300_{-190}^{+500}$ (symmetric)/ $300_{-190}^{+100}$ | $^{420}_{230}(\text{HPD})$                                                                            |
| 2024/11/7                                             |                                                      | 29                                                                                                    |

#### Uncertainty in the waveform model

1 radian difference usually makes differences Current systematic errors are larger than 1 radian We need accurate waveforms for better estimation



#### Kyoto gravitational-wave model

TaylorF2: analytic, Post-Newton phase  $(x \propto f^{2/3})$ 

 $\Psi_{\text{tidal}}^{2.5\text{PN}} = \frac{3}{128\eta} \left( -\frac{39}{2} \tilde{\Lambda} \right) x^{5/2} \left[ 1 + \frac{3115}{1248} x - \pi x^{3/2} + \frac{28024205}{3302208} x^2 - \frac{4283}{1092} \pi x^{5/2} \right]$ + correction terms associated w/ mass asymmetry ( $\tilde{\Lambda}$ : binary tidal deformability, i.e., weighted average)

We introduce a nonlinear-in- $\widetilde{\Lambda}$  term (empirically)

$$-\frac{39}{2}\tilde{\Lambda}(1+12.55\tilde{\Lambda}^{2/3}x^{4.240})$$

This  $\tilde{\Lambda}^{2/3}$  term well reproduces numerical relativity

#### **Constraint from GW170817**

Systematic bias is only ~100 and currently negligible but may become problematic in the foreseeable future



#### **Case of GW190425**



#### **Current status of understanding**

The equation of state has already been constrained and will be constrained more severely in the near future



# Postmerger: crossover vs. 1st-order phase transition

#### Various phases of coalescence


#### **Third-generation detector**

Einstein Telescope, Cosmic Explorer ... aiming at more precise understanding of already-detected binaries



#### What should we understand then?

Moderate-density (around twice the saturation density) will be understood precisely by a lot of observations

On the basis of this idea, we would like to understand properties of ultrahigh-density matter



#### **Future high-frequency observation**

The high density requires high-frequency observations

$$f \sim \sqrt{G\rho}$$

Some proposals are made for postmerger signals



<sup>2024/11/7</sup> 

#### Postmerger peak frequency

Depends on the equation of state and the total mass, also weakly on the mass ratio



#### **Pre-postmerger correlation**

Frequency at the amplitude peak is correlated strongly with the property of premerger neutron stars



#### QCD phase diagram

What kind of transition occurs from hadrons to quarks



#### **Strong 1st-order phase transition**

The mass-radius relation breaks suddenly

An extreme case results in the so-called "twin star"



#### Effect on the postmerger peak

Significant deviation from hadronic expectations The shift in the peak frequency may reveal strong 1storder phase transition at moderately high density



#### **Current view of the transition**

Smooth crossover transition might be realistic



#### **Crossover vs. 1st order PT**

Crossover Smoothly connects two limits Note: we need to explain 2 solar mass neutron stars

#### **1st-order phase transition**

Only very high density allow strong phase transition... No effect on astrophysics?



#### Merger and gravitational waves





2024/11/7

#### Black-hole formation as a key

Gravitational emission suddenly ends for crossover because of the gravitational collapse of the remnant



#### **Gravitational-wave spectrum**

The postmerger peaks do not differ appreciably

The quasinormal-mode cutoff could be distinguishing



#### Lifetime of the merger remnant

Determined primarily by the total mass of the binary



#### Weak dependence on mass ratio



## Did GW170817 form a black hole?

Nobody knows the answer Important for

- QCD phase structure
- gamma-ray burst
- r-process and kilonova

Gravitational waves are emitted for 10-100ms at ~kHz and will be the key [neutrinos? Kyutoku-Kashiyama 2018]



LIGO&Virgo&Fermi&INTEGRAL (2017)

#### **Distinguishable in reality?**

Bayesian hypothesis testing with simulated real signals

$$B = \frac{Z_{co}}{Z_{pt}} \sim \frac{L(\text{data}|\text{crossover})}{L(\text{data}|\text{phase transition})}$$

Compare the consistency of the residual with the noise  $L \propto \exp\left(-\frac{1}{2}|\text{data} - \text{waveform model}|^2\right)$ 

Transition scenarios should easily be distinguishable with sensitive detectors and/or nearby events

#### Distinguishability in data analysis

AdLIGO is insufficient even at design sensitivity (left) Third-generation detectors may do at >100Mpc (right)



## Summary

#### Summary

- The neutron-star equation of state is constrained by measuring tidal deformability from inspiral gravitational waveforms, particularly GW170817.
- In the future, postmerger gravitational waveforms may enable us to study the QCD phase structure via the gravitational collapse of merger remnants.
- The key toward these goals is the sensitivity at high frequency, specifically (1) ~3kHz for postmerger peaks, and (2) ~7kHz for quasinormal modes excited at the black-hole formation.

