Two-color QCD as a laboratory of cold and dense matter: Chiral effective model approach

Daiki Suenaga (KMI, Nagoya U.)

Suenaga-Murakami-Itou-Iida; Phys.Rev.D 107, 054001 (2023) Kawaguchi-**Suenaga**; JHEP 08, 189 (2023) **Suenaga-**Murakami-Itou-Iida; Phys.Rev.D 109, 074031 (2024) Kawaguchi-**Suenaga**; Phys. Rev. D 109, 096034 (2024) Fejos-**Suenaga**, in preparation, etc. **Example 2** in the study of the study and the study my recent series of linear sigma model study

on dense two-color QCD

・What is two-color QCD (QC2D)? = Strong interaction with $N_c=2$

- **・Why two-color QCD (QC2D)?**
- Useful to extract information of **singly heavy baryon (SHB) spectrum** from the viewpoint of chiral symmetry and $U(1)_A$ anomaly

- The extended $SU(2N_f)$ symmetry doesn't matter for the above motivation, since it just relates couplings among diquarks and mesons

- From the viewpoint of mass generation, only this σBB coupling is important *regardless of the couplings relations*

- U(1)_A anomaly *universally exists regardless of # of colors*

・Why two-color QCD (QC2D)?

In QC₂D world, the lattice simulation is possible thanks to the pseudoreality of $SU(2)_c$ $=$ noteworthy advantage of QC_2D

etc.

・Phase diagram in QC2D

- Examples of simulation results of phase diagram in $QC₂D$

- Ireland/UK group (Hands, Skullerud, …) Russian group (Bornyakov, ...)
- UK group (Buividovich, ...)

- Japanese group (Iida-san, Itou-san, …), (+Nonaka-san)

etc.

・Phase diagram in QC2D

- Ireland/UK group (Hands, Skullerud, …) Russian group (Bornyakov, ...)
- UK group (Buividovich, ...)

- Japanese group (Iida-san, Itou-san, …),

(+Nonaka-san, …)

・Lattice results

- In addition to phase diagram, hadron mass spectrum, gluon propagator, transport coefficient, EoS, sound velocity, $\langle \bar{\psi}\psi \rangle$, $\langle \psi\psi \rangle$, $\langle L \rangle$, etc. have been simulated eg, Japanese group results

My approach

 $-$ (i) Regard QC₂D lattice simulations as useful "numerical experiments" of cold and dense QCD, then (ii) give interpretation from symmetry viewpoints based on effective models

My publications on $OC₂D$

Gluon propagator: **Suenaga**-Kojo(2019), Kojo-**Suenaga**(2021), CSE effect: **Suenaga**-Kojo(2021), Sound velocity: Kojo-**Suenaga**(2022), Kawaguchi-**Suenaga**(2024), Topological susceptibility: Kawaguchi-**Suenaga**(2023), Hadron mass: **Suenaga**-Murakami-Itou-Iida (2023, 2024), and in-preparations.

Lattice results on hadron masses

Murakami-Suenaga-Iida-Itou, PoS LATTICE2022 (2023) 154

- ChPT only describes pions (and 0^+ diquark baryons) as the low-energy EFT with systematic expansion

invented by eg Kogut-Stephanov-Toublan-Verbaarschot-Zhitnitsky(2000)

Lattice results on hadron masses

Murakami-Suenaga-Iida-Itou, PoS LATTICE2022 (2023) 154

- ChPT only describes pions (and 0^+ diquark baryons) as the low-energy EFT with systematic expansion

invented by eg Kogut-Stephanov-Toublan-Verbaarschot-Zhitnitsky(2000)

HOWEVER...!

- Pion is no longer light in superfluid phase (for $m_\pi^0/2 \lesssim \mu$) \Box ChPT is no longer the correct low-energy EFT!

constructed another model (linear sigma model) as a reasonable EFT in dense $QC₂D$ (this talk)

Q: What is your ultimate goal?

