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• Chiral gauge theory and the Nielsen-Ninomiya theorem	

• Edge states and topological phases	

• A single connected phase boundary: a disc	

• How to see free Weyl fermions on the lattice	

• Gauging the theory	

• A puzzle, and implications for the continuum?

Outline of this talk:
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Chiral gauge theory, Nielsen-Ninomiya theorem

A chiral gauge theory is one where a fermion mass term necessarily violates the 
gauge symmetry (i.e. the Standard Model)

A nonperturbative regulator does not exist for such theories  😳

Fundamental tension between the need for a UV mass scale to tame divergences, 
and a chiral gauge symmetry that forbids masses.

•What does it mean to have a theory one cannot compute? Is it actually 
well-defined?	

•How can we calculate nonperturbative physics without one? (E.g. EW 
baryon violation in the early universe) 	

•Might a definition on the computer imply the need for new physics we 
do not expect in our continuum definition?
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

Naive lattice fermions violate #3
<latexit sha1_base64="QcuCyPUcUK7eONZmeF/OT4YVdSM="></latexit>

eD(p) =
X

µ

i�µ sin pµ

Examples (a=1):

“SLAC derivative” violates #1
<latexit sha1_base64="rBF0K5QXG2S1o6nRzozBSH/sSDE="></latexit>

eD(p) =
X

µ

i�µpµ

Wilson fermions violate #4
<latexit sha1_base64="qfgS3+d5TnOndOq77iXhP0oQM9Q="></latexit>

eD(p) =
X

µ

i�µ sin pµ +M +
r

2

X

µ

(1� cos pµ)
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Wilson)
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Wilson (fine-tuned)

Nielsen-Ninomiya: 
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Heuristic reasons behind NN theorem:

* If the lattice had exact chiral symmetry and its continuum limit gave a massless Dirac 
fermion, how could anomalies ever arise in the continuum?

* If a chiral Dirac fermion existed, one could consider a lattice Weyl fermion using 
P±=(1 ± Γ)/2 projectors…	

…but how can a continuous periodic function P-D(p)P+ cross p=0 only once?

-π π
p

SLAC

-π π
p

Naive

Nonlocal Dirac, not Weyl
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NN theorem tells us that there should be mirror fermions: incompatible with chiral 
gauge theory

Attempts to get rid of mirror fermions on the lattice: 

1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir

3. Eliminate mirror 
fermions by sacrificing  
locality (this work)

2. Gap the system and give masses to the  
mirrors without breaking gauge symmetry 
(many-body effects) 
Eichten, Preskill 
X.G. Wen
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Chiral edge states appear naturally 
in the Integer Quantum Hall Effect:

Analog for Dirac fermions with domain wall mass 
[Jackiw & Rebbi]:

Has solutions:

<latexit sha1_base64="oVv2BqXHJFfUs0pmUD+IaXfVzmU="></latexit>

�±(x5) = e⌥
R x5 m(s) ds

x5

m

With this domain wall mass profile, φ+ is 
normalizable    massless chiral edge state

RH

<latexit sha1_base64="G1IENzOcTSIaILszZAjJPrhysXU=">AAACSnicdZDPattAEMZXbtqk7j+nOfayxBRSCkZyYzmXQkgJ9OhAnAQsIUbrkb1kVxK7o1Aj/ER9lV56bPsOPeQWcukqcSAt6cDCx++bYXa+tFTSku//8FqP1h4/Wd942n72/MXLV53N1ye2qIzAsShUYc5SsKhkjmOSpPCsNAg6VXiann9q/NMLNFYW+TEtSow1zHKZSQHkUNI5jBRmNImsAjvHaR2VYEiCWvL3PJqB1pAM7lgycFDvfEkG7yIjZ3OKo5GV/CP3k07X7/n+MAxC7kR/GPh7jQj7ww8BD5zVVJetapR0fkfTQlQacxJus50Efklx3ewRCpftqLJYgjiHGU6czEGjjeubc5f8rSNTnhXGvZz4Db0/UYO2dqFT16mB5vZfr4EPeqsQHvImFWV7cS3zsiLMxe0nskpxKniTK59Kg4LUwgkQRro7uJiDAUEu/bYL6C4F/n9x0u8FYS882u3uH6yi2mBv2DbbYQEbsn32mY3YmAn2lX1nP9kv75t36V1517etLW81s8X+qtbaH6fAsmY=</latexit>⇥
/@ + �5@5 +m(x5)

⇤
 = 0

<latexit sha1_base64="nLNhPaymvhWcQsw/5ehfuwbpNuk=">AAACInicbVDLSsNAFJ3UV62vqEsRBotQNyXxkboRim5cVrAPaEKYTCbN0MmDmYlYQlf+ihu3+hfuxJXgN/gNTh+C2h64cO4598K9x0sZFdIwPrTCwuLS8kpxtbS2vrG5pW/vtESScUyaOGEJ73hIEEZj0pRUMtJJOUGRx0jb61+N/PYd4YIm8a0cpMSJUC+mAcVIKsnV9+2GoPAC2mlIXTuNKvfu2RG08aRz9bJRNcaAitSsE8uC5o/yQ8pgioarf9l+grOIxBIzJETXNFLp5IhLihkZluxMkBThPuqRrqIxiohw8vEbQ3ioFB8GCVcVSzhWf2/kKBJiEHlqMkIyFP+9kTjXE+qUkPjzvG4mg3Mnp3GaSRLjyRFBxqBM4Cgv6FNOsGQDRRDmVP0BcYg4wlKlWlIBzcQxS1rHVdOqWjen5frlNKoi2AMHoAJMUAN1cA0aoAkweABP4Bm8aI/aq/amvU9GC9p0Zxf8gfb5DSfgozk=</latexit>

 = �±(x5)�±
<latexit sha1_base64="O7QoNq5Zo11rgIOIzL6kScYQaiU=">AAACI3icbVDLSsNAFJ3UV62vqEtBBovgqiSi1Y1QdOOygn1AE8JkMmmGziRhZiKU0J2/4sat/oU7cePCX/AbnLYRtO2BGc4951649/gpo1JZ1qdRWlpeWV0rr1c2Nre2d8zdvbZMMoFJCycsEV0fScJoTFqKKka6qSCI+4x0/MHN2O88ECFpEt+rYUpcjvoxDSlGSkueeej0EefIO3dwRD0n5fAK6v+38syqVbMmgPPELkgVFGh65rcTJDjjJFaYISl7tpUqN0dCUczIqOJkkqQID1Cf9DSNESfSzSd3jOCxVgIYJkK/WMGJ+nciR1zKIfd1J0cqkrPeWFzoSb1KRIJFXi9T4aWb0zjNFInxdIkwY1AlcBwYDKggWLGhJggLqu+AOEICYaVjreiA7Nk45kn7tGbXa/W7s2rjuoiqDA7AETgBNrgADXALmqAFMHgEz+AFvBpPxpvxbnxMW0tGMbMP/sH4+gECMKRA</latexit>

�5�± = ±�±
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Why does a Dirac equation have a massless chiral edge state?

