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• Chiral	gauge	theory	and	the	Nielsen-Ninomiya	theorem	

• Edge	states	and	topological	phases	

• A	single	connected	phase	boundary:	a	disc	

• How	to	see	free	Weyl	fermions	on	the	la?ce	

• Gauging	the	theory	

• A	puzzle,	and	implicaCons	for	the	conCnuum?

Outline	of	this	talk:
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Chiral	gauge	theory,	Nielsen-Ninomiya	theorem

A	chiral	gauge	theory	is	one	where	a	fermion	mass	term	necessarily	violates	the	
gauge	symmetry	(i.e.	the	Standard	Model)

A	nonperturbaCve	regulator	does	not	exist	for	such	theories		😳

Fundamental	tension	between	the	need	for	a	UV	mass	scale	to	tame	divergences,	
and	a	chiral	gauge	symmetry	that	forbids	masses.

•What	does	it	mean	to	have	a	theory	one	cannot	compute?	Is	it	actually	
well-defined?	

•How	can	we	calculate	nonperturbaCve	physics	without	one?	(E.g.	EW	
baryon	violaCon	in	the	early	universe)		

•Might	a	definiCon	on	the	computer	imply	the	need	for	new	physics	we	
do	not	expect	in	our	conCnuum	definiCon?
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

Naive	la?ce	fermions	violate	#3
<latexit sha1_base64="QcuCyPUcUK7eONZmeF/OT4YVdSM="></latexit>

eD(p) =
X

µ

i�µ sin pµ

Examples	(a=1):

“SLAC	derivaCve”	violates	#1
<latexit sha1_base64="rBF0K5QXG2S1o6nRzozBSH/sSDE="></latexit>

eD(p) =
X

µ

i�µpµ

Wilson	fermions	violate	#4
<latexit sha1_base64="qfgS3+d5TnOndOq77iXhP0oQM9Q="></latexit>

eD(p) =
X

µ

i�µ sin pµ +M +
r

2

X

µ

(1� cos pµ)
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Wilson)
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Wilson (fine-tuned)

Nielsen-Ninomiya:	
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HeurisCc	reasons	behind	NN	theorem:

*	If	the	la?ce	had	exact	chiral	symmetry	and	its	conCnuum	limit	gave	a	massless	Dirac	
fermion,	how	could	anomalies	ever	arise	in	the	conCnuum?

*	If	a	chiral	Dirac	fermion	existed,	one	could	consider	a	la?ce	Weyl	fermion	using	
P±=(1	±	Γ)/2	projectors…	

…but	how	can	a	conCnuous	periodic	funcCon	P-D(p)P+	cross	p=0	only	once?

-π π
p

SLAC

-π π
p

Naive

Nonlocal Dirac,	not	Weyl
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NN	theorem	tells	us	that	there	should	be	mirror	fermions:	incompaCble	with	chiral	
gauge	theory

Afempts	to	get	rid	of	mirror	fermions	on	the	la?ce:	

1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir

3. Eliminate mirror 
fermions by sacrificing  
locality (this work)

2. Gap the system and give masses to the  
mirrors without breaking gauge symmetry 
(many-body effects) 
Eichten, Preskill 
X.G. Wen
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Chiral	edge	states	appear	naturally	
in	the	Integer	Quantum	Hall	Effect:

Analog	for	Dirac	fermions	with	domain	wall	mass	
[Jackiw	&	Rebbi]:

Has	soluCons:

<latexit sha1_base64="oVv2BqXHJFfUs0pmUD+IaXfVzmU="></latexit>

�±(x5) = e⌥
R x5 m(s) ds

x5

m

With	this	domain	wall	mass	profile,	φ+	is	
normalizable		  	massless	chiral	edge	state

RH

<latexit sha1_base64="G1IENzOcTSIaILszZAjJPrhysXU=">AAACSnicdZDPattAEMZXbtqk7j+nOfayxBRSCkZyYzmXQkgJ9OhAnAQsIUbrkb1kVxK7o1Aj/ER9lV56bPsOPeQWcukqcSAt6cDCx++bYXa+tFTSku//8FqP1h4/Wd942n72/MXLV53N1ye2qIzAsShUYc5SsKhkjmOSpPCsNAg6VXiann9q/NMLNFYW+TEtSow1zHKZSQHkUNI5jBRmNImsAjvHaR2VYEiCWvL3PJqB1pAM7lgycFDvfEkG7yIjZ3OKo5GV/CP3k07X7/n+MAxC7kR/GPh7jQj7ww8BD5zVVJetapR0fkfTQlQacxJus50Efklx3ewRCpftqLJYgjiHGU6czEGjjeubc5f8rSNTnhXGvZz4Db0/UYO2dqFT16mB5vZfr4EPeqsQHvImFWV7cS3zsiLMxe0nskpxKniTK59Kg4LUwgkQRro7uJiDAUEu/bYL6C4F/n9x0u8FYS882u3uH6yi2mBv2DbbYQEbsn32mY3YmAn2lX1nP9kv75t36V1517etLW81s8X+qtbaH6fAsmY=</latexit>⇥
/@ + �5@5 +m(x5)

⇤
 = 0

<latexit sha1_base64="nLNhPaymvhWcQsw/5ehfuwbpNuk=">AAACInicbVDLSsNAFJ3UV62vqEsRBotQNyXxkboRim5cVrAPaEKYTCbN0MmDmYlYQlf+ihu3+hfuxJXgN/gNTh+C2h64cO4598K9x0sZFdIwPrTCwuLS8kpxtbS2vrG5pW/vtESScUyaOGEJ73hIEEZj0pRUMtJJOUGRx0jb61+N/PYd4YIm8a0cpMSJUC+mAcVIKsnV9+2GoPAC2mlIXTuNKvfu2RG08aRz9bJRNcaAitSsE8uC5o/yQ8pgioarf9l+grOIxBIzJETXNFLp5IhLihkZluxMkBThPuqRrqIxiohw8vEbQ3ioFB8GCVcVSzhWf2/kKBJiEHlqMkIyFP+9kTjXE+qUkPjzvG4mg3Mnp3GaSRLjyRFBxqBM4Cgv6FNOsGQDRRDmVP0BcYg4wlKlWlIBzcQxS1rHVdOqWjen5frlNKoi2AMHoAJMUAN1cA0aoAkweABP4Bm8aI/aq/amvU9GC9p0Zxf8gfb5DSfgozk=</latexit>

