# Chiral gauge theory on the lattice (and questions for the continuum)



DB Kaplan: Phys. Rev. Lett. 132 (2024) 141603, arXiv:2312.01494 DB Kaplan, S. Sen: Phys. Rev. Lett. 132 (2024) 141604, arXiv:2312.04012 DB Kaplan, S. Sen: in progress



INSTITUTE for NUCLEAR THEORY





- Chiral gauge theory and the Nielsen-Ninomiya theorem
- Edge states and topological phases
- A single connected phase boundary: a disc
- How to see free Weyl fermions on the lattice
- Gauging the theory
- A puzzle, and implications for the continuum?



Outline of this talk:

## Chiral gauge theory, Nielsen-Ninomiya theorem

gauge symmetry (i.e. the Standard Model)

A nonperturbative regulator does not exist for such theories

- What does it mean to have a theory one cannot compute? Is it actually well-defined?
- How can we calculate nonperturbative physics without one? (E.g. EW baryon violation in the early universe)
- Might a definition on the computer imply the need for new physics we do not expect in our continuum definition?

and a chiral gauge symmetry that forbids masses.



- A chiral gauge theory is one where a fermion mass term necessarily violates the

Fundamental tension between the need for a UV mass scale to tame divergences,

### **Nielsen-Ninomiya:**

1.  $\tilde{D}(\mathbf{p})$  is a periodic, analytic function of  $p_{\mu}$ ; 2.  $D(\mathbf{p}) \propto \gamma_{\mu} p_{\mu}$  for  $a|p_{\mu}| \ll 1$ ; 3.  $\tilde{D}(\mathbf{p})$  invertible everywhere except  $p_{\mu} = 0$ ; 4.  $\{\Gamma, \tilde{D}(\mathbf{p})\} = 0.$ 



# Examples (a=1):

# "SLAC derivative" violates #1

Naive lattice fermions violate #3

# Wilson fermions violate #4



$$\widetilde{D}(p) = \sum_{\mu}^{\mu} i\gamma_{\mu} p_{\mu}$$
$$\widetilde{D}(p) = \sum_{\mu}^{\mu} i\gamma_{\mu} \sin p_{\mu}$$
$$\widetilde{D}(p) = \sum_{\mu}^{\mu} i\gamma_{\mu} \sin p_{\mu} + M + \frac{r}{2} \sum_{\mu} (1 - \cos \theta)$$



Heuristic reasons behind NN theorem:

fermion, how could **anomalies** ever arise in the continuum?

\* If a chiral Dirac fermion existed, one could consider a lattice Weyl fermion using  $P_{\pm}=(1 \pm \Gamma)/2$  projectors...

...but how can a continuous periodic function  $P_D(p)P_+$  cross p=0 only once?





- \* If the lattice had exact chiral symmetry and its continuum limit gave a massless Dirac

## NN theorem tells us that there should be mirror fermions: incompatible with chiral gauge theory

### Attempts to get rid of mirror fermions on the lattice:



1. Decouple them by breaking gauge symmetry and giving them a mass; restore gauge symmetry in continuum limit Golterman, Shamir



3. Eliminate mirror fermions by sacrificing **locality** (this work)



INSTITUTE for NUCLEAR THEORY



2. Gap the system and give masses to the mirrors without breaking gauge symmetry (many-body effects) Eichten, Preskill X.G. Wen



Chiral edge states appear naturally Analog for Dirac fermions with domain wall mass in the Integer Quantum Hall Effect: [Jackiw & Rebbi]:



With this domain wall mass profile,  $\phi_+$  is normalizable 
massless chiral edge state



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

$$\left[\partial + \gamma_5 \partial_5 + m(x_5)\right] \Psi = 0$$

Has solutions:  $\Psi = \phi_{\pm}(x_5)\chi_{\pm}$ 





Why does a Dirac equation have a massless chiral edge state? Answer from condensed matter physics:

- A QFT with a free massive Dirac fermion in odd spacetime dimension mass...
- ...so a domain wall is a boundary between two topological phases...
- gapless at the interface



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

can be in two different topological phases depending on the sign of the

• ...the only way to connect two topological phases is for the theory to go

What is a topological phase?