A: To provide information on Neutron star physics

・・・

A: To unveil $SU(N_c)$ ang-Mills theory in **many-body system of quarks/hadrons!**

message of this talk:

→ **There is no reason to ignore fruitful QC**₂**D** numerical experiments!

in a broad sense

Model

・Pauli-Gursey SU(4) symmetry

- Pseudo reality of $SU(2)_c$ allows us to rewrite QC₂D Lagrangian with massless quarks as

$$
\mathcal{L}_{\mathrm{QC}_2\mathrm{D}} = \bar{\psi} i\partial\!\!\!/\psi - g_s\bar{\psi} \mathcal{A}^a T^a_c \psi = \Psi^\dagger i \partial_\mu \sigma^\mu \Psi - g_s \Psi^\dagger A^a_\mu T^a_c \sigma^\mu \Psi
$$

In two-flavor:
$$
\Psi = (\psi_R, \tilde{\psi}_L)^T = (u_R, d_R, \tilde{u}_L, \tilde{d}_L)^T
$$
 with $\tilde{\psi}_L = \sigma^2 \tau_c^2 \psi_L^*$
Four-dimensional Pauli matrix: $\sigma^\mu = (1, \sigma^i)$

$$
\text{pseudoreality: } \sigma^2 \sigma^a \sigma^2 = -(\sigma^a)^*
$$

$$
\frac{\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}}{\frac{2}{3} \times \frac{2}{3} \times \frac{2
$$

-
$$
\mathcal{L}_{\text{QC}_2\text{D}}
$$
 is obviously invariant under $\Psi \to g\Psi$ [$g \in SU(4)$]

$SU(2)_L \times SU(2)_R$ chiral symmetry	Pauli-Gursey $SU(4)$ symmetry	Pauli (1957), Gursey (1958)
All low-energy effective model of QC₂D is constructed to satisfy this symmetry		
$\Gamma_{\text{QC2D}} = \Gamma_{\text{EFT}}$ in the low-energy regime (matching condition)		

Model

・Linear sigma model (LSM)

- LSM is an effective model describing not only NG bosons (π etc.) but also their P-wave excitations

Model

- **・Lagrangian of Linear sigma model (LSM)**
	- (approximately) $SU(4)$ -invariant LSM Lagrangian is given by

$$
\mathcal{L} = \text{tr}[\underline{D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma}]-m_{0}^{2}\text{tr}[\Sigma^{\dagger}\Sigma]-\lambda_{1}(\text{tr}[\Sigma^{\dagger}\Sigma])^{2}-\lambda_{2}\text{tr}[(\Sigma^{\dagger}\Sigma)^{2}]+\text{tr}[\underline{H}^{\dagger}\Sigma+\Sigma^{\dagger}\underline{H}]+c(\text{det}\Sigma+\text{det}\Sigma^{\dagger})
$$

\n
$$
D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\mu_{q}\delta_{\mu0}{J,\Sigma}
$$
 with $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
\n $H = h_{q}E$ with $E = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
\n $U(1)_{A}$ anomaly
\nchemical potential effect
\ncurrent-quark mass effect

- Advantage of LSM parity (chiral) partner \rightarrow iso-singlet 0^- hadrons are also treated (mandatory from lattice result!) $\eta, \pi \leftrightarrow \sigma, a_0$ \rightarrow we can see mass relation between parity (chiral) partners $B(\bar{B}) \leftrightarrow B'(\bar{B}')$

$\Lambda_c(1/2^-)$ HQS-singlet (\mathbb{C}^{\times}) $\langle \overline{} \rangle$ HQS-singlet (observed) (unobserved)

My hope

Hints from $B'(\bar{B}')$ analysis in QC₂D for the unobserved HQS-singlet $\Lambda_c(1/2^-)$?

Mean fields

・Comparison with lattice (normalized by m_{π}^{vac})

・Parameter dependence

・Comparison with lattice –focused on anomaly-

① **degeneracy of** $\pi, (\mathcal{H})$ no disconnected diagrams)

dose not change significantly even when disc. diagrams are included

・Comparison with lattice –focused on anomaly-

① **degeneracy of** $\pi, (\mathcal{H})$ no disconnected diagrams)

- dose not change significantly even when disc. diagrams are included
- At zero density anomaly effect is suppressed, but at finite density anomaly would be enhanced

FRG analysis (work in progress)

・Topological susceptibility

- Lattice results of topological susceptibility by two groups look inconsistent even at qualitative level