 = �±(x5)�±
<latexit sha1_base64="O7QoNq5Zo11rgIOIzL6kScYQaiU=">AAACI3icbVDLSsNAFJ3UV62vqEtBBovgqiSi1Y1QdOOygn1AE8JkMmmGziRhZiKU0J2/4sat/oU7cePCX/AbnLYRtO2BGc4951649/gpo1JZ1qdRWlpeWV0rr1c2Nre2d8zdvbZMMoFJCycsEV0fScJoTFqKKka6qSCI+4x0/MHN2O88ECFpEt+rYUpcjvoxDSlGSkueeej0EefIO3dwRD0n5fAK6v+38syqVbMmgPPELkgVFGh65rcTJDjjJFaYISl7tpUqN0dCUczIqOJkkqQID1Cf9DSNESfSzSd3jOCxVgIYJkK/WMGJ+nciR1zKIfd1J0cqkrPeWFzoSb1KRIJFXi9T4aWb0zjNFInxdIkwY1AlcBwYDKggWLGhJggLqu+AOEICYaVjreiA7Nk45kn7tGbXa/W7s2rjuoiqDA7AETgBNrgADXALmqAFMHgEz+AFvBpPxpvxbnxMW0tGMbMP/sH4+gECMKRA</latexit>

�5�± = ±�±
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Why	does	a	Dirac	equaCon	have	a	massless	chiral	edge	state?

• A	QFT	with	a	free	massive	Dirac	fermion	in	odd	spaceCme	dimension	
can	be	in	two	different	topological	phases	depending	on	the	sign	of	the	
mass…	

•…so	a	domain	wall	is	a	boundary	between	two	topological	phases…	

•…the	only	way	to	connect	two	topological	phases	is	for	the	theory	to	go	
gapless	at	the	interface

Answer	from	condensed	mafer	physics:
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What	is	a	topological	phase?

Toy	example:		topological	insulator	in	0+1	dimensions	—	quantum	mechanics	with	a	gap	
	

<latexit sha1_base64="cW6Qco2wEB/5p4WEHIZHxUgTds4=">AAACL3icdZBNS0JBFIbn9mn2ZbVsMySBRci9KuqmkD7ApUGa4BWZO/eYQ3M/mpkbiPof+itt2ta/iDbRtk2/oblqUFEHDjy87zlwzuuEnEllmi/GzOzc/MJiYim5vLK6tp7a2GzIIBIU6jTggWg6RAJnPtQVUxyaoQDiORwuneuT2L+8BSFZ4F+ofghtj1z5rMsoUVrqpParGblnh5LhQ3w2RRsf2DcRcfEwVoZH9ilwRXAnlTazppUvl4tYg5krlQoTKORNbGmIK42mVeukPmw3oJEHvqKcSNmyzFC1B0QoRjmMknYkIST0mlxBS6NPPJDtwfinEd7Viou7gdDtKzxWv28MiCdl33P0pEdUT/72YvFPT+pTeuD+5bUi1S23B8wPIwU+nRzRjThWAY7Dwy4TQBXvayBUMP0Hpj0iCFU64qQO6CsF/D80clmrmC2eF9KV42lUCbSNdlAGWaiEKqiKaqiOKLpDD+gRPRn3xrPxarxNRmeM6c4W+lHG+ydcSKdM</latexit>

H(s) = E(s) , |E(s)| > �

Define	topological	quantum	number:		ν	=	#	of	nega8ve	energy	states.	
			
Theories	with	different	parameter	s	are	then	topologically	equivalent.	
				
For	the	topology	to	change,	e.g.	#	nega8ve	energy	states,	theory	has	to	go	gapless.
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What	is	topologically	quanCzed	in	a	QFT	of	massive	Dirac	fermions?

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator.  When the theory is regulated, this is a winding 
number for the map S-1(p) from Sd (momentum space) to Sd = SO(d+1)/SO(d)

<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>

✏µ1...µd

Z
ddp

(2⇡)d
Tr S(p)

@S�1(p)

@pµ1

· · ·S(p)@S
�1(p)

@pµd
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( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 

220 

In	the	Integer	Quantum	Hall	Effect	it	is	the	Hall	conducCvity

The	QFT	analog	is	the	coefficient	of	the	Chern-Simons	term	
obtained	by	integraCng	out	the	massive	fermion	in	a	background	
gauge	field.

<latexit sha1_base64="vPvB2flDC1qZE11gAR3RoKv0TIs="></latexit>

✏abc...TrAa@bAc . . .
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<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>
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Remarkable	fact:			

Since	the	topology	is	in	momentum/spin	space,	topological	phases	and	massless	
edge	states	appear	at	domain	wall	boundaries	on	an	infinite	spaceCme	la/ce

E.g.	Wilson	fermions	(DBK	1992;	K.	Jansen,	M.	Schmaltz	1993;	M.	Golterman,	K.	Jansen,	DBK,	1993):
<latexit sha1_base64="sWnWczfC/FCOaEuVxl0DljbIapE="></latexit>

D = �µ@ +M +
r

2
�

1

I. SUPPLEMENTAL MATERIAL FOR “WEYL FERMIONS ON A FINITE LATTICE”

We provide here a brief account of those details of the lattice calculations employed in our paper

which were deemed unremarkable enough to leave out of the text.

We use the term “square lattice” to refer to a conventional lattice whose fundamental cell is a

square; this is the only sort of lattice considered in this paper. By a lattice “cut into a square” or

“cut into a disc” we are describing the boundaries of the lattice. In the former case we describe a

lattice with L sites in each direction, with various possible boundary conditions. In the latter case

what we do operationally is first define a projection operator PR with the property

PRÂ(x) =

�
0 x Ø R

Â(x) x < R ,
(1)

and then we define the Hamiltonian on the disc to be

Hdisc = PRHL◊LPR , (2)

where HL◊L is the Wilson fermion Hamiltonian on an L ◊ L square lattice and R < L/2. We

then computed the eigensystem for Hdisc, and confirmed that all eigenvectors with exactly zero

eigenvalues corresponded to states outside the disc. We discarded the corresponding eigenvectors,

retaining those with nonzero eigenvalue to span our Hilbert space. For Figs. 2,3 we used L = 70
and R = 34. The resulting lattice is shown in Fig. ??.