Toy example: topological insulator in 0+1 dimensions — quantum mechanics with a gap

$$H(s)\psi = E(s)\psi , \quad |E(s)| >$$

Define topological quantum number: v = # of negative energy states.

Theories with different parameter s are then topologically equivalent.

For the topology to change, e.g. # negative energy states, theory has to go gapless.





### What is topologically quantized in a QFT of massive Dirac fermions?



gauge field.

 $\kappa\epsilon$ 

Using Ward identity, Chern-Simons coefficient in d = 2n+1 is proportional to



number for the map  $S^{-1}(p)$  from  $S^{d}$  (momentum space) to  $S^{d} = SO(d+1)/SO(d)$ 



D. B. Kaplan ~ Chíral gauge theory on the lattice ~ YITP 11-11-24

- In the Integer Quantum Hall Effect it is the Hall conductivity
- The QFT analog is the coefficient of the Chern-Simons term obtained by integrating out the massive fermion in a background

$$\epsilon_{abc...} \operatorname{Tr} A_a \partial_b A_c \ldots$$

$$\frac{d^d p}{(2\pi)^d} \operatorname{Tr} S(p) \frac{\partial S^{-1}(p)}{\partial p_{\mu_1}} \cdots S(p) \frac{\partial S^{-1}(p)}{\partial p_{\mu_d}}$$

where S(p) is the fermion propagator. When the theory is regulated, this is a winding





 $\epsilon_{\mu_1...\mu_d} \int \frac{d}{(2)}$ 

Remarkable fact:

E.g. Wilson fermions (DBK 1992; K. Jansen, M. Schmaltz 1993; M. Golterman, K. Jansen, DBK, 1993):

Nontrivial topological phases for  $0 < \frac{1}{m} < 2d$  with phase boundaries at



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

$$\frac{d^d p}{2\pi)^d} \operatorname{Tr} S(p) \frac{\partial S^{-1}(p)}{\partial p_{\mu_1}} \cdots S(p) \frac{\partial S^{-1}(p)}{\partial p_{\mu_d}}$$

### Since the topology is in **momentum/spin space**, topological phases and massless edge states appear at domain wall boundaries on an infinite spacetime lattice

$$\frac{M}{r} = 0, 2, \dots,$$



### Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime





### periodic BC



# Obtain *almost* massless RH & LH Weyl fermions... mass $\propto e^{-2ML}$





# Won't there be doubled copies of fermions on each wall?



No! thanks to Wilson term, profile of zeromode  $\propto e^{-M_{\rm eff} x_5}$ 

$$M_{\text{eff}} \simeq M + r \sum_{i=1}^{a} (\cos p_i - 1)$$

At critical  $|p_{crit}| < \pi$ ,  $M_{eff}$  changes sign, state **delocalizes** 











### What has been gained?? Wanted:

- 1.  $\tilde{D}(\mathbf{p})$  is a periodic, analytic function of  $p_{\mu}$ ;
- 2.  $D(\mathbf{p}) \propto \gamma_{\mu} p_{\mu}$  for  $a|p_{\mu}| \ll 1$ ;
- 3.  $\tilde{D}(\mathbf{p})$  invertible everywhere except  $p_{\mu} = 0$ ; 4.  $\{\tilde{r}, \tilde{r}(\mathbf{j})\} = 0.$

With exponentially light Dirac fermion, #4 is violated. Any advantage of domain wall fermions over Wilson fermions?

Yes... 
$$\left\{ \tilde{D}, \Gamma \right\} = \tilde{D}\Gamma\tilde{D}$$
 Obeys "Ginspa

 reproduces the correct chiral anomalies but still enforces multiplicative mass renormalization



### **Iocality**

**correct continuum limit** 

no doublers

Some exact chiral symmetry ( $\Gamma = \gamma_5$ )

rg-Wilson" equation



Domain fermions have the attractive feature of being topological and "knowing" about anomalies

Proposals to use them for evading Nielsen-Ninomiya theorem and constructing a lattice chiral gauge theory:

- commuting with  $\gamma_5$  ... involves O(a) corrections)
- cancel
- between topological phases to regulate chiral gauge theory.