• A QFT with a free massive Dirac fermion in odd spacetime dimension 
can be in two different topological phases depending on the sign of the 
mass…	

•…so a domain wall is a boundary between two topological phases…	

•…the only way to connect two topological phases is for the theory to go 
gapless at the interface

Answer from condensed matter physics:
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What is a topological phase?

Toy example:  topological insulator in 0+1 dimensions — quantum mechanics with a gap	
 

<latexit sha1_base64="cW6Qco2wEB/5p4WEHIZHxUgTds4="></latexit>

H(s) = E(s) , |E(s)| > �

Define topological quantum number:  ν = # of negative energy states.	
  	
Theories with different parameter s are then topologically equivalent.	
   	
For the topology to change, e.g. # negative energy states, theory has to go gapless.
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What is topologically quantized in a QFT of massive Dirac fermions?

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator.  When the theory is regulated, this is a winding 
number for the map S-1(p) from Sd (momentum space) to Sd = SO(d+1)/SO(d)

<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>

✏µ1...µd

Z
ddp

(2⇡)d
Tr S(p)

@S�1(p)

@pµ1

· · ·S(p)@S
�1(p)

@pµd
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( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 

220 

In the Integer Quantum Hall Effect it is the Hall conductivity

The QFT analog is the coefficient of the Chern-Simons term 
obtained by integrating out the massive fermion in a background 
gauge field.

<latexit sha1_base64="vPvB2flDC1qZE11gAR3RoKv0TIs="></latexit>

✏abc...TrAa@bAc . . .
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Remarkable fact:  	

Since the topology is in momentum/spin space, topological phases and massless 
edge states appear at domain wall boundaries on an infinite spacetime lattice

E.g. Wilson fermions (DBK 1992; K. Jansen, M. Schmaltz 1993; M. Golterman, K. Jansen, DBK, 1993):
<latexit sha1_base64="sWnWczfC/FCOaEuVxl0DljbIapE=">AAACP3icbVBNS8NAEN34bf2qevSyWARBKImIiiCIevAiKFgVuqVMtpN26W4SdjdCCfkv/hUvXvXqL/AmXr25qT349WDg8d4MM/PCVApjff/FGxufmJyanpmtzM0vLC5Vl1euTZJpjg2eyETfhmBQihgbVliJt6lGUKHEm7B/Uvo3d6iNSOIrO0ixpaAbi0hwsE5qVw9yxkHS0+KQdUEpaDOVUZaCtsLJW/TcFYs08FwX+XbBTlFaoIzrSqVdrfl1fwj6lwQjUiMjXLSrb6yT8ExhbLkEY5qBn9pWXu7iEosKywymwPvQxaajMSg0rXz4Y0E3nNKhUaJdxZYO1e8TOShjBip0nQpsz/z2SvFfz7hTetj5z2tmNtpv5SJOM4sx/zoiyiS1CS3DpB2hkVs5cAS4Fu4Pynvg0rIu8jKg4Hccf8n1dj3Yre9e7tSOjkdRzZA1sk42SUD2yBE5IxekQTi5J4/kiTx7D96r9+a9f7WOeaOZVfID3scnRLWuQw==</latexit>

D = �µ@ +M +
r

2
�

1

I. SUPPLEMENTAL MATERIAL FOR “WEYL FERMIONS ON A FINITE LATTICE”

We provide here a brief account of those details of the lattice calculations employed in our paper

which were deemed unremarkable enough to leave out of the text.

We use the term “square lattice” to refer to a conventional lattice whose fundamental cell is a

square; this is the only sort of lattice considered in this paper. By a lattice “cut into a square” or

“cut into a disc” we are describing the boundaries of the lattice. In the former case we describe a

lattice with L sites in each direction, with various possible boundary conditions. In the latter case

what we do operationally is first define a projection operator PR with the property

PRÂ(x) =

�
0 x Ø R

Â(x) x < R ,
(1)

and then we define the Hamiltonian on the disc to be

Hdisc = PRHL◊LPR , (2)

where HL◊L is the Wilson fermion Hamiltonian on an L ◊ L square lattice and R < L/2. We

then computed the eigensystem for Hdisc, and confirmed that all eigenvectors with exactly zero

eigenvalues corresponded to states outside the disc. We discarded the corresponding eigenvectors,

retaining those with nonzero eigenvalue to span our Hilbert space. For Figs. 2,3 we used L = 70
and R = 34. The resulting lattice is shown in Fig. ??.

The derivatives in eq. (1) are defined to be:

ˆµÂ(x) =
Â(x + aµ̂)- Â(x - aµ̂)

2a
,

∆Â(x) =
Â(x + aµ̂)- 2Â(x) + Â(x - aµ̂)

a2 , (3)

FIG. 1. The lattice cut into an approximate disc used for the calculation of Figures 2,3 in our paper with
L = 70, R = 34. The red points are those on the L ◊ L lattice that were excluded, while the black ones
were kept.