The derivatives in eq. (1) are defined to be:

ˆµÂ(x) =
Â(x + aµ̂)- Â(x - aµ̂)

2a
,

∆Â(x) =
Â(x + aµ̂)- 2Â(x) + Â(x - aµ̂)

a2 , (3)

FIG. 1. The lattice cut into an approximate disc used for the calculation of Figures 2,3 in our paper with
L = 70, R = 34. The red points are those on the L ◊ L lattice that were excluded, while the black ones
were kept.
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —  
where to sit for chiral DWFs

m/r

(gauge coupling)

(ratio of mass to Wilson coupling)
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periodic	BC

periodic	BC

open	BC	(ψ=0)	(Y.	Shamir,	1993)

RH	Weyl

LH	Weyl

Obtain	almost	massless	RH	&	LH	Weyl	

fermions…	mass		
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La?ce	has	topology	of	an	open	

cylinder	with	two	boundaries
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Won’t	there	be	doubled	copies	of	

fermions	on	each	wall?
RH	WeylRH	Weyl

LH	Weyl-π π
p

SLAC

-π π
p

Naive

-π -
π

2

π

2
π

p

E

RHLH
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/ e�Meffx5

No!		thanks	to	Wilson	term,	profile	

of	zeromode	

At	criCcal	|pcrit|	<	π,		Meff	changes	sign,	state	delocalizes
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

What	has	been	gained??		Wanted:

☜	locality
☜	correct	conCnuum	limit
☜	no	doublers
☜	exact	chiral	symmetry	(Γ	=	γ5)

With	exponenCally	light	Dirac	fermion,	#4	is	violated.	

Any	advantage	of	domain	wall	fermions	over	Wilson	fermions?

Yes…	
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•reproduces	the	correct	chiral	anomalies	
•but	sCll	enforces	mulCplicaCve	mass	renormalizaCon
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Domain	fermions	have	the	afracCve	feature	of	being	topological	and	
“knowing”	about	anomalies

Proposals	to	use	them	for	evading	Nielsen-Ninomiya	theorem	and	construcCng	
a	la?ce	chiral	gauge	theory:

•Ginsparg-Wilson	approach	(Lüscher):		use	GW	fermions	(Abelian	chiral	gauge	
theories	constructed	this	way,	but	not	non-Abelian).		Sacrifices	NN	#4	(D	anC-
commuCng	with	γ5	…	involves	O(a)	correcCons)	

•Symmetric	mass	generaCon	(Eichten,	Preskill,	Wen,	Cenke,	You,	Wang…):	
invoke	many-body	physics	to	gap	unwanted	mirror	fermions	when	anomalies	
cancel	

•Proposal	here:	use	domain	wall	fermion	with	single	connected	boundary	
between	topological	phases	to	regulate	chiral	gauge	theory.
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Consider	Dirac	fermion	in	d+1	con8nuum	dimensions:			

Md-1	x	R2	with	coordinates

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

{						,	x,	y}={						,	r,	θ}

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

m

θ
r

<latexit sha1_base64="rA638HUCqEcXBHvD+wiAHxjzGms=">AAACFHicbZDNSsNAFIVv/K31p1GXbgaL4KYlEakui27cCBXsDzShTKaTduhkEmYmQih9DTdu9S3ciVv3voTP4LTNQtteGDiccy+c+YKEM6Ud59taW9/Y3Nou7BR39/YPSvbhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bweh2mrefqFQsFo86S6gf4YFgISNYG6tnlyr3CHk6RhWPiVBnPbvsVJ3ZoGXh5qIM+TR69o/Xj0kaUaEJx0p1XSfR/hhLzQink6KXKppgMsID2jVS4IgqfzwrPkFnxumjMJbmCY1m7t+LMY6UyqLAbEZYD9ViNjVXZspUGdL+qqyb6vDaHzORpJoKMi8RphwZCFNCqM8kJZpnRmAimfkHIkMsMdGGY9EAchdxLIvWRdWtVWsPl+X6TY6qACdwCufgwhXU4Q4a0AQCKbzAK7xZz9a79WF9zlfXrPzmGP6N9fULRvadfQ==</latexit>�M ! �1

Shouldn’t	this	have	a	single	Weyl	fermion	edge	state?			

Which	must	be	exactly	massless?	

Which	can	be	realized	with	Wilson	fermions	on	a	la?ce?

Edge	states	on	manifold	with	a	single	boundary:
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Why	there	can’t	be	a	chiral	edge	state:	reason	#1

m
-M

m

-M

RH LH

Stretch

…looks	like	wall/anC-wall	system	with	finite	size

…expect	RH	+	LH	modes	with	exponenCally		
small	chiral	symmetry	violaCng	mass
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Why	there	can’t	be	a	chiral	edge	state:		reason	#2

• If	there	is	an	exact	chiral	edge	state,	then	there	must	be	a	soluCon	that	is	
independent	of	angle	(zero	momentum)	which	is	an	exact	zero-mode	of	the	higher	
dimension	Dirac	operator	on	the	disc	

• Zeromode	soluCons	are	easy	to	solve	for!	😀	

• And	it	is	easy	to	show	that	there	isn’t	a	zeromode	for	the	Dirac	operator	on	disc!	😩	

ZERO 
MODE ⇒ NO ZERO 

MOMENTUM EDGE 
STATE
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Why	there	can’t	be	a	chiral	edge	state:		reason	#3

• Since	topological	phases	exist	with	Wilson	fermions	on	a	la?ce,	we	should	be	
able	to	easily	construct	disc	edge	states	on	a	la?ce	if	they	exist	in	the	
conCnuum!	😀	

• …but	the	Nielsen	Ninomiya	theorem	says	that	we	on	a	la?ce	we	must	have	an	
analyCc,	periodic	dispersion	relaCon	which	cannot	cross	zero	an	odd	number	
of	Cmes	(eg,	once)	😩

-π π
p

Weyl ?!
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Think	less,	calculate	more

m

θ
r
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Solve	the	Dirac	equa@on	with	this	mass	profile			
(DB	Kaplan:	Phys.	Rev.	Lef.	132	(2024)	141603,	arXiv:2312.01494)
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Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)
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The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
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2 [“x, “y] = ‡3 ¢ 1 . (10)
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dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
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X
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is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
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and the phase of µn, can be conveniently fixed by choos-
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spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

A	convenient	basis:

•r	plays	the	role	of	x5	

•γr	plays	the	role	of	γ5	

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

dim=d-2 dim=2
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Find:

•There	is	an	exact	Weyl	edge	mode	circulaCng	the	disc	in	only	one	direcCon	

• Its	chiral	symmetry	is	exact:	part	of	the	exact	U(1)	fermion	number	symmetry	of	the	
higher	dimension	theory	

•The	total	angular	momentum		coordinate	(-j/R)	plays	the	role	of	linear	momentum	
around	the	disc	edge		

-j/R	~	momentum	in	boundary	world

3

Putting these two results together, we get that the ac-
tion can be rewritten as the sum of an infinite tower of
fermions propagating on M

d-1:

S =

Z
dx‹

X

n

‰̄n

1
~≈ · ~̂‹ + µn

2
‰n . (16)

The unnormalized solutions to eq. (5) for the boundary
modes on the disc (r Æ R) in the M ! 1 limit are given
by

fj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

-e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b ,

bj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b , (17)

where I‹(z) is a modified Bessel function and

Ÿj =
Ò

m2 - |µj |2 (18)

subject to the implicit eigenvalue condition

µj = m - Ÿj
I|j-1/2|(ŸjR)

I|j+1/2|(ŸjR)
. (19)

In the limit M ! 1 one finds that the f and b solutions
obey chiral boundary conditions at the edge of the disc,

1+ “r

2 fj(R) =
1- “r

2 bj(R) = 0 , (20)

with “r playing the role of “5. in addition to the surface
mode solutions there are less interesting bulk excitations
labeled by a radial excitation quantum number as well as
j.

