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Quantum Computation EraClassical Computation Era Lattice gauge theory calculations

Requires different theoretical framework.

Addressed different objectives

Computational Methods are entirely different.
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Computer

Intermediate steps: 

Suitable development and choice of framework. 

Suitable choice of variables/basis. 

Algorithm development for various tasks- classical/quantum/hybrid. 

Quantum information theoretic understanding - connection to physics of QCD 

Quantum advantage - knowledge generation in fundamental laws of nature.

Current Efforts:  For arbitrary dimensional SU(2)/SU(3) gauge theories
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Time

2d space

H = HE + HM + HI + HB
EL(n, i) U(n, i) ER(n, i)
ψ(n) ψ(n + i)

n n + i

E2
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G(n) = ∑
I
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[EL, U] = U
[ER, U] = − U

G(n) = ∑
I

[EL(n, I) − ER(n − I, I)] − ρ(n)

Gauss’ law constraint:

G(n) |Ψphys⟩ = 0

Uplaquette = U1U2U†
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Staggered fermion

1
2a ∑

n,I

(−1)n ψ†(n)U(n, I)ψ(n + I)

2a
g2 ∑

plaquettes
[TrUplaquette + h . c]

U(1): U(n, I) = eiθ(n,I)

Schwinger Model : U(1) in 1+1d,  term absentHB

SU(2): E → Ea, a = 1,2,3

U → Uαβ, α, β = 1,2

ψ → ψα, α = 1,2

G(n) → Ga(n) = ∑
I

[Ea
L(n, I) + Ea

R(n − I, I)] + ψ(n)† σa

2
ψ(n)

Kogut-Susskind ‘74

SU(3): a = 1,2,3,...,8.

[H, G(n)] = 0 ∀n



State-Of-The-Art

Limited progress with non-Abelian gauge theories, specifically SU(3)…

Limited progress with higher dimensional gauge theories..

The Path Towards Quantum simulating full QCD is still Unknown…

We choose a path: Towards quantum simulating QCD: 
 loop string hadron approach

Disclaimer: Other paths are also being explored towards the same goal…
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Another (also most popular) candidate: 

Quantum Link Model

SU(2) rishon representation of gauge fields

  LSH  cheapest and most promising framework. 

 How? Ans. No need to impose Gauss law constraint: 
Significant   reduction in the cost of Hilbert space 
generation, 1-sparse basis.

⇒

Not generalizable to higher dimension

 and general boundary condition



Prepotential Formulation of Gauge Theories

Ref:  
Manu Mathur, JPA 2005; NPB 2007; 
Ramesh Anishetty, Manu Mathur, IR  
JPA 2009; JPA 2010; JMP 2009; JMP 2010; JMP 2011 
IR, PhD Thesis, 2014; 
Ramesh Anishetty, IR, PRD 2014; 
IR, arXiv: 1507.07305; EPJC 2019; 

Reformulation of the original Kogut-Susskind Formalism in terms of Schwinger bosons

Formulated for SU(2), SU(3) and arbitrary SU(N)

Formulated for any dimension

Describes dynamics of only physical degrees of freedom 

GAUGE INVARIANCE + PROLIFERATION OF LOOP DEGREES OF FREEDOM

Loop String Hadron (LSH) Formulation+ Staggered fermionic matter
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Local SU(2) Invariant Operators in 1d: loops-strings- hadrons