- We applied LSM to theoretically explore fate of χ_{top} in dense QC₂D

- χ_{top} **・Theoretical background of**
	- $QC₂D$ generating functional with a θ-term is

$$
Z_{\rm QC_2D} = \int [d\bar{\psi}d\psi][dA] \exp \left[i \int d^4x \left(\bar{\psi}(i\not{\!\!D} - m_l)\psi - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu,a} + \theta \frac{g^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}\right)\right]
$$

– U(1)_A axial transformation $\psi \to \exp(i\theta/4\gamma_5)\psi$

- θ dependence is absorbed into quark mass term via Fujikawa's method

$$
Z_{\rm QC_2D} = \int [d\bar{\psi}d\psi][dA] \exp \left[i \int d^4x \left(\bar{\psi}iD\psi - m_l\bar{\psi}\exp\left(i\theta/2\gamma_5\right)\psi - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu,a}\right)\right]
$$

Ward-Takahashi identity $\langle \bar{\psi}\psi \rangle = -im_l \chi_{\pi}$

$$
\left\{\left(\chi_{\text{top}} = -\int d^4x \frac{\delta^2 \Gamma_{\text{QC}_2\text{D}}}{\delta \theta(x)\delta \theta(0)}\right|_{\theta=0} = \frac{im_l^2}{4}(\chi_{\pi} - \chi_{\eta}) = \frac{f_{\pi}^2 m_{\pi}^2}{2} \left(1 - \frac{\chi_{\eta}}{\chi_{\pi}}\right) \left[\frac{\chi_{\pi} \delta^{ab}}{\chi_{\eta}} = \int d^4x \langle (\bar{\psi}i\gamma_5 \tau_f^a \psi)(x)(\bar{\psi}i\gamma_5 \tau_f^b \psi)(0) \rangle}{\chi_{\eta} = \int d^4x \langle (\bar{\psi}i\gamma_5 \psi)(x)(\bar{\psi}i\gamma_5 \psi)(0) \rangle}\right\}
$$

- Matching $Z_{\text{QC}_2\text{D}}=Z_{\text{LSM}}$ enables us to evaluate χ_{π} and χ_{η} within LSM

- χ top within LSM for $m_{\eta}^{vac}/m_{\pi}^{vac} = 1.0, 1.5$ reads

- Anomaly effect is absent $(m_n^{\text{vac}} = m_\pi^{\text{vac}}) \rightarrow \chi_{\text{top}}$ is always vanishing

- Anomaly effect is present $(m_{\eta}^{vac} > m_{\pi}^{vac}) \rightarrow X_{\text{top}}$ is positively induced

 \blacktriangleright For $\mu_q \to \infty$, topological susceptibility asymptotically approaches zero

・Asymptotic behavior

- Asymptotic behavior of χ_{top} for $m_{\eta}^{\text{vac}}/m_{\pi}^{\text{vac}} = 1.05, 1.2, 1.5$

- Black curve is analytic solution for large
$$
\mu_q
$$

\n
$$
\chi_{\text{top}} = -\frac{m_l \langle \bar{\psi}\psi \rangle}{4} \left(1 - \frac{\chi_\eta}{\chi_\pi}\right) \rightarrow \frac{(f_\pi^{\text{vac}})^2 (m_\pi^{\text{vac}})^4}{12} \mu_q^{-2}
$$
\n
$$
\bullet \text{ssentially from the chiral restoration } \sigma_0 \propto \mu_q^{-2}
$$

・Asymptotic behavior

- Asymptotic behavior of X_{top} for $m_{\eta}^{vac}/m_{\pi}^{vac} = 1.05, 1.2, 1.5$