The eigenvalue equation eq. (19) can be solved explic-
itly in an expansion in inverse powers of mR, with the
result

µj = -
j

R

5
1+ 1

2mR
+

1
2m2R2 +

3
4m3R3 +

3
2m4R4

+
15

4m5R5

6

+
j
3

R

5
1

4m4R4 +
3

2m5R5

6
+ O

!
(mR)-6"

, (21)

which is valid for either sign of j.
To interpret the boundary mode action we found in

eq. (16) with the above expression for µj it is useful to
consider the Dirac operator in d-dimensions in a chiral
basis for the “-matrices:

~“‹ = ‡1 ¢ ~≈ ,

“Î = ‡2 ¢ 1 ,

“‰ = ‡3 ¢ 1 , (22)

so that the Dirac operator takes the form

/̂ =

A
0 ~≈ · ~̂‹ - iˆÎ

~≈ · ~̂‹ + iˆÎ 0

B
(23)

where ~̂‹ is the gradient in the (d - 1) dimensions and
ˆÎ = ˆ/ˆxd. By Fourier transforming with respect to xd

this becomes

/̂ =

A
0 ~≈ · ~̂‹ + pÎ

~≈ · ~̂‹ - pÎ 0

B
. (24)

Finally, compactifying the d
th dimension to a circle of

radius R renders pÎ discrete, pÎ ! j/R, where j takes
integer values for periodic boundary conditions, and half
integer values for anti-periodic. The two di�erent blocks
in /̂ correspond to the fermion operators for the two Weyl
fermions of opposite chirality that make up the Dirac
fermion, with ~≈ · ~̂‹ - j

R corresponding to a left-handed
fermion. This looks very much like the fermion operator
for the edge states in the action eq. (16), given the eigen-
values in eq. (21). The corrections in powers of 1/(mR)
are due to the finite, j-dependent extent of the boundary
state wave functions into the bulk a distance O(1/m). To
order 1/(mR)3 they are just renormalizing the value of
R that appears in the j/R expression. At O((mR)-4) a
j
3 contribution appears, corresponding to an irrelevant

3-derivative contribution to the kinetic term of the Weyl
fermion, which does not violate chirality. What is in-
teresting is that even though I solved for eigenfunctions
that are single-valued in ◊, the result is a chiral fermion
at the boundary with a spectrum reflecting anti-periodic
boundary conditions.

While the j
3 term corresponds to an irrelevant opera-

tor, its appearance suggests that the dispersion relation
could become nonanalytic in j for j & mR. Indeed, that
appears to be the case: a graphical solution of eq. (19)
shows two eigenvalues merging and going into the com-
plex plane for j roughly equal to mR.

The result that an exactly chiral mode exists on the d

dimensional boundary of a finite d + 1 dimensional man-
ifold may seem counter-intuitive. If one were to elon-
gate the disc, the system would look similar to the tra-
ditional wall/anti-wall system which supports a right-
handed edge state on one side, a left-handed one on the
other, and an exponentially small but nonzero mass term
from the overlap of their wave functions. The reason why
we do not find both chiralities for the disc is because while
“5 is a constant matrix for the wall/anti-wall system, its
analog for the disc, “r, is not – and in fact it changes
sign from one side of the disc to the other, explaining
how modes on opposite sides can have the same chiral-
ity. The exponentially small interaction between the two
modes on opposite sides of the finite disc can be seen
by evaluating the eigenvalue equation eq. (19) at j = 0
and finding µ ⇠ exp-2mR; in this case, however, such
an interaction does not flip chirality, but instead repre-
sents a nonlocality from the d-dimensional perspective

3

Putting these two results together, we get that the ac-
tion can be rewritten as the sum of an infinite tower of
fermions propagating on M

d-1:

S =

Z
dx‹

X

n

‰̄n

1
~≈ · ~̂‹ + µn

2
‰n . (16)

The unnormalized solutions to eq. (5) for the boundary
modes on the disc (r Æ R) in the M ! 1 limit are given
by

fj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

-e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)
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bj(r) =

Q

a
e

i(j-1/2)◊ I|j-1/2|(Ÿjr)
I|j-1/2|(ŸjR)

e
i(j+1/2)◊ I|j+1/2|(Ÿjr)

I|j+1/2|(ŸjR)

R

b , (17)

where I‹(z) is a modified Bessel function and

Ÿj =
Ò

m2 - |µj |2 (18)

subject to the implicit eigenvalue condition

µj = m - Ÿj
I|j-1/2|(ŸjR)

I|j+1/2|(ŸjR)
. (19)

In the limit M ! 1 one finds that the f and b solutions
obey chiral boundary conditions at the edge of the disc,

1+ “r

2 fj(R) =
1- “r

2 bj(R) = 0 , (20)

with “r playing the role of “5. in addition to the surface
mode solutions there are less interesting bulk excitations
labeled by a radial excitation quantum number as well as
j.