• Ginsparg-Wilson approach (Lüscher): use GW fermions (Abelian chiral gauge theories constructed this way, but not non-Abelian). Sacrifices NN #4 (D anti-

 Symmetric mass generation (Eichten, Preskill, Wen, Cenke, You, Wang...): invoke many-body physics to gap unwanted mirror fermions when anomalies

Proposal here: use domain wall fermion with single connected boundary

Edge states on manifold with a **single** boundary:

Consider Dirac fermion in d+1 *continuum* dimensions:  $M^{d-1} \times R^2$  with coordinates  $\{X_{\perp}, x, y\} = \{X_{\perp}, r, \theta\}$ 

# $-M \rightarrow -\infty$

Which must be exactly massless?





- Shouldn't this have a single Weyl fermion edge state?
- Which can be realized with Wilson fermions on a lattice?



### ...looks like wall/anti-wall system with finite size

...expect RH + LH modes with exponentially small chiral symmetry violating mass





- If there is an exact chiral edge state, then there must be a solution that is dimension Dirac operator on the disc
- Zeromode solutions are easy to solve for!
- And it is easy to show that there isn't a zeromode for the Dirac operator on disc!





D. B. Kaplan ~ Chíral gauge theory on the lattice ~ YITP 11-11-24

# independent of angle (zero momentum) which is an exact zero-mode of the higher



### NO ZERO MOMENTUM EDGE **STATE**

- Since topological phases exist with Wilson fermions on a lattice, we should be able to easily construct disc edge states on a lattice if they exist in the continuum! 😀
- ...but the Nielsen Ninomiya theorem says that we on a lattice we must have an analytic, periodic dispersion relation which cannot cross zero an odd number of times (eg, once) 😂





D. B. Kaplan ~ Chíral gauge theory on the lattice ~ YITP 11-11-24

-π



### Think less, calculate more



# Solve the Dirac equation with this mass profile (DB Kaplan: Phys. Rev. Lett. 132 (2024) 141603, arXiv:2312.01494)



$$S = \int d\mathbf{x}_{\perp} \int r \, dr \, d\theta \, \overline{\psi} \left( \partial_{\perp} + \mathcal{D} \right) \psi$$
  
dim=d-2 dim=2  
$$\mathcal{D} = \gamma_x \partial_x + \gamma_y \partial_y + m(r)$$
  
$$= \gamma_r \left( \partial_r + \frac{1}{2r} \right) + \frac{i}{r} \gamma_{\theta} \mathcal{J} + m(r)$$

$$\mathcal{J} = -i\partial_ heta + rac{1}{2} \varSigma \;, \qquad \varSigma = -rac{i}{2} \left[ \gamma_x, \gamma_y 
ight]$$

### A convenient basis:

$$ec{\gamma}_{\perp} = \sigma_3 \otimes ec{\Gamma} \;, \quad \gamma_x = \sigma_1 \otimes 1 \;, \quad \gamma_y = \gamma_r = \begin{pmatrix} 0 & e^{-i heta} \\ e^{i heta} & 0 \end{pmatrix} \;, \qquad \gamma_{ heta} = \begin{pmatrix} 0 & -ie \\ ie^{i heta} & 0 \end{pmatrix}$$











Find:

- There is an exact Weyl edge mode circulating the disc in only one direction
- higher dimension theory
- The total angular momentum coordinate (-j/R) plays the role of linear momentum around the disc edge

Precisely: Euclidian action of edge mode is

$$S = \int d\mathbf{x}_{\perp} \sum_{n} \bar{\chi}_{n} \left( \vec{\Gamma} \cdot \vec{\partial}_{\perp} + \mu_{n} \right) \chi_{n} .$$
  