Application 2: Sound velocity

・Sound velocity at mean-field level within the LSM

$$
\begin{bmatrix}\n\text{pressure: } p = f_{\pi}^{2} m_{\pi}^{2} \left(\bar{\mu}^{2} + \frac{1}{\bar{\mu}^{2}} \right) + f_{\pi}^{2} m_{\pi}^{2} \left[\frac{4}{\delta \bar{m}_{\sigma-\pi}^{2}} (\bar{\mu}^{2} - 1)^{2} \right] & \bar{\mu} = \mu / \mu_{\text{cr}} = 2\mu / m_{\pi} \\
\text{energy: } \epsilon = f_{\pi}^{2} m_{\pi}^{2} \left[\frac{(\bar{\mu}^{2} + 3)(\bar{\mu}^{2} - 1)}{\bar{\mu}^{2}} \right] + f_{\pi}^{2} m_{\pi}^{2} \left[\frac{4}{\delta \bar{m}_{\sigma-\pi}^{2}} (3\bar{\mu}^{2} + 1)(\bar{\mu}^{2} - 1) \right] \\
\text{energy: } \epsilon = f_{\pi}^{2} m_{\pi}^{2} \left[\frac{(\bar{\mu}^{2} + 3)(\bar{\mu}^{2} - 1)}{\bar{\mu}^{2}} \right] + f_{\pi}^{2} m_{\pi}^{2} \left[\frac{4}{\delta \bar{m}_{\sigma-\pi}^{2}} (3\bar{\mu}^{2} + 1)(\bar{\mu}^{2} - 1) \right] \\
\text{convd: } c_{s}^{2} = \frac{(1 - 1/\bar{\mu}^{4}) + 8(\bar{\mu}^{2} - 1)/\delta \bar{m}_{\sigma-\pi}^{2}}{(1 + 3/\bar{\mu}^{4}) + 8(3\bar{\mu}^{2} - 1)/\delta \bar{m}_{\sigma-\pi}^{2}} \\
\text{velocity: } \text{C} \rightarrow \text{C}
$$

Universal structure: (LSM result) = (ChPT result) + $(1/\delta \bar{m}_{\sigma-\pi}^2$ contribution)

- Integrating out the chiral partners $(m_\sigma \to \infty)$ yields the ChPT results $(1/\delta \bar{m}_{\sigma-\pi}^2 \to 0)$

Application 2: Sound velocity

0.8

0.6

 0.4

 0.2

 0.0

 c_{s}^{2}

- The peak structure is driven by contributions from chiral partners

- $(NG \text{ bosons} + \eta)$ (Chiral partners) LSM framework
- Any connection with crossover to quark matter ?
- Fluctuation and spin-1 hadron effect are needed for more quantitative comparison

 $\overline{1.25}$

・LSM with spin-1 hadrons

- Introduce the following 4×4 matrix representing spin-1 hadrons

$$
\Phi_{ij}^{\mu} \sim \Psi_{j}^{\dagger} \sigma^{\mu} \Psi_{i} = \frac{1}{2} \begin{pmatrix}\n\frac{\omega + \rho^{0} - (f_{1} + a_{1}^{0})}{\sqrt{2}} & \rho^{+} - a_{1}^{+} & \sqrt{2}B_{S}^{I=+1} & B_{S}^{I=0} - B_{AS} \\
\frac{\rho^{-} - a_{1}^{-}}{\sqrt{2}} & \frac{\omega - \rho^{0} - (f_{1} - a_{1}^{0})}{\sqrt{2}} & B_{S}^{I=0} + B_{AS} & \sqrt{2}B_{S}^{I= -1} \\
\frac{\rho^{I=0}}{\sqrt{2}} & \frac{\rho^{I=0}}{\sqrt{2}} + \bar{B}_{AS} & -\frac{\omega + \rho^{0} + f_{1} + a_{1}^{0}}{\sqrt{2}} & -(\rho^{-} + a_{1}^{-}) \\
\frac{\rho^{I=0}}{\sqrt{2}} - \bar{B}_{AS} & \sqrt{2}B_{S}^{I=+1} & - (\rho^{+} + a_{1}^{+}) & -\frac{\omega - \rho^{0} + f_{1} - a_{1}^{0}}{\sqrt{2}} \\
\frac{\rho^{0,\mu}}{\mu} \sim \bar{\psi}\gamma^{\mu}\psi, f_{1}^{\mu} \sim \bar{\psi}\gamma_{5}\gamma^{\mu}\psi, \qquad B_{S}^{I=0,\mu} \sim -\frac{i}{\sqrt{2}}\psi^{T}C\gamma^{\mu}\tau_{c}^{2}f_{I}^{\mu}\psi, \\
\rho^{0,\mu} \sim \bar{\psi}\gamma_{f}^{2}\gamma_{5}\gamma^{\mu}\psi, a_{1}^{\pm\mu} \sim \frac{1}{\sqrt{2}}\bar{\psi}\tau_{f}^{\mp}\gamma_{5}\gamma^{\mu}\psi, \qquad B_{AS}^{I=1,\mu} \sim -\frac{i}{\sqrt{2}}\psi^{T}C\gamma_{5}\gamma^{\mu}\tau_{c}^{2}f_{I}^{\mu}\psi, \\
\frac{\bar{B}_{AS}}{a_{1}^{0}} = (B_{S}^{\mu_{0}} + \bar{B}_{S}^{\mu_{1}} - \bar{
$$