The eigenvalue equation eq. (19) can be solved explic-
itly in an expansion in inverse powers of mR, with the
result

µj = -
j

R

5
1+ 1

2mR
+

1
2m2R2 +

3
4m3R3 +

3
2m4R4

+
15

4m5R5

6

+
j
3
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5
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4m4R4 +
3

2m5R5

6
+ O
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(mR)-6"

, (21)

which is valid for either sign of j.
To interpret the boundary mode action we found in

eq. (16) with the above expression for µj it is useful to
consider the Dirac operator in d-dimensions in a chiral
basis for the “-matrices:

~“‹ = ‡1 ¢ ~≈ ,

“Î = ‡2 ¢ 1 ,

“‰ = ‡3 ¢ 1 , (22)

so that the Dirac operator takes the form

/̂ =

A
0 ~≈ · ~̂‹ - iˆÎ

~≈ · ~̂‹ + iˆÎ 0

B
(23)

where ~̂‹ is the gradient in the (d - 1) dimensions and
ˆÎ = ˆ/ˆxd. By Fourier transforming with respect to xd

this becomes

/̂ =

A
0 ~≈ · ~̂‹ + pÎ

~≈ · ~̂‹ - pÎ 0

B
. (24)

Finally, compactifying the d
th dimension to a circle of

radius R renders pÎ discrete, pÎ ! j/R, where j takes
integer values for periodic boundary conditions, and half
integer values for anti-periodic. The two di�erent blocks
in /̂ correspond to the fermion operators for the two Weyl
fermions of opposite chirality that make up the Dirac
fermion, with ~≈ · ~̂‹ - j

R corresponding to a left-handed
fermion. This looks very much like the fermion operator
for the edge states in the action eq. (16), given the eigen-
values in eq. (21). The corrections in powers of 1/(mR)
are due to the finite, j-dependent extent of the boundary
state wave functions into the bulk a distance O(1/m). To
order 1/(mR)3 they are just renormalizing the value of
R that appears in the j/R expression. At O((mR)-4) a
j
3 contribution appears, corresponding to an irrelevant

3-derivative contribution to the kinetic term of the Weyl
fermion, which does not violate chirality. What is in-
teresting is that even though I solved for eigenfunctions
that are single-valued in ◊, the result is a chiral fermion
at the boundary with a spectrum reflecting anti-periodic
boundary conditions.

While the j
3 term corresponds to an irrelevant opera-

tor, its appearance suggests that the dispersion relation
could become nonanalytic in j for j & mR. Indeed, that
appears to be the case: a graphical solution of eq. (19)
shows two eigenvalues merging and going into the com-
plex plane for j roughly equal to mR.

The result that an exactly chiral mode exists on the d

dimensional boundary of a finite d + 1 dimensional man-
ifold may seem counter-intuitive. If one were to elon-
gate the disc, the system would look similar to the tra-
ditional wall/anti-wall system which supports a right-
handed edge state on one side, a left-handed one on the
other, and an exponentially small but nonzero mass term
from the overlap of their wave functions. The reason why
we do not find both chiralities for the disc is because while
“5 is a constant matrix for the wall/anti-wall system, its
analog for the disc, “r, is not – and in fact it changes
sign from one side of the disc to the other, explaining
how modes on opposite sides can have the same chiral-
ity. The exponentially small interaction between the two
modes on opposite sides of the finite disc can be seen
by evaluating the eigenvalue equation eq. (19) at j = 0
and finding µ ⇠ exp-2mR; in this case, however, such
an interaction does not flip chirality, but instead repre-
sents a nonlocality from the d-dimensional perspective

Precisely:	Euclidian	acCon	of	edge	mode	is

<latexit sha1_base64="mWVxWdqs0X8ipnyCgYlfWMfYOqw="></latexit>

In d=1+1, ~� = 1
<latexit sha1_base64="v88cTxflVenbFufNEqPtYwsaZ9U=">AAACL3icdVBNSxxBEO3RmOiqcWOOXhoXIURZZlbZ9SJIcjC5KWRV2FmWmp7a3cbunqG7RlyG/Q/+FS+5Jv9CvEiuueQ3pPcjEIN5UPDqvSqoekmupKMwfAgWFl8svXy1vFJZXVt/vVF9s3nussIKbItMZfYyAYdKGmyTJIWXuUXQicKL5OrjxL+4RutkZr7QKMeuhoGRfSmAvNSrvo8Jb6j8bHh6tL8b7fExj69R8PgEtAZ+NGucHGjoVWthvXUQRftNHtbDKTxphY1Go8WjuVJjc5z2qr/iNBOFRkNCgXOdKMypW4IlKRSOK3HhMAdxBQPseGpAo+uW05/GfMcrKe9n1pchPlX/3ihBOzfSiZ/UQEP3rzcRn/WcP2WI6XNep6D+YbeUJi8IjZgd0S8Up4xPwuOptChIjTwBYaX/g4shWBDkI674gP6kwP9Pzhv1qFlvnh3Ujj/Mo1pmW2ybvWMRa7Fj9omdsjYT7JZ9Zd/Y9+AuuA8egx+z0YVgvvOWPUHw8zd8Q6fy</latexit>

In d=3+1, ~� = ~�

What	happened	to	all	those	arguments	that	this	shouldn’t	be	possible?



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

m
-M

m

-M

RH LH

Why	there	can’t	be	a	chiral	edge	state:	reason	#1

Stretch

…looks	like	wall/anC-wall	system	with	finite	size

…expect	RH	+	LH	modes	with	exponenCally		
chiral	symmetry	violaCng	mass
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m

-M

RH LH

γ5

…but	the	wall/anC-wall	system	had	constant	γ5…	

on	disc,	analog	of	γ5	for	edge	states	is	

2

Aoki and Fukaya, see Ref. [31]).
Consider a free massive Dirac fermion on the manifold

Y = M
d-1 ◊ R2 with Euclidian signature. The M

d-1

manifold is described by the d - 1 coordinates x‹, while
the R2 submanifold is described by Cartesian coordinates
{x, y} or polar coordinates {r, ◊}. The fermion mass, as
pictured in Fig. 1, is taken to equal m for r < R and
-M for r > R, with both m and M real and positive.
I will eventually take M ! 1 which will allow ignoring
the region r > R, in which case Y = M

d-1 ◊ DR, where
DR is the closed disc of radius R, and the boundary of
Y is M

d-1 ◊ S
1, which will serve as our spacetime. I

take d to be even and the fermions to be Dirac, but the
analysis can be generalized to include Majorana fermions
and edge states in odd spacetime dimensions, such as
recently discussed in Ref. [32].

The fermion action may be written as

S =

Z
dx‹

Z
r dr d◊ Â

!
/̂‹ + D

"
Â , (1)

where /̂‹ = ~“‹ ~̂‹ is the Dirac operator on M
d-1 and

D = “xˆx + “yˆy + m(r)

= “r

3
ˆr +

1
2r

4
+

i

r
“◊J + m(r), (2)

where

“r = cos ◊ “x + sin ◊ “y , “◊ = - sin ◊ “x + cos ◊ “y , (3)

and J is the angular momentum operator

J = -iˆ◊ + 1
2À , À = -

i

2 [“x, “y] . (4)

Since D is not Hermitian it is convenient to expand Â and
Â̄ in the functions fn and bn respectively, which satisfy

Dfn = µnbn , Dbn = µ
ú
nfn , (5)

where

D =
1
r

D†
r = -“r

3
ˆr +

1
2r

4
-

i

r
“◊J + m(r)

= ÀDÀ (6)

is the adjoint of D with respect to the integration measure
in polar coordinates. As f, b are eigenstates of the self-
adjoint operators DD and DD respectively, they each
can be taken to be a complete orthonormal basis. The
magnitude of µn may be found by solving the eigenvalue
equation

DDfn = |µn|
2
fn , (7)

and the phase of µn, can be conveniently fixed by choos-
ing

bn = Àfn . (8)

-M

m x

y

FIG. 1. The Dirac fermion mass m(r) in the x-y plane equals
m > 0 within a disc of radius R, and -M < 0 outside, where
we will eventually take M ! 1. To simulate the system
only the region r Æ R is required, with appropriate boundary
conditions.