In d=1+1,  $\vec{\Gamma} = 1$   
In d=3+1,  $\vec{\Gamma} = \vec{\sigma}$ 

### What happened to all those arguments that this shouldn't be possible?



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

• Its chiral symmetry is exact: part of the exact U(1) fermion number symmetry of the

-j/R ~ momentum in boundary world  $\mu_{j} = -\frac{j}{R} \left[ 1 + \frac{1}{2mR} + \frac{1}{2m^{2}R^{2}} + \frac{3}{4m^{3}R^{3}} + \frac{3}{2m^{4}R^{4}} + \frac{15}{4m^{5}R^{5}} \right]$  $+\frac{j^3}{R} \left[ \frac{1}{4m^4 R^4} + \frac{3}{2m^5 R^5} \right] + O\left( (mR)^{-6} \right), \quad (21)$ 





### ...looks like wall/anti-wall system with finite size

...expect RH + LH modes with exponentially chiral symmetry violating mass





...but the wall/anti-wall system had constant  $\gamma_{5...}$ 

on disc, analog of  $\gamma_5$  for edge states is

$$\gamma_r = \begin{pmatrix} 0 & e^{-i\theta} \\ e^{i\theta} & 0 \end{pmatrix}$$

which changes sign on opposite side of disc!

Exponentially small interaction is still there, but preserves chirality 100% (= fermion number in higher dimension theory)

... it violates locality though! 🕱





- If there is an exact chiral edge state, then there must be a field that is higher dimension Dirac operator on the disc
- Zeromode solutions are easy to solve!
- And it is easy to show that there isn't one!

...and therefore no exact zeromode in Euclidian spacetime.



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

independent of angle (zero momentum) which is an exact zero-mode of the

- ...but we have seen that momentum about the edge is given by -j/R and  $j=\pm 1/2, \pm 3/2...$
- There is no zero momentum edge state it behaves as if anti-periodically quantized!

- Since topological phases exist with Wilson fermions on a lattice, we should be able to easily construct disc edge states on a lattice if they exist in the continuum! 😅
- ...but the Nielsen Ninomiya theorem says that on a lattice we must have an analytic, periodic dispersion relation which cannot cross zero an odd number of times (eg, once) 😂
- ...but we have already argued that there must be some nonlocality in the theory, so perhaps the dispersion is not analytic & periodic and that's OK?

Let's look at what happens on a lattice DB Kaplan, S. Sen: Phys. Rev. Lett. 132 (2024) 141604 arXiv:2312.04012



Free Wilson fermions on a 2d spatial lattice: consider 3 different boundary conditions

• **Periodic** boundary conditions in x & y



topology = torus, no boundaries

• Mixed: **periodic** in y + **open** BC in x



topology = open cylinder, 2 disconnected boundaries

• **Open** boundary conditions in x & y



topology = disc,1 connected boundary





$$egin{array}{rcl} H &=& \gamma_0 \mathcal{D} \ \mathcal{D} &=& \displaystyle{\sum_{\mu=1}^2 \gamma_\mu \partial_\mu + M + rac{r}{2} arDelta} \end{array}$$









n

n

# Weyl edge state? Look at 1+1 dispersion relation

Work on a lattice disc with open BC

$$P_R = \begin{cases} 0 & x^2 + y^2 \ge R^2 \\ 1 & x^2 + y^2 < R^2 \end{cases}$$

 $H_{\rm disc} = P_R \, H_{L \times L} \, P_R$ 

We took L=70, R = 34.

If you want E vs p for the edge state, plot E vs J







### Nielsen-Ninomiya would have you believe this is not possible for sensible system









1.0 -1.0 0.5

























# Note: chiral edge states on a 2-sphere boundary were previously discussed in the context of describing Weyl fermions in a gravitational background:

Shoto Aoki and Hidenori Fukaya, "Curved domain-wall fermions," Progress of Theoretical and Experimental Physics **2022**, 063B04 (2022).

Shoto Aoki and Hidenori Fukaya, "Curved domain-wall fermion and its anomaly inflow," Progress of Theoretical and Experimental Physics **2023**, 033B05 (2023).