<latexit sha1_base64="Uf5Tr5o4wuVumS69jY92nl28qak="></latexit>

D̃(p) = M +
X

µ

h
i sin pµ�µ +

r

2
(1� cos pµ)

i

Nontrivial topological phases for 
<latexit sha1_base64="HHmzWPOlgcF7y5/xXVjgrvNoI6Q=">AAACGnicbVDLSsNAFJ3UV62vqLhyM1gEVyUptVZwUXTjRqhgH9CGMpnctEMnD2YmQgn5Ezdu9S/ciVs3/oTf4PSx0NYDA+eecy+cOW7MmVSW9WXkVlbX1jfym4Wt7Z3dPXP/oCWjRFBo0ohHouMSCZyF0FRMcejEAkjgcmi7o5uJ334EIVkUPqhxDE5ABiHzGSVKS33zyMJXuOcLQtO7LBUZ1mPZ65tFq2TVLsvnFazJFNheJEU0R6Nvfve8iCYBhIpyImXXtmLlpEQoRjlkhV4iISZ0RAbQ1TQkAUgnncbP8KlWPOxHQr9Q4an6+yIlgZTjwNWbAVFDuehNxH89qaMMwfvP6ybKrzkpC+NEQUhnIfyEYxXhSU/YYwKo4mNNCBVM/wPTIdE9Kd1mQRe0VMcyaZVLdrVUva8U69fzqvLoGJ2gM2SjC1RHt6iBmoiiFD2jF/RqPBlvxrvxMVvNGfObQ/QHxucPRfqfjw==</latexit>

0 <
M

r
< 2d with phase boundaries at 
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —  
where to sit for chiral DWFs

m/r

(gauge coupling)

(ratio of mass to Wilson coupling)
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periodic BC

open BC (ψ=0) (Y. Shamir, 1993)

RH Weyl

LH Weyl

Obtain almost massless RH & LH Weyl 

fermions… mass  
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Won’t there be doubled copies of 

fermions on each wall?
RH WeylRH Weyl

LH Weyl-π π
p

SLAC

-π π
p

Naive

-π -
π

2

π

2
π

p

E

RHLH
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No!  thanks to Wilson term, profile 

of zeromode 

At critical |pcrit| < π,  Mef changes sign, state delocalizes
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

What has been gained??  Wanted:

☜ locality
☜ correct continuum limit
☜ no doublers
☜ exact chiral symmetry (Γ = γ5)

With exponentially light Dirac fermion, #4 is violated.	

Any advantage of domain wall fermions over Wilson fermions?

Yes… 
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Domain fermions have the attractive feature of being topological and 
“knowing” about anomalies

Proposals to use them for evading Nielsen-Ninomiya theorem and constructing 
a lattice chiral gauge theory:

•Ginsparg-Wilson approach (Lüscher):  use GW fermions (Abelian chiral gauge 
theories constructed this way, but not non-Abelian).  Sacrifices NN #4 (D anti-
commuting with γ5 … involves O(a) corrections)	

•Symmetric mass generation (Eichten, Preskill, Wen, Cenke, You, Wang…): 
invoke many-body physics to gap unwanted mirror fermions when anomalies 
cancel	

•Proposal here: use domain wall fermion with single connected boundary 
between topological phases to regulate chiral gauge theory.
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Consider Dirac fermion in d+1 continuum dimensions:  	

Md-1 x R2 with coordinates

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

{      , x, y}={      , r, θ}
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DR is the closed disc of radius R, and the boundary of
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1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].
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is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
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FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have
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while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
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†
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Shouldn’t this have a single Weyl fermion edge state?  	

Which must be exactly massless?	

Which can be realized with Wilson fermions on a lattice?

Edge states on manifold with a single boundary:
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Why there can’t be a chiral edge state: reason #1

m
-M

m

-M

RH LH

Stretch

…looks like wall/anti-wall system with finite size

…expect RH + LH modes with exponentially 	
small chiral symmetry violating mass
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Why there can’t be a chiral edge state:  reason #2

• If there is an exact chiral edge state, then there must be a solution that is 
independent of angle (zero momentum) which is an exact zero-mode of the higher 
dimension Dirac operator on the disc	

• Zeromode solutions are easy to solve for! 😀	

• And it is easy to show that there isn’t a zeromode for the Dirac operator on disc! 😩 

zero 
mode ⇒ No zero 

momentum edge 
state
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Why there can’t be a chiral edge state:  reason #3

• Since topological phases exist with Wilson fermions on a lattice, we should be 
able to easily construct disc edge states on a lattice if they exist in the 
continuum! 😀	

• …but the Nielsen Ninomiya theorem says that we on a lattice we must have an 
analytic, periodic dispersion relation which cannot cross zero an odd number 
of times (eg, once) 😩
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Weyl ?!
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Think less, calculate more
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Solve the Dirac equation with this mass profile  	
(DB Kaplan: Phys. Rev. Lett. 132 (2024) 141603, arXiv:2312.01494)
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Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)
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Furthermore, since
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A convenient basis:

•r plays the role of x5	

•γr plays the role of γ5 
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dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

dim=d-2 dim=2
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Find:

•There is an exact Weyl edge mode circulating the disc in only one direction	

• Its chiral symmetry is exact: part of the exact U(1) fermion number symmetry of the 
higher dimension theory	

•The total angular momentum  coordinate (-j/R) plays the role of linear momentum 
around the disc edge  

-j/R ~ momentum in boundary world

3

Putting these two results together, we get that the ac-
tion can be rewritten as the sum of an infinite tower of
fermions propagating on M

d-1:

S =

Z
dx‹

X

n

‰̄n

1
~≈ · ~̂‹ + µn

2
‰n . (16)

The unnormalized solutions to eq. (5) for the boundary
modes on the disc (r Æ R) in the M ! 1 limit are given
by

fj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

-e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b ,

bj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b , (17)

where I‹(z) is a modified Bessel function and

Ÿj =
Ò

m2 - |µj |2 (18)

subject to the implicit eigenvalue condition

µj = m - Ÿj
I|j-1/2|(ŸjR)

I|j+1/2|(ŸjR)
. (19)

In the limit M ! 1 one finds that the f and b solutions
obey chiral boundary conditions at the edge of the disc,

1+ “r

2 fj(R) =
1- “r

2 bj(R) = 0 , (20)

with “r playing the role of “5. in addition to the surface
mode solutions there are less interesting bulk excitations
labeled by a radial excitation quantum number as well as
j.