Gauge singlets 
constructed out of 

 1 boson and  
 1 fermions

Gauge singlets 
constructed out of 

 1 boson and  
 1 fermions

Gauge singlets 
constructed out of 

two fermions

Gauge singlets 
constructed out of  

left and right bosons

Gauge singlets 
constructed out of 

left bosons and  
 fermions

Gauge singlets 
constructed out of 
 Right boson and  

 fermions



Local SU(2) Invariant Operators in 1d: loops-strings- hadrons



|nl, ni, no⟩ = (ℒ++)nl (𝒮++
i )ni (𝒮++

o )no |0⟩

LSH Formulation: local LSH basis for SU(2) in 1+1 dimension

At each site define:

staggered site x
<latexit sha1_base64="PADzTBLRNjG7pHL/69N6vZgDrbI=">AAACA3icbVBNS8NAEN34WetX1JteFovgQUpSBT0WvHisYD+gDWWznaZLNx/sTqQlVLz4V7x4UMSrf8Kb/8akzUFbHww83pthZp4bSaHRsr6NpeWV1bX1wkZxc2t7Z9fc22/oMFYc6jyUoWq5TIMUAdRRoIRWpID5roSmO7zO/OY9KC3C4A7HETg+8wLRF5xhKnXNw47vhqNEI/M8UNCjWiDQCX0YFbtmySpbU9BFYuekRHLUuuZXpxfy2IcAuWRat20rQidhCgWXMCl2Yg0R40PmQTulAfNBO8n0hwk9SZUe7YcqrQDpVP09kTBf67Hvpp0+w4Ge9zLxP68dY//KSUQQxQgBny3qx5JiSLNAaE8o4CjHKWFcifRWygdMMY5pbFkI9vzLi6RRKdvn5crtRal6lsdRIEfkmJwSm1ySKrkhNVInnDySZ/JK3own48V4Nz5mrUtGPnNA/sD4/AGsGJdy</latexit>

staggered site x+ 1
<latexit sha1_base64="4qFvZMwsiRiwiJn8kN3Zz7SDw6w=">AAACBXicbVDLSgNBEJyNrxhfqx71MBgEQQm7UdBjwIvHCOYByRJmZzvJkNkHM72SsMSDF3/FiwdFvPoP3vwbd5McNLGgoajqprvLjaTQaFnfRm5peWV1Lb9e2Njc2t4xd/fqOowVhxoPZaiaLtMgRQA1FCihGSlgviuh4Q6uM79xD0qLMLjDUQSOz3qB6ArOMJU65mHbd8NhopH1eqDAo1og0DF9GJ7ahY5ZtErWBHSR2DNSJDNUO+ZX2wt57EOAXDKtW7YVoZMwhYJLGBfasYaI8QHrQSulAfNBO8nkizE9ThWPdkOVVoB0ov6eSJiv9ch3006fYV/Pe5n4n9eKsXvlJCKIYoSATxd1Y0kxpFkk1BMKOMpRShhXIr2V8j5TjGMaXBaCPf/yIqmXS/Z5qXx7UayczeLIkwNyRE6ITS5JhdyQKqkRTh7JM3klb8aT8WK8Gx/T1pwxm9knf2B8/gCWIJfi</latexit>

ni(x)
<latexit sha1_base64="S/eCbcXd3NWZXylrU7KXkDy0TT8=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix4MVjBfsB7VKyabYNTbJLkhXL0h/hxYMiXv093vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek9vM7zxSpVkkH8w0pr7AI8lCRrCxUkcOWPXpvDQoV9yaOwdaJV5OKpCjOSh/9YcRSQSVhnCsdc9zY+OnWBlGOJ2V+ommMSYTPKI9SyUWVPvp/NwZOrPKEIWRsiUNmqu/J1IstJ6KwHYKbMZ62cvE/7xeYsIbP2UyTgyVZLEoTDgyEcp+R0OmKDF8agkmitlbERljhYmxCWUheMsvr5J2veZd1ur3V5XGRR5HEU7gFKrgwTU04A6a0AICE3iGV3hzYufFeXc+Fq0FJ585hj9wPn8AJgOOtw==</latexit>