$$
\Psi = (\psi_R, \tilde{\psi}_L)^T = (u_R, d_R, \tilde{u}_L, \tilde{d}_L)^T
$$

with $\tilde{\psi}_L = \sigma^2 \tau_c^2 \psi_L^*$

・Extended linear sigma model (eLSM)

$$
\begin{array}{lll}\n\Phi^{\mu} \text{ transforms as } \Phi^{\mu} \to g \Phi^{\mu} g^{\dagger} \left[g \in SU(4) \right] & \text{cf, elSM by Frankfur group } \leftrightarrow \text{HLS by Harada-Nonaka-Yamacka(2010)} \\
\mathcal{L}_{eLSM} & = \text{tr}[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma] - m_{0}^{2} \text{tr}[\Sigma^{\dagger} \Sigma] - \lambda_{1} \left(\text{tr}[\Sigma^{\dagger} \Sigma] \right)^{2} - \lambda_{2} \text{tr}[(\Sigma^{\dagger} \Sigma)^{2}] + \text{tr}[H^{\dagger} \Sigma + \Sigma^{\dagger} H] + c(\text{det} \Sigma + \text{det} \Sigma^{\dagger}) \\
& - \frac{1}{2} \text{tr}[\Phi_{\mu\nu} \Phi^{\mu\nu}] + m_{1}^{2} \text{tr}[\Phi_{\mu} \Phi^{\mu}] + ig_{3} \text{tr}[\Phi_{\mu\nu} [\Phi^{\mu}, \Phi^{\nu}] \right] + h_{1} \text{tr}[\Sigma^{\dagger} \Sigma] \text{tr}[\Phi_{\mu} \Phi^{\mu}] + h_{2} \text{tr}[\Sigma \Sigma^{\dagger} \Phi_{\mu} \Phi^{\mu}] \\
& + h_{3} \text{tr}[\Phi_{\mu}^{T} \Sigma^{\dagger} \Phi^{\mu} \Sigma] + g_{4} \text{tr}[\Phi_{\mu} \Phi_{\nu} \Phi^{\mu} \Phi^{\nu}] + g_{5} \text{tr}[\Phi_{\mu} \Phi^{\mu} \Phi_{\nu} \Phi^{\nu}] + g_{6} \text{tr}[\Phi_{\mu} \Phi^{\mu}] \text{tr}[\Phi_{\nu} \Phi^{\nu}] + g_{7} \text{tr}[\Phi_{\mu} \Phi_{\nu}] \text{tr}[\Phi^{\mu} \Phi^{\nu}] \\
& = \partial_{\mu} \Phi_{\nu} - D_{\nu} \Phi_{\mu} \\
D_{\mu} \Sigma & = \partial_{\mu} \Sigma - i G_{\mu} \Sigma - i \Sigma G_{\mu}^{T} - ig_{1} \Phi_{\mu} \Sigma - ig_{2} \Sigma \Phi_{\mu}^{T} \text{ and } G_{\mu} \rightarrow \mu_{q} \delta_{\mu 0} J \text{ with } J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
& = \begin{pmatrix} \Phi_{\mu\nu
$$

- There are four possible mean fields $\sigma_0 = \langle \sigma \rangle$ $\qquad \bar{\omega} = \langle \omega^{\mu=0} \rangle$ $\Delta = \left\langle \frac{B + \bar{B}}{\sqrt{2}} \right\rangle \hspace{0.5cm} \bar{V} = \left\langle \frac{\bar{B}_{AS}^{\mu=0} - B_{AS}^{\mu=0}}{\sqrt{2}i} \right\rangle$ (↑ vector diquark)