#### 2024/11/7

# Appendix

#### **Binary-neutron-star coalescence**

A remnant massive neutron star will be formed Collapse into a black hole radiating angular momentum

59

Spacetime curvature, log(rescaled absolute value)



#### **Electromagnetic counterpart**

EM radiation will accompany neutron star mergers



#### localization

host identification cosmological redshift

**ejecta properties** ejection mechanism r-process element

#### **Diversity of neutron stars**



2024/11/7

#### **Dipole radiation and spindown**

The rotational energy is radiated via magnetic fields and the spin is decelerated, i.e., the period increases



#### **P-Pdot diagram**



(surface) magnetic field:

$$B \sim 3 \times 10^{19} \text{ G} \left(\frac{P\dot{P}}{\text{s}}\right)^{1/2}$$

above  $B_{\rm CT} \sim 4 \times 10^{13} {\rm G}$ , QED becomes important

low-B, rapid neutron stars are produced by accretion

63

#### Supernova explosion mechanism

The iron core has exhausted all the nuclear fuel

The collapse sets in due to photodissociation of irons

One the density approaches the nuclear saturation value, the core bounce triggers shock waves ... supernova



#### The remnant is not monotonic

There is no single threshold of the initial mass separating neutron-star and black-hole formation

...stellar evolution is a highly complicated process

(and calculations/simulations are not mature enough)



Red bar: explode -> a neutron star is formed

Black line: not explode -> a black hole is formed

#### **One-to-one correspondence**

Via Tolman-Oppenheimer-Volkoff equation of GR



#### **Tight correlation**

Not necessarily independent information is encoded



#### **NICER X-ray pulse observation**

Hot spots behind can be seen thanks to light bending in

general relativity

The compactness

 $C \sim M/R$ 

is constrained well

because

it is essentially

the grav. potential



#### How reliable?

In principle OK, but the shape of the hot spots are...?



#### Newton two-body problem

Kepler motion: elliptic orbit characterized by (a, e)Physically, the energy and the angular momentum



Note: actual location of M is more outward

### Relativistic two-body problem

Neglecting spins, eccentricity, finite-size effects...



#### **Necessity of numerical simulations**

The amplitude maximum comes after the contact

- Gravity (post-Newtonian correction) is nonlinear
- Hydrodynamics (tidal effect) is also nonlinear Analytic computations cannot be fully accurate


## **Role of theoretical templates**

Parameters of binaries are estimated by measuring the match between data and theoretical waveforms Accurate theoretical models are indispensable



#### Theoretical waveform and the noise

Signals are usually weaker than the detector noise



Taking the correlation with theoretical waveform Accurate theoretical calculations are very important



2024/11/7

## Strong correlation of $\widetilde{\Lambda}-\mathcal{M}_{\mathcal{C}}$



#### Waveform library

#### https://www2.yukawa.kyoto-u.ac.jp/~nr\_kyoto/SACRA\_PUB/catalog.html

#### Released Model List

|                                   |                  |                                       |                                                        |                  |                                       |                                       |                                       |      | Serach: |      |                                 |      |              |  |
|-----------------------------------|------------------|---------------------------------------|--------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|------|---------|------|---------------------------------|------|--------------|--|
| Model name 🔶                      | m <sub>1</sub> ¢ | m <sub>2</sub> ¢                      | m <sub>0</sub><br>(=m <sub>1</sub> +m <sub>2</sub> ) ♦ | q<br>(=m₁/m₂) \$ | η \$                                  | M <sub>c</sub> ¢                      | EOS name 🔶                            | ^1 ¢ | ^2 ¢    | λ¢   | m <sub>0</sub> Ω <sub>0</sub> ≑ | N \$ | Reference \$ |  |
| <u>15H 135 135 00155 182 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 182  | Link         |  |
| <u>15H 135 135 00155 150 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 150  | Link         |  |
| <u>15H 135 135 00155 130 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 130  | <u>Link</u>  |  |
| <u>15H 135 135 00155 110 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 110  | Link         |  |
| <u>15H 135 135 00155 102 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 102  | Link         |  |
| <u>15H 135 135 00155 90 135</u>   | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 15H                                   | 1211 | 1211    | 1211 | 0.0155                          | 90   | Link         |  |
| 125H 135 135 00155 182 135        | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 182  | Link         |  |
| 125H 135 135 00155 150 135        | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 150  | Link         |  |
| <u>125H 135 135 00155 130 135</u> | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 130  | Link         |  |
| 125H 135 135 00155 110 135        | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 110  | Link         |  |
| 125H 135 135 00155 102 135        | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 102  | Link         |  |
| <u>125H 135 135 00155 90 135</u>  | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | 125H                                  | 863  | 863     | 863  | 0.0155                          | 90   | <u>Link</u>  |  |
| H 135 135 00155 182 135           | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 182  | Link         |  |
| H 135 135 00155 150 135           | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 150  | Link         |  |
| <u>H 135 135 00155 130 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 130  | <u>Link</u>  |  |
| H 135 135 00155 110 135           | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 110  | Link         |  |
| H 135 135 00155 102 135           | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 102  | Link         |  |
| H 135 135 00155 90 135            | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | н                                     | 607  | 607     | 607  | 0.0155                          | 90   | Link         |  |
| HB 135 135 00155 182 135          | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | HB                                    | 422  | 422     | 422  | 0.0155                          | 182  | Link         |  |
| HB 135 135 00155 150 135          | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | HB                                    | 422  | 422     | 422  | 0.0155                          | 150  | <u>Link</u>  |  |
| <u>HB 135 135 00155 130 135</u>   | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | HB                                    | 422  | 422     | 422  | 0.0155                          | 130  | Link         |  |
| HB 135 135 00155 110 135          | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | HB                                    | 422  | 422     | 422  | 0.0155                          | 110  | Link         |  |
| <u>HB 135 135 00155 102 135</u>   | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | НВ                                    | 422  | 422     | 422  | 0.0155                          | 102  | Link         |  |
| HB 135 135 00155 90 135           | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | HB                                    | 422  | 422     | 422  | 0.0155                          | 90   | Link         |  |
| <u>B 135 135 00155 182 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 182  | Link         |  |
| <u>B 135 135 00155 150 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 150  | Link         |  |
| <u>B 135 135 00155 130 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 130  | Link         |  |
| <u>B 135 135 00155 110 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 110  | Link         |  |
| <u>B 135 135 00155 102 135</u>    | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 102  | Link         |  |
| <u>B 135 135 00155 90 135</u>     | 1.35             | 1.35                                  | 2.7                                                    | 1                | 0.25                                  | 1.17524                               | В                                     | 289  | 289     | 289  | 0.0155                          | 90   | Link         |  |
| <u>15H 125 146 00155 182 135</u>  | 1.25             | 1.46                                  | 2.71                                                   | 0.86             | 0.2485                                | 1.17524                               | 15H                                   | 1871 | 760     | 1200 | 0.0155                          | 182  | Link         |  |
| <u>15H 125 146 00155 150 135</u>  | 1.25             | 1.46                                  | 2.71                                                   | 0.86             | 0.2485                                | 1.17524                               | 15H                                   | 1871 | 760     | 1200 | 0.0155                          | 150  | Link         |  |
| II                                |                  | · · · · · · · · · · · · · · · · · · · | ·                                                      |                  | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ·    |         |      | · ··· □                         | · ¬  | · ··· — ·    |  |