Only solutions with low lying eigenvalues |µ| < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be ex-
ploited by taking f and b to be eigenstates of the angu-
lar momentum operator J which commutes with both D
and D and has eigenvalues j = ± 1

2 , ± 3
2 , . . .. Therefore a

convenient basis to work in is one where the spin À is
diagonal, such as

~“‹ = ‡3 ¢ ~≈ , “x = ‡1 ¢ 1 , “y = ‡2 ¢ 1 , (9)

À = -
i

2 [“x, “y] = ‡3 ¢ 1 . (10)

where ~≈ are the 2d/2-1 ◊ 2d/2-1 Dirac matrices in (d- 1)
dimensions (for example, ~≈ = 1 for d = 2, and ~≈ = ~‡ for
d = 4). In polar coordinates we have

“r =

3
0 e

-i◊

e
i◊ 0

4
, “◊ =

3
0 -ie

-i◊

ie
i◊ 0

4
(11)

while À is unchanged.
The fields Â and Â̄ can now be expanded as

Â–i =
X

n

fn,i(r, ◊)‰n,–(x‹)

Â̄–i =
X

n

‰̄n,–(x‹)b†
n,i(r, ◊) , (12)

where the spinor index i = 1, 2 is acted on by the first
block in our direct product notation for the Dirac matri-
ces, the – = 1, . . . , 2d/2-1 indices are acted on by the
second block, and the ‰n,–(x‹) are 2d/2-1-component
spinors. Since D only acts on b and f , and not on ‰,
and because Dfn = µnbn, it follows that

Z
dx‹

Z
rdrd◊ Â̄DÂ =

X

n

Z
dx‹ µn‰̄n‰n , (13)

Furthermore, since

b
†
n /̂‹ = f

†
nÀ /̂‹ = f

†
n (1 ¢ ~≈ ) · ~̂‹ , (14)

we also have
Z

dx‹

Z
rdrd◊ Â̄ /̂‹Â =

X

n

Z
dx‹ ‰̄n

~≈ · ~̂‹‰n . (15)

which	changes	sign	on	opposite	side	of	disc!
RH

ExponenCally	small	interacCon	is	sCll	there,		
but	preserves	chirality	100%		
(=	fermion	number	in	higher	dimension	theory)

…it	violates	locality	though!			👻
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Why	there	can’t	be	a	chiral	edge	state:		reason	#2

• If	there	is	an	exact	chiral	edge	state,	then	there	must	be	a	field	that	is	
independent	of	angle	(zero	momentum)	which	is	an	exact	zero-mode	of	the	
higher	dimension	Dirac	operator	on	the	disc	

• Zeromode	soluCons	are	easy	to	solve!	😀	

• And	it	is	easy	to	show	that	there	isn’t	one!	😩	

…but	we	have	seen	that	momentum	about	the	edge	is	given	by	-j/R	and	j=±1/2,	±3/2…

There	is	no	zero	momentum	edge	state	—	it	behaves	as	if	anC-periodically	quanCzed!	
…and	therefore	no	exact	zeromode	in	Euclidian	spaceCme.
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Why	there	can’t	be	a	chiral	edge	state:		reason	#3

• Since	topological	phases	exist	with	Wilson	fermions	on	a	la?ce,	we	should	be	
able	to	easily	construct	disc	edge	states	on	a	la?ce	if	they	exist	in	the	
conCnuum!	😀	

• …but	the	Nielsen	Ninomiya	theorem	says	that	on	a	la?ce	we	must	have	an	
analyCc,	periodic	dispersion	relaCon	which	cannot	cross	zero	an	odd	number	
of	Cmes	(eg,	once)	😩

Let’s	look	at	what	happens	on	a	la?ce

• 	…but	we		have	already	argued	that	there	must	be	some	nonlocality	in	the	
theory,	so	perhaps	the	dispersion	is	not	analyCc	&	periodic	and	that’s	OK?

DB	Kaplan,	S.	Sen:			Phys.	Rev.	Lett.	132	(2024)	141604	arXiv:2312.04012
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Free	Wilson	fermions	on	a	2d	spaCal	la?ce:	consider	3	different	boundary	condiCons	

• Periodic	boundary	condiCons	in	x	&	y

topology	=	torus,	no	boundaries

• Mixed:	periodic	in	y	+	open	BC	in	x

topology	=	open	cylinder,		
2	disconnected	boundaries

• Open	boundary	condiCons	in	x	&	y

topology	=	disc,		
1	connected	boundary

2

tify as the mirror Weyl fermions have a discrete, gapped
spectrum that does not become continuous in the large
volume limit. Instead the discrete spectrum can jump
from from positive to negative energy without crossing
zero like a continuum state. This is how such systems
evade the Nielsen-Ninomiya theorem.

To solve a latticized version of the continuum problem
in Ref. [1] would be daunting because of the complexity of
trying to approximate cylindrical symmetry with a reg-
ular lattice. However, while the approximate cylindrical
symmetry may be required eventually to realize Lorentz
symmetry in the large volume and continuum limits of
an actual simulation of the real world, for the purposes of
examining the fermion spectrum it is not necessary and
we can simply work on a square lattice. As discussed
in Ref. [1], the basic physics in the continuum is this: a
(d + 1)-dimensional manifold (d = 2n) with no bound-
aries is expected to support no massless states; a (d+ 1)-
manifold with two disconnected boundaries is expected
to support a light Dirac fermion (two Weyl fermions of
opposite chirality with exponentially small interactions),
and a (d+1)-manifold with a single boundary should have
a single massless Weyl fermion with exponentially small
nonlocal interactions.