The eigenvalue equation eq. (19) can be solved explic-
itly in an expansion in inverse powers of mR, with the
result

µj = -
j

R

5
1+ 1

2mR
+

1
2m2R2 +

3
4m3R3 +

3
2m4R4

+
15

4m5R5

6

+
j
3

R

5
1

4m4R4 +
3

2m5R5

6
+ O

!
(mR)-6"

, (21)

which is valid for either sign of j.
To interpret the boundary mode action we found in

eq. (16) with the above expression for µj it is useful to
consider the Dirac operator in d-dimensions in a chiral
basis for the “-matrices:

~“‹ = ‡1 ¢ ~≈ ,

“Î = ‡2 ¢ 1 ,

“‰ = ‡3 ¢ 1 , (22)

so that the Dirac operator takes the form

/̂ =

A
0 ~≈ · ~̂‹ - iˆÎ

~≈ · ~̂‹ + iˆÎ 0

B
(23)

where ~̂‹ is the gradient in the (d - 1) dimensions and
ˆÎ = ˆ/ˆxd. By Fourier transforming with respect to xd

this becomes

/̂ =

A
0 ~≈ · ~̂‹ + pÎ

~≈ · ~̂‹ - pÎ 0

B
. (24)

Finally, compactifying the d
th dimension to a circle of

radius R renders pÎ discrete, pÎ ! j/R, where j takes
integer values for periodic boundary conditions, and half
integer values for anti-periodic. The two di�erent blocks
in /̂ correspond to the fermion operators for the two Weyl
fermions of opposite chirality that make up the Dirac
fermion, with ~≈ · ~̂‹ - j

R corresponding to a left-handed
fermion. This looks very much like the fermion operator
for the edge states in the action eq. (16), given the eigen-
values in eq. (21). The corrections in powers of 1/(mR)
are due to the finite, j-dependent extent of the boundary
state wave functions into the bulk a distance O(1/m). To
order 1/(mR)3 they are just renormalizing the value of
R that appears in the j/R expression. At O((mR)-4) a
j
3 contribution appears, corresponding to an irrelevant

3-derivative contribution to the kinetic term of the Weyl
fermion, which does not violate chirality. What is in-
teresting is that even though I solved for eigenfunctions
that are single-valued in ◊, the result is a chiral fermion
at the boundary with a spectrum reflecting anti-periodic
boundary conditions.

While the j
3 term corresponds to an irrelevant opera-

tor, its appearance suggests that the dispersion relation
could become nonanalytic in j for j & mR. Indeed, that
appears to be the case: a graphical solution of eq. (19)
shows two eigenvalues merging and going into the com-
plex plane for j roughly equal to mR.

The result that an exactly chiral mode exists on the d

dimensional boundary of a finite d + 1 dimensional man-
ifold may seem counter-intuitive. If one were to elon-
gate the disc, the system would look similar to the tra-
ditional wall/anti-wall system which supports a right-
handed edge state on one side, a left-handed one on the
other, and an exponentially small but nonzero mass term
from the overlap of their wave functions. The reason why
we do not find both chiralities for the disc is because while
“5 is a constant matrix for the wall/anti-wall system, its
analog for the disc, “r, is not – and in fact it changes
sign from one side of the disc to the other, explaining
how modes on opposite sides can have the same chiral-
ity. The exponentially small interaction between the two
modes on opposite sides of the finite disc can be seen
by evaluating the eigenvalue equation eq. (19) at j = 0
and finding µ ⇠ exp-2mR; in this case, however, such
an interaction does not flip chirality, but instead repre-
sents a nonlocality from the d-dimensional perspective
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Putting these two results together, we get that the ac-
tion can be rewritten as the sum of an infinite tower of
fermions propagating on M

d-1:

S =

Z
dx‹

X

n

‰̄n

1
~≈ · ~̂‹ + µn

2
‰n . (16)

The unnormalized solutions to eq. (5) for the boundary
modes on the disc (r Æ R) in the M ! 1 limit are given
by

fj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

-e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b ,

bj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b , (17)

where I‹(z) is a modified Bessel function and

Ÿj =
Ò

m2 - |µj |2 (18)

subject to the implicit eigenvalue condition

µj = m - Ÿj
I|j-1/2|(ŸjR)

I|j+1/2|(ŸjR)
. (19)

In the limit M ! 1 one finds that the f and b solutions
obey chiral boundary conditions at the edge of the disc,

1+ “r

2 fj(R) =
1- “r

2 bj(R) = 0 , (20)

with “r playing the role of “5. in addition to the surface
mode solutions there are less interesting bulk excitations
labeled by a radial excitation quantum number as well as
j.

The eigenvalue equation eq. (19) can be solved explic-
itly in an expansion in inverse powers of mR, with the
result

µj = -
j

R

5
1+ 1

2mR
+

1
2m2R2 +

3
4m3R3 +

3
2m4R4

+
15

4m5R5

6

+
j
3

R

5
1

4m4R4 +
3

2m5R5

6
+ O
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(mR)-6"

, (21)

which is valid for either sign of j.
To interpret the boundary mode action we found in

eq. (16) with the above expression for µj it is useful to
consider the Dirac operator in d-dimensions in a chiral
basis for the “-matrices:

~“‹ = ‡1 ¢ ~≈ ,

“Î = ‡2 ¢ 1 ,

“‰ = ‡3 ¢ 1 , (22)

so that the Dirac operator takes the form

/̂ =

A
0 ~≈ · ~̂‹ - iˆÎ

~≈ · ~̂‹ + iˆÎ 0

B
(23)

where ~̂‹ is the gradient in the (d - 1) dimensions and
ˆÎ = ˆ/ˆxd. By Fourier transforming with respect to xd

this becomes

/̂ =

A
0 ~≈ · ~̂‹ + pÎ

~≈ · ~̂‹ - pÎ 0

B
. (24)

Finally, compactifying the d
th dimension to a circle of

radius R renders pÎ discrete, pÎ ! j/R, where j takes
integer values for periodic boundary conditions, and half
integer values for anti-periodic. The two di�erent blocks
in /̂ correspond to the fermion operators for the two Weyl
fermions of opposite chirality that make up the Dirac
fermion, with ~≈ · ~̂‹ - j

R corresponding to a left-handed
fermion. This looks very much like the fermion operator
for the edge states in the action eq. (16), given the eigen-
values in eq. (21). The corrections in powers of 1/(mR)
are due to the finite, j-dependent extent of the boundary
state wave functions into the bulk a distance O(1/m). To
order 1/(mR)3 they are just renormalizing the value of
R that appears in the j/R expression. At O((mR)-4) a
j
3 contribution appears, corresponding to an irrelevant

3-derivative contribution to the kinetic term of the Weyl
fermion, which does not violate chirality. What is in-
teresting is that even though I solved for eigenfunctions
that are single-valued in ◊, the result is a chiral fermion
at the boundary with a spectrum reflecting anti-periodic
boundary conditions.