・Extended linear sigma model (eLSM)

$$
\Phi^{\mu} \text{ transforms as } \Phi^{\mu} \to g \Phi^{\mu} g^{\dagger} \left[g \in SU(4) \right]
$$
\n
$$
\mathcal{L}_{eLSM} = \text{tr}[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma] - m_{0}^{2} \text{tr}[\Sigma^{\dagger} \Sigma] - \lambda_{1} \left(\text{tr}[\Sigma^{\dagger} \Sigma] \right)^{2} - \lambda_{2} \text{tr}[(\Sigma^{\dagger} \Sigma)^{2}] + \text{tr}[H^{\dagger} \Sigma + \Sigma^{\dagger} H] + c(\text{det} \Sigma + \text{det} \Sigma^{\dagger})
$$
\n
$$
- \frac{1}{2} \text{tr}[\Phi_{\mu\nu} \Phi^{\mu\nu}] + m_{1}^{2} \text{tr}[\Phi_{\mu} \Phi^{\mu}] + ig_{3} \text{tr}[\Phi_{\mu\nu} [\Phi^{\mu}, \Phi^{\nu}]] + h_{1} \text{tr}[\Sigma^{\dagger} \Sigma] \text{tr}[\Phi_{\mu} \Phi^{\mu}] + h_{2} \text{tr}[\Sigma \Sigma^{\dagger} \Phi_{\mu} \Phi^{\mu}]
$$
\n
$$
+ h_{3} \text{tr}[\Phi_{\mu}^{T} \Sigma^{\dagger} \Phi^{\mu} \Sigma] + g_{4} \text{tr}[\Phi_{\mu} \Phi_{\nu} \Phi^{\mu} \Phi^{\nu}] + g_{5} \text{tr}[\Phi_{\mu} \Phi^{\mu} \Phi_{\nu} \Phi^{\nu}] + g_{6} \text{tr}[\Phi_{\mu} \Phi^{\mu}] \text{tr}[\Phi_{\nu} \Phi^{\nu}] + g_{7} \text{tr}[\Phi_{\mu} \Phi_{\nu}] \text{tr}[\Phi^{\mu} \Phi^{\nu}]
$$
\n
$$
\begin{cases}\n\Phi_{\mu\nu} = D_{\mu} \Phi_{\nu} - D_{\nu} \Phi_{\mu} \\
D_{\mu} \Sigma = \partial_{\mu} \Sigma - i \Sigma G_{\mu}^{T} - ig_{1} \Phi_{\mu} \Sigma - ig_{2} \Sigma \Phi_{\mu}^{T} \\
D_{\mu} \Phi_{\nu} = \partial_{\mu} \Phi_{\nu} - i[G_{\mu}, \Phi_{\nu}]\n\end{cases}
$$
\nExample of μ_{q} dep. of mean fields

- There are four possible mean fields $\sigma_0 = \langle \sigma \rangle$ $\qquad \bar{\omega} = \langle \omega^{\mu=0} \rangle$ $\Delta = \left\langle \frac{B + \bar{B}}{\sqrt{2}} \right\rangle \hspace{0.5cm} \bar{V} = \left\langle \frac{\bar{B}_{AS}^{\mu=0} - B_{AS}^{\mu=0}}{\sqrt{2}i} \right\rangle$ (↑ vector diquark)

・Spin-1 mass spectrum

Conclusions

- I constructed the LSM as an effective model of cold and dense QC_2D
	- \overline{A} Not only NG bosons but also their chiral partners are described (= Extended model of ChPT)
- Qualitative understanding of 0^{\pm} hadron masses measured on the lattice \rightarrow Good benchmark to explore dense QC₂D

- Suppression of the topological susceptibility for $\mu_q \to \infty$ caused by chiral restoration
- The sound velocity peak occurs from chiral-partner contributions Q: Any connection with crossover to quark matter ?
- Extension to include spin-1 hadrons \rightarrow possibility of (axial)vector condensation

Conclusions

- $QC₂D$ is a good testing ground to explore diquark nature

- Elucidation of SHB spectrum focusing on chiral-partner structure eg, examination of unobserved HQS-singlet $\Lambda_c(1/2^-)$ which is the chiral partner of $\Lambda_c(1/2^+)$ $\Lambda_c \eta$ channel

- EFT analysis suggests that $U(1)_A$ anomaly effect to generate "inverse mass hierarchy" of (unobserved) $1/2^-$ SHBs

- 2+1 flavor $QC₂D$ lattice simulation would be useful! (no sign problem as long as $\mu_q = 0$ even at finite T)