To contrast these three situations we consider a dis-
cretized Hamiltonian on a L ◊ L square lattice in 2 + 1
dimensions making use of Wilson fermions, given by

H = “0D ,

D =
2X

µ=1
“µˆµ + M +

r

2∆ ,

“0 = ‡3 , “1 = ‡1 , “2 = ‡2 . (1)

We will take M = r = 1 in lattice units since for those
values Wilson fermions are known to be in a nontrivial
topological phase [6, 7]. The ˆµ are symmetric lattice
derivatives with µ = 1, 2, and ∆ is the 2d lattice Lapla-
cian.1 We will consider these derivatives with three dif-
ferent possibilities for boundary conditions:

1. Periodic boundary conditions in both variables,
Â(x + L, y) = Â(x, y), Â(x, y + L) = Â(x, y).
This lattice approximates a spatial 2-torus with-
out boundary, and as is well known, the spectrum
is gapped without any continuum low lying modes.

2. Periodic boundary conditions in one direction and
open boundary conditions in the other: Â(x +
L, y) = Â(x, y) and Â(x,0) = Â(x, L+ 1) = 0. This
is the prescription for conventional domain wall
fermions proposed by Shamir [8]. In this case the
lattice approximates the continuum manifold of an
open cylinder with a circle for the boundary at each

1
In d = 2+ 1, “0 equals À in the notation of Ref. [1], so that H is

equivalent to ÀD, and its eigenfunctions and eigenvalues Ê are

analogues of f and µ respectively in that paper.

FIG. 1. The sorted eigenvalues Ên on the y axis versus n
on the x-axis for the free Wilson fermion Hamiltonian with
a = M = r = 1 on a 30 ◊ 30 lattice (1800 eigenvalues),
with a magnified version of the crossing point in the lower
panel. Cyan points are for purely periodic boundary condi-
tions, corresponding to a spatial manifold with no boundary,
and exhibit a gap with no light states. Magenta indicates
mixed periodic and open boundary conditions, as specified
by Shamir [8] for domain wall fermions with the geometry of
an open cylinder, supporting a Weyl fermion on each of its
two S1 surfaces with opposite chiralities, with evident degen-
eracy. The nondegenerate black points are for purely open
boundary conditions, representing the situation described in
Ref. [1]: a manifold with a single boundary (a square, in this
case) supporting a single Weyl fermion.

end. With two disconnected pieces to the bound-
ary, the lattice supports two Weyl fermions with
opposite chirality. They have an interaction van-
ishing exponentially with the length of the cylin-
der, turning them into a very light Dirac fermion
and have no exact chiral symmetry to be naively
gauged. In the large volume limit this mode is de-
scribed by the overlap operator [9–13]. In turn, the
overlap operator solves the Ginsparg-Wilson equa-
tion [14] which clarifies exactly how the mode vio-
lates chiral symmetry, even in the infinite volume
limit, which can be thought of as being due to the
nondecoupling of massive modes in the bulk which
generate a Chern-Simons form, which accounts for
the anomaly [15].

3. Finally we address a manifold with one bound-
ary by applying open boundary conditions in both
directions, Â(0, y) = Â(L + 1, y) = Â(x,0) =
Â(x, L+ 1) = 0. This is the case of interest, and we
will show how it realizes a single Weyl mode in its
spectrum. This mode will not have a simple disper-
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Spectrum	of	2d	Hamiltonian	for	
massive	Wilson	fermions:	
3	different	la?ce	topologies	(BC)
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Work	on	a	la?ce	disc	with	
open	BC		

Weyl	edge	state?		
Look	at	1+1	dispersion	relaCon

<latexit sha1_base64="QEMWE0OrXulxFdSa3teJEXBGLm4="></latexit>

Hdisc = PR HL⇥L PR

<latexit sha1_base64="4Fh9AideuBIen1FoU/d9FJJUf2U="></latexit>

PR =

(
0 x2 + y2 � R2

1 x2 + y2 < R2

We	took	L=70,	R	=	34.

If	you	want	E	vs	p	for	the	edge	
state,	plot	E	vs	J
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Nielsen-Ninomiya	would	have	you	believe	this	is	not	possible	for	sensible	system
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dimension operators; the former will not contribute to bulk currents when bulk fields obey the equations of motion,
and the latter will be suppressed by powers of the bulk mass m, which we e�ectively take to infinity. At finite bulk
gap m, the ”- and ◊-functions would be smooth functions characterizing the normalized profile of the domain wall
mode and its integral over to r respectively, which would be di�cult to compute, but they become perfectly localized
in the infinite m limit and defined at the boundary by

Z ‘>0

0
”(x) dx = 1 , ◊(x) =

�
1 x > 1
0 x Æ 0

, ”(x) = ˆx◊(x) . (6)

Di�erentiating L with respect to the source J yields the conserved current in the e�ective theory,

jµ =
ˆL

ˆJµ(x)
= ”(R - r)‰̄“µ“5‰ + 6Ÿ◊(R - r)‘µijk¸Tr [FijFk¸] , µ = 1, . . .4

j5 =
ˆL

ˆJ5(x)
= 6Ÿ◊(R - r)‘5µ‹fl‡Tr Fµ‹Ffl‡ , (7)

and conservation of the 5d current ˆiji = 0 yields the anomalous divergence of the boundary contribution to it:

ˆµ‰̄“µ“5‰ = -
1

4fi2 ‘5µ‹fl‡Tr Fµ‹Ffl‡ , Sign and factor of 4? (8)

making use of the value of Ÿ in eq. (2).
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Note:	chiral	edge	states	on	a	2-sphere	boundary	were	previously	discussed	in	the		
context	of		describing	Weyl	fermions	in	a	gravitaConal	background:
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Last	(important!)	piece	of	the	puzzle:		how	to	gauge?

d+1	theory	with	Nf	flavors	has	exact	U(Nf)	global	symmetry…can	easily	gauge	a	
subgroup	in	the	conCnuum	or	the	la?ce.		The	gauge	measure	is	well	defined	
because	its	a	regulated	a	theory	of	Dirac	fermions

…but	want	a	d-dimensional	gauge	theory,	not	d+1…unlike	CM	systems

Define	bulk	gauge	fields	Bµ	to	be	funcConals	of	the	boundary	values	Aµ	;	
integrate	only	over	the	Aµ

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	soluCon	to	Euclidian	YM	eq.	subject	to	this	BC.



D. B. Kaplan ~ Chiral gauge theory on the lattice ~ YITP 11-11-24

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	soluCon	to	Euclidian	YM	eq.	subject	to	this	BC.

Update	boundary	field	Aµ

Compute	bulk	field	Bµ	subject	to	BC
↩↪

Compute	5d	fermion	determinant	Δ[B]
↩↪

MulCply	Δ[B]	by	exp(-S[A])			☜		[4d	YM	acCon]
↩↪

↩
↵

↵

4d	boundary	fields	are	quantum;	5d	bulk	fields	are	classical	subject	to	quantum	BC
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which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	soluCon	to	Euclidian	YM	eq.	subject	to	this	BC.