While the j
3 term corresponds to an irrelevant opera-

tor, its appearance suggests that the dispersion relation
could become nonanalytic in j for j & mR. Indeed, that
appears to be the case: a graphical solution of eq. (19)
shows two eigenvalues merging and going into the com-
plex plane for j roughly equal to mR.

The result that an exactly chiral mode exists on the d

dimensional boundary of a finite d + 1 dimensional man-
ifold may seem counter-intuitive. If one were to elon-
gate the disc, the system would look similar to the tra-
ditional wall/anti-wall system which supports a right-
handed edge state on one side, a left-handed one on the
other, and an exponentially small but nonzero mass term
from the overlap of their wave functions. The reason why
we do not find both chiralities for the disc is because while
“5 is a constant matrix for the wall/anti-wall system, its
analog for the disc, “r, is not – and in fact it changes
sign from one side of the disc to the other, explaining
how modes on opposite sides can have the same chiral-
ity. The exponentially small interaction between the two
modes on opposite sides of the finite disc can be seen
by evaluating the eigenvalue equation eq. (19) at j = 0
and finding µ ⇠ exp-2mR; in this case, however, such
an interaction does not flip chirality, but instead repre-
sents a nonlocality from the d-dimensional perspective

Precisely: Euclidian action of edge mode is

<latexit sha1_base64="mWVxWdqs0X8ipnyCgYlfWMfYOqw="></latexit>

In d=1+1, ~� = 1
<latexit sha1_base64="v88cTxflVenbFufNEqPtYwsaZ9U=">AAACL3icdVBNSxxBEO3RmOiqcWOOXhoXIURZZlbZ9SJIcjC5KWRV2FmWmp7a3cbunqG7RlyG/Q/+FS+5Jv9CvEiuueQ3pPcjEIN5UPDqvSqoekmupKMwfAgWFl8svXy1vFJZXVt/vVF9s3nussIKbItMZfYyAYdKGmyTJIWXuUXQicKL5OrjxL+4RutkZr7QKMeuhoGRfSmAvNSrvo8Jb6j8bHh6tL8b7fExj69R8PgEtAZ+NGucHGjoVWthvXUQRftNHtbDKTxphY1Go8WjuVJjc5z2qr/iNBOFRkNCgXOdKMypW4IlKRSOK3HhMAdxBQPseGpAo+uW05/GfMcrKe9n1pchPlX/3ihBOzfSiZ/UQEP3rzcRn/WcP2WI6XNep6D+YbeUJi8IjZgd0S8Up4xPwuOptChIjTwBYaX/g4shWBDkI674gP6kwP9Pzhv1qFlvnh3Ujj/Mo1pmW2ybvWMRa7Fj9omdsjYT7JZ9Zd/Y9+AuuA8egx+z0YVgvvOWPUHw8zd8Q6fy</latexit>

In d=3+1, ~� = ~�

What happened to all those arguments that this shouldn’t be possible?
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m
-M

m

-M

RH LH

Why there can’t be a chiral edge state: reason #1

Stretch

…looks like wall/anti-wall system with finite size

…expect RH + LH modes with exponentially 	
chiral symmetry violating mass
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m

-M

RH LH

γ5

…but the wall/anti-wall system had constant γ5… 

on disc, analog of γ5 for edge states is 

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

which changes sign on opposite side of disc!
RH

Exponentially small interaction is still there, 	
but preserves chirality 100% 	
(= fermion number in higher dimension theory)

…it violates locality though!   👻
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Why there can’t be a chiral edge state:  reason #2

• If there is an exact chiral edge state, then there must be a field that is 
independent of angle (zero momentum) which is an exact zero-mode of the 
higher dimension Dirac operator on the disc	

• Zeromode solutions are easy to solve! 😀	

• And it is easy to show that there isn’t one! 😩 

…but we have seen that momentum about the edge is given by -j/R and j=±1/2, ±3/2…

There is no zero momentum edge state — it behaves as if anti-periodically quantized!	
…and therefore no exact zeromode in Euclidian spacetime.
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Why there can’t be a chiral edge state:  reason #3

• Since topological phases exist with Wilson fermions on a lattice, we should be 
able to easily construct disc edge states on a lattice if they exist in the 
continuum! 😀	

• …but the Nielsen Ninomiya theorem says that on a lattice we must have an 
analytic, periodic dispersion relation which cannot cross zero an odd number 
of times (eg, once) 😩

Let’s look at what happens on a lattice

•  …but we  have already argued that there must be some nonlocality in the 
theory, so perhaps the dispersion is not analytic & periodic and that’s OK?

DB Kaplan, S. Sen:   Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012
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Free Wilson fermions on a 2d spatial lattice: consider 3 different boundary conditions 

• Periodic boundary conditions in x & y

topology = torus, no boundaries

• Mixed: periodic in y + open BC in x

topology = open cylinder, 	
2 disconnected boundaries

• Open boundary conditions in x & y

topology = disc, 	
1 connected boundary

2

tify as the mirror Weyl fermions have a discrete, gapped
spectrum that does not become continuous in the large
volume limit. Instead the discrete spectrum can jump
from from positive to negative energy without crossing
zero like a continuum state. This is how such systems
evade the Nielsen-Ninomiya theorem.

To solve a latticized version of the continuum problem
in Ref. [1] would be daunting because of the complexity of
trying to approximate cylindrical symmetry with a reg-
ular lattice. However, while the approximate cylindrical
symmetry may be required eventually to realize Lorentz
symmetry in the large volume and continuum limits of
an actual simulation of the real world, for the purposes of
examining the fermion spectrum it is not necessary and
we can simply work on a square lattice. As discussed
in Ref. [1], the basic physics in the continuum is this: a
(d + 1)-dimensional manifold (d = 2n) with no bound-
aries is expected to support no massless states; a (d+ 1)-
manifold with two disconnected boundaries is expected
to support a light Dirac fermion (two Weyl fermions of
opposite chirality with exponentially small interactions),
and a (d+1)-manifold with a single boundary should have
a single massless Weyl fermion with exponentially small
nonlocal interactions.