#### GW190425

Total mass  $m_{tot} = 3.4^{+0.3}_{-0.1} M_{\odot}$ , no EM counterpart Heavier by >5sigma than Galactic binary neutron stars



## **Constraint from the kilonova?**

Indication of the large ejecta mass of ~  $0.05 M_{\odot}$ It has been claimed that "this requires  $\widetilde{\Lambda} > 400$ "



## A lot of counterexamples

Our conclusion: Lower limits on  $\widetilde{\Lambda}$  can be derived only under restrictive assumptions

(vertical bars denote mass ejection efficiency from the disk, not errors)



#### Reason?

 $M_{\text{max}}$  may not be strongly correlated with  $\tilde{\Lambda} \propto R^{\sim 6}$ of typical-mass neutron stars

If the remnant survived moderately long due to the large value of  $M_{\text{max}}$ , there should be no reason that mass ejection is weak



## Nondetection for GW170817

#### Simply, sensitivity at high frequency is insufficient



## **Uncertainty in chiral EFT**

The validity range is crucial for strength of constraints



#### **Current view on the sound speed**

Not stiff at low density, but  $2M_{\odot}$  must be supported.

Conformal limit  $(c_s^2/c^2 = 1/3)$  is likely to be exceeded



#### Structure of the merger remnant

Density/temperature structures are not very different Quarks appear at the high-n core and high-T envelope



#### **Quarkyonic matter**

Baryons emerges near the Fermi surface of quarks



#### Sound speed of quarkyonic matter



### Sound speed in the crossover

Crossover may induce a peak in the sound speed

Phase transition makes the sound speed very low



#### **Mass-radius relation**



#### **Relation to independent studies**

There exists other studies, e.g., those based on QHC We require explicitly that the perturbative QCD regime is realized after the crossover from hadronic matter



## **Results with QHC**

Stiffening associated with the sound-velocity peak modifies the peak frequency to some extent



## Magnetic-field and the peak

# Magnetar-level premerger magnetic fields could also affect the peak frequency



## **Quasinormal modes of black holes**

Damped oscillations governed by the mass and spin

Excited when they are formed in gravitational collapse



## Which density range we can see?

The collapse is likely to set in when the central density reaches the maximum density of spherical stars

Not likely to dig into the unstable branch [cf. Ujevic+ 2024]



#### **Multimessenger observation**

If the collapse is too early, no material is left outside and the kilonova cannot be as bright as AT 2017gfo

Our crossover model may be pass this test Mwith mass asymmetry (1s-order PT trivially passes this test because no gravitational collapse)



#### **Possible source of uncertainties**

## Finite-temperature effect? (modeled by " $\Gamma_{th}$ ")

We vary systematically the strength of thermal pressure

#### **Neutrino effect? (neglected)**

Its time scale is ~1s, much longer than our target

#### Magnetic-field effect? (neglected)

Its time scale is ~0.1s, again longer than our target

#### Grid resolution? (finite, of course)

Checked that dependence is weak, but not clean