Shoto Aoki, Hidenori Fukaya, and Naoto Kan, "A lattice formulation of weyl fermions on a single curved surface," Progress of Theoretical and Experimental Physics **2024**, 043B05 (2024).





Last (important!) piece of the puzzle: how to gauge?

d+1 theory with N<sub>f</sub> flavors has exact  $U(N_f)$  global symmetry...can easily gauge a subgroup in the continuum or the lattice. The gauge measure is well defined because its a regulated a theory of Dirac fermions

Define bulk gauge fields  $B_{\mu}$  to be functionals of the boundary values  $A_{\mu}$ ; integrate only over the  $A_{\mu}$ 

$$B_{\mu}(\mathbf{x}_{\perp}, r, \theta) \Big|_{r=R} = A_{\mu}(\mathbf{x}_{\perp}, \theta)$$

For example,  $B_{\mu}$  can be solution to Euclidian YM eq. subject to this BC.



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

...but want a <u>d-dimensional gauge theory</u>, not d+1...unlike CM systems

$$B_{\mu}(\mathbf{x}_{\perp}, r, \theta) \Big|_{r=R} = A_{\mu}(\mathbf{x}_{\perp}, \theta)$$

For example,  $B_{\mu}$  can be solution to Euclidian YM eq. subject to this BC.



### 4d boundary fields are quantum; 5d bulk fields are classical subject to quantum BC



$$B_{\mu}(\mathbf{x}_{\perp}, r, \theta) \Big|_{r=R} = A_{\mu}(\mathbf{x}_{\perp}, \theta)$$

For example,  $B_{\mu}$  can be solution to Euclidian YM eq. subject to this BC.

In general this will give a terribly nonlocal theory:

functional of the d-dimensional gauge fields  $A_{\mu}$ 

...but its coefficient vanishes if edge chiral gauge theory is anomaly-free\*

Conjecture: this theory will be a local d-dimensional theory in the infrared *iff* the chiral gauge theory is anomaly-free

\*More precisely: CS term -> e<sup>iπn[A]</sup>, includes nonperturbative anomalies (see Witten, Yonekura)



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

Generate Chern Simons operator in the bulk which is a function of B<sub>µ</sub> and therefore a nonlocal



Criticisms by Aoki, Fukaya, Kan and by Golterman & Shamir:

Aoki, Fukaya, Kan:

on the surface are paired with zeromodes in the bulk interior

Shoto Aoki and Hidenori Fukaya, "Curved domain-wall fermion and its anomaly inflow," Progress of Theoretical and Experimental Physics **2023**, 033B05 (2023). Shoto Aoki, Hidenori Fukaya, and Naoto Kan, "A lattice formulation of Weyl fermions on a single curved surface," (2024), arXiv:2402.09774 [hep-lat]. Shoto Aoki, "Study of curved domain-wall fermions on a lattice," (2023), arXiv:2404.01002 [hep-lat].

Golterman and Shamir:

unlike in target 4d theory

Maarten Golterman and Yigal Shamir, "Conserved currents in five-dimensional proposals for lattice chiral gauge theories," Phys. Rev. D 109, 114519 (2024).

These criticisms are apparently related: bulk zeromodes appear because of conserved U(1)



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

# When there are nontrivial gauge field configurations on the boundary, there fermion zeromodes

### There is an exactly conserved, gauge invariant current for every Weyl fermion on the boundary,



Golterman and Shamir:





- For every boundary Weyl fermion, have one bulk massive Dirac fermion
- Exact global U(1) symmetry for each bulk fermion with 5d conserved current
- Can construct exactly conserved 4d currents by integrating 5d currents over r
- Leads to too much symmetry for boundary theory...eg, N<sub>f</sub>=1 QCD on boundary has exact  $U(1) \times U(1)$  symmetry

**GS currents:** 
$$j_{\mu}(x) = \int r dr J_{\mu}$$

Can show:  $\partial_{\mu} j_{\mu}(x) = 0$ 

Problem! E.g., 4d QCD with N<sub>f</sub>=1 would have exact  $U(1)_V \times U(1)_A$  symmetry Bug or feature ?? Integrate out massive bulk modes, find for 5d conserved current:

 $J_{\mu}(x,r) = \delta(R-r)\bar{\chi}\sigma_{\mu}D_{\mu}\chi + \kappa\,\theta(R-r)\epsilon$ 





$$\epsilon_{\mu b c d e} F_{b c} F_{d e}$$
  $\mu = 1, \dots, 4$ 

$$J_{\mu}(x,r) = \delta(R-r)\bar{\chi}\sigma_{\mu}D_{\mu}\chi + \kappa\,\theta(R-r)$$
  
chiral edge state contribution  
$$J_{5}(x,r) = \kappa\,\theta(R-r)\epsilon_{5bcde}F_{bc}F_{de}$$

Golterman-Shamir equation  $\partial_{\mu} j_{\mu}(x) = 0$  $\partial_{\mu} \left( \bar{\chi} \sigma_{\mu} \chi(x) \right) = -$ 

However... integrating out bulk modes assumed no light states in interior... What about Aoki-Fukaya-Kan-Golterman-Shamir zeromodes??



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

 $r)\epsilon_{\mu b c d e}F_{b c}F_{d e}$ 



bulk gauge field contribution

is found to be equivalent to the conventional anomalous Ward identity on the boundary

$$\kappa\epsilon_{\alpha\beta\gamma\delta}F_{\alpha\beta}F_{\gamma\delta}(x)$$

This is a **feature**, not a bug! Current conservation in the 5d theory = 4d "anomaly inflow"







Integrating out bulk modes is not justified when boundary gauge field has nontrivial topology... Aoki-Fukaya-Kan-Golterman-Shamir criticism is a **bug** then, not a feature



It seems that expected theory cannot be achieved for nontrivial topology in boundary gauge field (e.g. instantons)

Very weird: whenever there are instantons, the 4d world becomes aware of mirror zeror lurking in the 5th dimensions?! ...

For regulating the SM though, how about if we restrict to **trivial** topology? (Eg, constrain number of instantons = number of anti-instantons)



Instanton in boundary theory

fermion zeromode on boundary

nonsingular gauge field in interior, no bulk zeromodes

Aoki-Fukaya-Kan-Golterman-Shamir problems seem to go away if the topology of boundary theory is trivial, Q=0. (# instantons = # anti-instantons, imposed on boundary theory)



INSTITUTE for NUCLEAR THEORY



For regulating the SM though, how about if we restrict to trivial topology? (Eg, constrain number of instantons = number of anti-instantons)

Has been shown that Q=0 QCD is equivalent to integrating over  $\theta$ ...  $\rightarrow$  yields  $\theta$ =0 QCD + 1/volume corrections

> Finite volume QCD at fixed topological charge Sinya Aoki, Hidenori Fukaya, Shoji Hashimoto, Tetsuya Onogi, PHYS. REV. D76, 054508 (2007)

Integrating over  $\theta$  is equivalent to having an axion field...and then throwing away all of it except the p=0 mode

- Solves strong CP problem
- No axion particle
- Saturates Goldstone theorem for spontaneously broken exact U(1)
- Work in progress (DBK & S Sen)

### Does this mean one can only regulate SM with $\theta = 0$ ??



An excitingly simple picture is emerging: Chiral gauge theory as a boundary theory, without requiring new dynamics

Construction "understands" anomalies: local 4D theory emerges only if gauge anomalies cancel (discrete and perturbative)

Does it work? Too early to tell...

....but the Nielsen-Ninomiya theorem is no longer the obstacle.

theory can be regulated, giving  $\theta=0$  theory in large volume

cancel and  $\theta=0$ ? Is there a BSM scenario that realizes this physics?



### Conclusions

- It appears that the theory is not purely 4d unless boundary gauge field topology is trivial (what does theory with nontrivial topology look like?? The n' portal (?)
- If gauge topology is trivial and anomalies cancel, it appears that chiral gauge
  - Could it be that 4d chiral gauge theory can only be regulated if anomalies