To contrast these three situations we consider a dis-
cretized Hamiltonian on a L ◊ L square lattice in 2 + 1
dimensions making use of Wilson fermions, given by

H = “0D ,

D =
2X

µ=1
“µˆµ + M +

r

2∆ ,

“0 = ‡3 , “1 = ‡1 , “2 = ‡2 . (1)

We will take M = r = 1 in lattice units since for those
values Wilson fermions are known to be in a nontrivial
topological phase [6, 7]. The ˆµ are symmetric lattice
derivatives with µ = 1, 2, and ∆ is the 2d lattice Lapla-
cian.1 We will consider these derivatives with three dif-
ferent possibilities for boundary conditions:

1. Periodic boundary conditions in both variables,
Â(x + L, y) = Â(x, y), Â(x, y + L) = Â(x, y).
This lattice approximates a spatial 2-torus with-
out boundary, and as is well known, the spectrum
is gapped without any continuum low lying modes.

2. Periodic boundary conditions in one direction and
open boundary conditions in the other: Â(x +
L, y) = Â(x, y) and Â(x,0) = Â(x, L+ 1) = 0. This
is the prescription for conventional domain wall
fermions proposed by Shamir [8]. In this case the
lattice approximates the continuum manifold of an
open cylinder with a circle for the boundary at each

1
In d = 2+ 1, “0 equals À in the notation of Ref. [1], so that H is

equivalent to ÀD, and its eigenfunctions and eigenvalues Ê are

analogues of f and µ respectively in that paper.

FIG. 1. The sorted eigenvalues Ên on the y axis versus n
on the x-axis for the free Wilson fermion Hamiltonian with
a = M = r = 1 on a 30 ◊ 30 lattice (1800 eigenvalues),
with a magnified version of the crossing point in the lower
panel. Cyan points are for purely periodic boundary condi-
tions, corresponding to a spatial manifold with no boundary,
and exhibit a gap with no light states. Magenta indicates
mixed periodic and open boundary conditions, as specified
by Shamir [8] for domain wall fermions with the geometry of
an open cylinder, supporting a Weyl fermion on each of its
two S1 surfaces with opposite chiralities, with evident degen-
eracy. The nondegenerate black points are for purely open
boundary conditions, representing the situation described in
Ref. [1]: a manifold with a single boundary (a square, in this
case) supporting a single Weyl fermion.

end. With two disconnected pieces to the bound-
ary, the lattice supports two Weyl fermions with
opposite chirality. They have an interaction van-
ishing exponentially with the length of the cylin-
der, turning them into a very light Dirac fermion
and have no exact chiral symmetry to be naively
gauged. In the large volume limit this mode is de-
scribed by the overlap operator [9–13]. In turn, the
overlap operator solves the Ginsparg-Wilson equa-
tion [14] which clarifies exactly how the mode vio-
lates chiral symmetry, even in the infinite volume
limit, which can be thought of as being due to the
nondecoupling of massive modes in the bulk which
generate a Chern-Simons form, which accounts for
the anomaly [15].

3. Finally we address a manifold with one bound-
ary by applying open boundary conditions in both
directions, Â(0, y) = Â(L + 1, y) = Â(x,0) =
Â(x, L+ 1) = 0. This is the case of interest, and we
will show how it realizes a single Weyl mode in its
spectrum. This mode will not have a simple disper-
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Spectrum of 2d Hamiltonian for 
massive Wilson fermions:	
3 different lattice topologies (BC)
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Work on a lattice disc with 
open BC 	

Weyl edge state? 	
Look at 1+1 dispersion relation

<latexit sha1_base64="QEMWE0OrXulxFdSa3teJEXBGLm4="></latexit>

Hdisc = PR HL⇥L PR

<latexit sha1_base64="4Fh9AideuBIen1FoU/d9FJJUf2U="></latexit>

PR =

(
0 x2 + y2 � R2

1 x2 + y2 < R2

We took L=70, R = 34.

If you want E vs p for the edge 
state, plot E vs J
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Nielsen-Ninomiya would have you believe this is not possible for sensible system
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dimension operators; the former will not contribute to bulk currents when bulk fields obey the equations of motion,
and the latter will be suppressed by powers of the bulk mass m, which we e�ectively take to infinity. At finite bulk
gap m, the ”- and ◊-functions would be smooth functions characterizing the normalized profile of the domain wall
mode and its integral over to r respectively, which would be di�cult to compute, but they become perfectly localized
in the infinite m limit and defined at the boundary by

Z ‘>0

0
”(x) dx = 1 , ◊(x) =

�
1 x > 1
0 x Æ 0

, ”(x) = ˆx◊(x) . (6)

Di�erentiating L with respect to the source J yields the conserved current in the e�ective theory,

jµ =
ˆL

ˆJµ(x)
= ”(R - r)‰̄“µ“5‰ + 6Ÿ◊(R - r)‘µijk¸Tr [FijFk¸] , µ = 1, . . .4

j5 =
ˆL

ˆJ5(x)
= 6Ÿ◊(R - r)‘5µ‹fl‡Tr Fµ‹Ffl‡ , (7)

and conservation of the 5d current ˆiji = 0 yields the anomalous divergence of the boundary contribution to it:

ˆµ‰̄“µ“5‰ = -
1

4fi2 ‘5µ‹fl‡Tr Fµ‹Ffl‡ , Sign and factor of 4? (8)

making use of the value of Ÿ in eq. (2).
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Note: chiral edge states on a 2-sphere boundary were previously discussed in the 	
context of  describing Weyl fermions in a gravitational background:
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Last (important!) piece of the puzzle:  how to gauge?

d+1 theory with Nf flavors has exact U(Nf) global symmetry…can easily gauge a 
subgroup in the continuum or the lattice.  The gauge measure is well defined 
because its a regulated a theory of Dirac fermions

…but want a d-dimensional gauge theory, not d+1…unlike CM systems

Define bulk gauge fields Bµ to be functionals of the boundary values Aµ ;	
integrate only over the Aµ

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.
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but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.