In	general	this	will	give	a	terribly	nonlocal	theory:			

Generate	Chern	Simons	operator	in	the	bulk		which	is	a	funcCon	of	Bµ	and	therefore	a	nonlocal	
funcConal	of	the	d-dimensional	gauge	fields	Aµ	

…but	its	coefficient	vanishes	if	edge	chiral	gauge	theory	is	anomaly-free*	

Conjecture:		this	theory	will	be	a	local	d-dimensional	theory	in	the	
infrared	iff	the	chiral	gauge	theory	is	anomaly-free

*More	precisely:		CS	term	->	eiπη[A]	,	includes	nonperturba8ve	anomalies		(see	Wi`en,	Yonekura)
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CriCcisms	by	Aoki,	Fukaya,	Kan	and	by	Golterman	&	Shamir:

Aoki,	Fukaya,	Kan:			
When	there	are	nontrivial	gauge	field	configuraCons	on	the	boundary,	there	fermion	zeromodes		
on	the	surface	are	paired	with	zeromodes	in	the	bulk	interior

Golterman	and	Shamir:			
There	is	an	exactly	conserved,	gauge	invariant	current	for	every	Weyl	fermion	on	the	boundary,	
unlike	in	target	4d	theory

These	criCcisms	are	apparently	related:	bulk	zeromodes	appear	because	of	conserved	U(1)
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Golterman	and	Shamir:		

χ

χ massless	boundary		
chiral	fermion

Ψ
massive	bulk		
Dirac	fermion

• For	every	boundary	Weyl	fermion,	have	one	
bulk	massive	Dirac	fermion	

• Exact	global	U(1)	symmetry	for	each	bulk	
fermion	with	5d	conserved	current	

• Can	construct	exactly	conserved	4d	currents	
by	integraCng	5d	currents	over	r	

• Leads	to	too	much	symmetry	for	boundary	
theory…eg,	Nf=1	QCD	on	boundary	has	exact	
U(1)	x	U(1)	symmetry
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jµ(x) =

Z
rdr Jµ(x, r) , µ = 1, . . . , 4GS	currents:

5d	conserved		
current

Bug	or	feature	?? Integrate	out	massive	bulk	modes,	find	for	5d	conserved	current:	

Problem!		E.g.,	4d	QCD	with	Nf=1	would	have	exact	U(1)V	x	U(1)A	symmetry	
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µ = 1, . . . , 4

chiral	edge	state	contribuCon
bulk	gauge	field	
contribuCon
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@µjµ(x) = 0Golterman-Shamir	equaCon

is	found	to	be	equivalent	to	the	convenConal	anomalous	Ward	idenCty	on	the	boundary
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This	is	a	feature,	not	a	bug!		Current	conservaCon	in	the	5d	theory	=	4d	“anomaly	inflow”

However…	integraCng	out	bulk	modes	assumed	no	light	states	in	interior…		
What	about	Aoki-Fukaya-Kan-Golterman-Shamir	zeromodes??
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µ = 1, . . . , 4

chiral	edge	state	contribuCon
bulk	gauge	field	
contribuCon
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χ

*

fermion	zeromode	
in	bulk

Instanton	in		
boundary	theory

fermion	
zeromode	
on	boundary *

Singular	gauge		
field	in	interior

IntegraCng	out	bulk	modes	is	not	jusCfied	when	boundary	gauge	field	has	nontrivial	
topology…	Aoki-Fukaya-Kan-Golterman-Shamir	criCcism	is	a	bug	then,	not	a	feature
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It	seems	that	expected	theory	cannot	be	achieved	for	nontrivial	
topology	in	boundary	gauge	field	(e.g.	instantons)

Very	weird:	whenever	there	are	instantons,	the	4d	world	becomes	aware	of	mirror	zeromodes	
lurking	in	the	5th	dimensions?!	…

For	regulaCng	the	SM	though,	how	about	if	we	restrict	to	trivial	topology?		
(Eg,	constrain	number	of	instantons	=	number	of	anC-instantons)	
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χ

Instanton	in		
boundary	theory

fermion	
zeromode	
on	boundary nonsingular	gauge		

field	in	interior,		
no	bulk	zeromodes

Aoki-Fukaya-Kan-Golterman-Shamir	problems	seem	to	go	away	if	the	topology	of	
boundary	theory	is	trivial,	Q=0.		
(#	instantons	=	#	anC-instantons,	imposed	on	boundary	theory)

*
*AnC-Instanton	in		

boundary	theory

fermion	
zeromode	
on	boundary
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For	regulaCng	the	SM	though,	how	about	if	we	restrict	to	trivial	topology?		
(Eg,	constrain	number	of	instantons	=	number	of	anC-instantons)	

Has	been	shown	that	Q=0	QCD	is	equivalent	to	integraCng	over	θ…		
➙	yields	θ=0	QCD	+	1/volume	correcCons	

IntegraCng	over	θ	is	equivalent	to	having	an	axion	field…and	then	throwing	away	all	of	it	except	the	
p=0	mode	
• Solves	strong	CP	problem	
• No	axion	parCcle	
• Saturates	Goldstone	theorem	for	spontaneously	broken	exact	U(1)	
• Work	in	progress	(DBK	&	S	Sen)

Finite volume QCD at fixed topological charge  
Sinya Aoki, Hidenori Fukaya, Shoji Hashimoto, Tetsuya Onogi,  
PHYS. REV. D76, 054508 (2007)

Does	this	mean	one	can	only	regulate	SM	with	θ=0??
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An	exciCngly	simple	picture	is	emerging:			
Chiral	gauge	theory	as	a	boundary	theory,	without	requiring	new	dynamics

Does	it	work?		Too	early	to	tell…		
….but	the	Nielsen-Ninomiya	theorem	is	no	longer	the	obstacle.

Conclusions

ConstrucCon	“understands”	anomalies:		local	4D	theory	emerges	only	if	gauge	
anomalies	cancel	(discrete	and	perturbaCve)

		It	appears	that	the	theory	is	not	purely	4d	unless	boundary	gauge	field	topology	
is	trivial	(what	does	theory	with	nontrivial	topology	look	like??	The	η’	portal	🤔)	

		If	gauge	topology	is	trivial	and	anomalies	cancel,	it	appears	that	chiral	gauge	
theory	can	be	regulated,	giving	θ=0	theory	in	large	volume	

		Could	it	be	that	4d	chiral	gauge	theory	can	only	be	regulated	if	anomalies	
cancel	and	θ=0?	Is	there	a	BSM	scenario	that	realizes	this	physics?