Update boundary field Aµ

Compute bulk field Bµ subject to BC
↩︎↪︎

Compute 5d fermion determinant Δ[B]
↩︎↪︎

Multiply Δ[B] by exp(-S[A])   ☜  [4d YM action]
↩︎↪︎

↩︎
↵

↵

4d boundary fields are quantum; 5d bulk fields are classical subject to quantum BC
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which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.

In general this will give a terribly nonlocal theory:  	

Generate Chern Simons operator in the bulk  which is a function of Bµ and therefore a nonlocal 
functional of the d-dimensional gauge fields Aµ	

…but its coefficient vanishes if edge chiral gauge theory is anomaly-free* 

Conjecture:  this theory will be a local d-dimensional theory in the 
infrared if the chiral gauge theory is anomaly-free

*More precisely:  CS term -> eiπη[A] , includes nonperturbative anomalies  (see Witten, Yonekura)
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Criticisms by Aoki, Fukaya, Kan and by Golterman & Shamir:

Aoki, Fukaya, Kan:  	
When there are nontrivial gauge field configurations on the boundary, there fermion zeromodes 	
on the surface are paired with zeromodes in the bulk interior

Golterman and Shamir:  	
There is an exactly conserved, gauge invariant current for every Weyl fermion on the boundary, 
unlike in target 4d theory

These criticisms are apparently related: bulk zeromodes appear because of conserved U(1)
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Golterman and Shamir:  

χ

χ massless boundary 	
chiral fermion

Ψ
massive bulk 	
Dirac fermion

• For every boundary Weyl fermion, have one 
bulk massive Dirac fermion	

• Exact global U(1) symmetry for each bulk 
fermion with 5d conserved current	

• Can construct exactly conserved 4d currents 
by integrating 5d currents over r	

• Leads to too much symmetry for boundary 
theory…eg, Nf=1 QCD on boundary has exact 
U(1) x U(1) symmetry
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<latexit sha1_base64="etEmW0SGzoJ3lwuAp+TbyOdDd8c=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AR6qbMiFQ3QtGNywr2AZ1hyKSZNjbJDElGLEPd+CtuXCji1r9w59+YabvQ6oGEwzn33uSeMGFUacf5sgoLi0vLK8XV0tr6xuaWvb3TUnEqMWnimMWyEyJFGBWkqalmpJNIgnjISDscXuZ++45IRWNxo0cJ8TnqCxpRjLSRAnsPegmSmiIWeDyFt/lduT86dwK77FSdCeBf4s5IGczQCOxPrxfjlBOhMUNKdV0n0X6WD8eMjEteqkiC8BD1SddQgThRfjbZYAwPjdKDUSzNERpO1J8dGeJKjXhoKjnSAzXv5eJ/XjfV0ZmfUZGkmgg8fShKGdQxzOOAPSoJ1mxkCMKSmr9CPEASYW1CK5kQ3PmV/5LWcdWtVWvXJ+X6xSyOItgHB6ACXHAK6uAKNEATYPAAnsALeLUerWfrzXqflhasWc8u+AXr4xsbpJYJ</latexit>

@µjµ(x) = 0Can show:

<latexit sha1_base64="+IynMmjD9MqU/a4Pbc1eHERzt4w="></latexit>

jµ(x) =

Z
rdr Jµ(x, r) , µ = 1, . . . , 4GS currents:

5d conserved 	
current

Bug or feature ?? Integrate out massive bulk modes, find for 5d conserved current: 

Problem!  E.g., 4d QCD with Nf=1 would have exact U(1)V x U(1)A symmetry 

<latexit sha1_base64="B1rdYgxRrqNq/sXBLO2lQjkOeF8=">AAACLHicbVBdSxtBFJ1V29r0K+pjXy4GIQUbdkvVvhREoRSfVBoVsmG5O3tjhszuDjN3S8OSH+SLf6VQ+lApffV3OIl5sOqBYQ7nnMvMPanRynEYXgULi0tPnj5bft548fLV6zfNldUTV1ZWUleWurRnKTrSqqAuK9Z0Zixhnmo6TUf7U//0O1mnyuIbjw31czwv1EBJZC8lzf2DZKv9Y9O+g88A8QiNwXgTYh4SY/v4vddjMk 5pn623IAUJGdAEviR1KmdXRpOk2Qo74QzwkERz0hJzHCbNX3FWyiqngqVG53pRaLhfo2UlNU0aceXIoBzhOfU8LTAn169ny05gwysZDErrT8EwU+9O1Jg7N85Tn8yRh+6+NxUf83oVDz71a1WYiqmQtw8NKg1cwrQ5yJQlyXrsCUqr/F9BDtGiZN9vw5cQ3V/5ITn50Im2O9tHH1u7e/M6lsVbsS7aIhI7Yld8FYeiK6S4ED/FH3EVXAa/g7/Bv9voQjCfWRP/Ibi+AencpRM=</latexit>

J5(x, r) =  ✓(R� r)✏5bcdeFbcFde

<latexit sha1_base64="kPau4mOg5TTXt+yKnV5H92Y6DEw="></latexit>

Jµ(x, r) = �(R� r)�̄�µDµ�+  ✓(R� r)✏µbcdeFbcFde
<latexit sha1_base64="YSLN5DPQbU3MmRt3ezbsft/h7Uc=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwUUJia9uNUHTjsoJ9QBPKZDJph04yYWZSKKF/4saFIm79E3f+jdM2gooeuHA4517uvcdPGJXKtj+Mwtr6xuZWcbu0s7u3f2AeHnUlTwUmHcwZF30fScJoTDqKKkb6iSAo8hnp+ZObhd+bEiEpj+/VLCFehEYxDSlGSktD03SjFF5Bp+KygCtZqQ3Nsm05dr1Zq0LbspfQpFm1G5dV6ORKGeRoD813N+A4jUisMENSDhw7UV6GhKKYkXnJTSVJEJ6gERloGqOISC9bXj6HZ1oJYMiFrljBpfp9IkORlLPI150RUmP521uIf3mDVIVNL6NxkioS49WiMGVQcbiIAQZUEKzYTBOEBdW3QjxGAmGlwyrpEL4+hf+T7oXl1K36Xa3cus7jKIITcArOgQMaoAVuQRt0AAZT8ACewLORGY/Gi/G6ai0Y+cwx+AHj7RPLppKA</latexit>

µ = 1, . . . , 4

chiral edge state contribution
bulk gauge field	
contribution
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<latexit sha1_base64="etEmW0SGzoJ3lwuAp+TbyOdDd8c=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AR6qbMiFQ3QtGNywr2AZ1hyKSZNjbJDElGLEPd+CtuXCji1r9w59+YabvQ6oGEwzn33uSeMGFUacf5sgoLi0vLK8XV0tr6xuaWvb3TUnEqMWnimMWyEyJFGBWkqalmpJNIgnjISDscXuZ++45IRWNxo0cJ8TnqCxpRjLSRAnsPegmSmiIWeDyFt/lduT86dwK77FSdCeBf4s5IGczQCOxPrxfjlBOhMUNKdV0n0X6WD8eMjEteqkiC8BD1SddQgThRfjbZYAwPjdKDUSzNERpO1J8dGeJKjXhoKjnSAzXv5eJ/XjfV0ZmfUZGkmgg8fShKGdQxzOOAPSoJ1mxkCMKSmr9CPEASYW1CK5kQ3PmV/5LWcdWtVWvXJ+X6xSyOItgHB6ACXHAK6uAKNEATYPAAnsALeLUerWfrzXqflhasWc8u+AXr4xsbpJYJ</latexit>

@µjµ(x) = 0Golterman-Shamir equation

is found to be equivalent to the conventional anomalous Ward identity on the boundary
<latexit sha1_base64="c9Wdq2hqqLQomOq2eOy7UGzRBt0="></latexit>

@µ (�̄�µ�(x)) = �✏↵���F↵�F��(x)

This is a feature, not a bug!  Current conservation in the 5d theory = 4d “anomaly inflow”

However… integrating out bulk modes assumed no light states in interior… 	
What about Aoki-Fukaya-Kan-Golterman-Shamir zeromodes??

<latexit sha1_base64="B1rdYgxRrqNq/sXBLO2lQjkOeF8="></latexit>

J5(x, r) =  ✓(R� r)✏5bcdeFbcFde

<latexit sha1_base64="kPau4mOg5TTXt+yKnV5H92Y6DEw="></latexit>

Jµ(x, r) = �(R� r)�̄�µDµ�+  ✓(R� r)✏µbcdeFbcFde
<latexit sha1_base64="YSLN5DPQbU3MmRt3ezbsft/h7Uc=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwUUJia9uNUHTjsoJ9QBPKZDJph04yYWZSKKF/4saFIm79E3f+jdM2gooeuHA4517uvcdPGJXKtj+Mwtr6xuZWcbu0s7u3f2AeHnUlTwUmHcwZF30fScJoTDqKKkb6iSAo8hnp+ZObhd+bEiEpj+/VLCFehEYxDSlGSktD03SjFF5Bp+KygCtZqQ3Nsm05dr1Zq0LbspfQpFm1G5dV6ORKGeRoD813N+A4jUisMENSDhw7UV6GhKKYkXnJTSVJEJ6gERloGqOISC9bXj6HZ1oJYMiFrljBpfp9IkORlLPI150RUmP521uIf3mDVIVNL6NxkioS49WiMGVQcbiIAQZUEKzYTBOEBdW3QjxGAmGlwyrpEL4+hf+T7oXl1K36Xa3cus7jKIITcArOgQMaoAVuQRt0AAZT8ACewLORGY/Gi/G6ai0Y+cwx+AHj7RPLppKA</latexit>

µ = 1, . . . , 4

chiral edge state contribution
bulk gauge field	
contribution
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χ

*

fermion zeromode	
in bulk

Instanton in 	
boundary theory

fermion 
zeromode	
on boundary *

Singular gauge 	
field in interior

Integrating out bulk modes is not justified when boundary gauge field has nontrivial 
topology… Aoki-Fukaya-Kan-Golterman-Shamir criticism is a bug then, not a feature
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It seems that expected theory cannot be achieved for nontrivial 
topology in boundary gauge field (e.g. instantons)

Very weird: whenever there are instantons, the 4d world becomes aware of mirror zeromodes 
lurking in the 5th dimensions?! …

For regulating the SM though, how about if we restrict to trivial topology? 	
(Eg, constrain number of instantons = number of anti-instantons)	
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χ

Instanton in 	
boundary theory

fermion 
zeromode	
on boundary nonsingular gauge 	

field in interior, 	
no bulk zeromodes

Aoki-Fukaya-Kan-Golterman-Shamir problems seem to go away if the topology of 
boundary theory is trivial, Q=0. 	
(# instantons = # anti-instantons, imposed on boundary theory)

*
*Anti-Instanton in 	

boundary theory

fermion 
zeromode	
on boundary
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For regulating the SM though, how about if we restrict to trivial topology? 	
(Eg, constrain number of instantons = number of anti-instantons)	

Has been shown that Q=0 QCD is equivalent to integrating over θ… 	
➙ yields θ=0 QCD + 1/volume corrections	

Integrating over θ is equivalent to having an axion field…and then throwing away all of it except the 
p=0 mode	
• Solves strong CP problem	
• No axion particle	
• Saturates Goldstone theorem for spontaneously broken exact U(1)	
• Work in progress (DBK & S Sen)

Finite volume QCD at fixed topological charge  
Sinya Aoki, Hidenori Fukaya, Shoji Hashimoto, Tetsuya Onogi,  
PHYS. REV. D76, 054508 (2007)

Does this mean one can only regulate SM with θ=0??
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An excitingly simple picture is emerging:  	
Chiral gauge theory as a boundary theory, without requiring new dynamics

Does it work?  Too early to tell… 	
….but the Nielsen-Ninomiya theorem is no longer the obstacle.

Conclusions

Construction “understands” anomalies:  local 4D theory emerges only if gauge 
anomalies cancel (discrete and perturbative)

  It appears that the theory is not purely 4d unless boundary gauge field topology 
is trivial (what does theory with nontrivial topology look like?? The η’ portal 🤔)	

  If gauge topology is trivial and anomalies cancel, it appears that chiral gauge 
theory can be regulated, giving θ=0 theory in large volume	

  Could it be that 4d chiral gauge theory can only be regulated if anomalies 
cancel and θ=0? Is there a BSM scenario that realizes this physics?