no(x)
<latexit sha1_base64="ME0Q9U8/FGZn/0vlnhR2rBSLFZY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix4MVjBfsB7VKyabYNzSZLkhXL0h/hxYMiXv093vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5DbzO49UaSbFg5nG1I/wSLCQEWys1BEDWX06Lw3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xIQ3fspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCWUheMsvr5J2veZd1ur3V5XGRR5HEU7gFKrgwTU04A6a0AICE3iGV3hzYufFeXc+Fq0FJ585hj9wPn8ALzOOvQ==</latexit>
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<latexit sha1_base64="J94h1drC9pEX8rU4HYUWjI2Egr0=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahopTdKuix4MVjBfsh7VKyabYNzSZLkhXL0l/hxYMiXv053vw3ZtsetPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdJP5rUeqNJPi3oxj6kd4IFjICDZWehA9WX46804LvWLJrbhToGXizUkJ5qj3il/dviRJRIUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSgSOq/XR68ASdWKWPQqlsCYOm6u+JFEdaj6PAdkbYDPWil4n/eZ3EhNd+ykScGCrIbFGYcGQkyr5HfaYoMXxsCSaK2VsRGWKFibEZZSF4iy8vk2a14l1UqneXpdr5PI48HMExlMGDK6jBLdShAQQieIZXeHOU8+K8Ox+z1pwznzmEP3A+fwAJL48t</latexit>
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Abelian weaving along the links

nl

ni no

|nl, ni, no⟩x

nl
ni no

|nl, ni, no⟩x+1

x x + 1

nl + no(1 − ni) |x = nl + ni(1 − no) |x+1

Continuity of flux lines: Abelian Gauss Law



Pictorially global LSH states in 1d

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

|ΨLSH⟩ = |nl, ni, no⟩1 ⊗ |nl, ni, no⟩2 ⊗ |nl, ni, no⟩3 ⊗ |nl, ni, no⟩4 ⊗ |nl, ni, no⟩5 ⊗ |nl, ni, no⟩6

|nl = 0,ni = 0,no = 1⟩1 |nl = 1,ni = 0,no = 1⟩2 |nl = 2,ni = 0,no = 1⟩3 |nl = 2,ni = 1,no = 0⟩4
|nl = 1,ni = 1,no = 0⟩5 |nl = 0,ni = 1,no = 0⟩6

|nl = 0,ni = 0,no = 1⟩1 |nl = 1,ni = 0,no = 1⟩2 |nl = 2,ni = 1,no = 1⟩3 |nl = 1,ni = 1,no = 0⟩4
|nl = 1,ni = 0,no = 0⟩5 |nl = 0,ni = 1,no = 0⟩6

|nl = 0,ni = 0,no = 1⟩1 |nl = 1,ni = 0,no = 1⟩2 |nl = 1,ni = 1,no = 0⟩3 |nl = 0,ni = 1,no = 0⟩4
|nl = 0,ni = 0,no = 0⟩5 |nl = 0,ni = 1,no = 1⟩6

|nl = 0,ni = 0,no = 1⟩1 |nl = 1,ni = 0,no = 1⟩2 |nl = 2,ni = 1,no = 1⟩3 |nl = 1,ni = 1,no = 0⟩4
|nl = 1,ni = 0,no = 0⟩5 |nl = 0,ni = 1,no = 0⟩6

|nl = 0,ni = 1,no = 1⟩1 |nl = 0,ni = 0,no = 1⟩2 |nl = 0,ni = 1,no = 0⟩3 |nl = 0,ni = 1,no = 1⟩4
|nl = 0,ni = 1,no = 1⟩5 |nl = 0,ni = 1,no = 1⟩6

|ΨLSH⟩a =

|ΨLSH⟩b =

|ΨLSH⟩c =

|ΨLSH⟩d =

|ΨLSH⟩e =

Abelian weaving along the links



LSH Formulation: key ingredients Local gauge invariant Hilbert space

Local constraint on each link: Abelian Gauss’ law

LSH operators acting on the local basis



Hamiltonian, describing dynamics of loops, strings and hadrons.

Jesse Stryker

Collaborators:

Spectrum is identical to Kogut Susskind Hamiltonian 



SU(2) LSH framework in d > 1

1

2



SU(2) LSH framework in d > 1

1

2

Prepotential Formulation for 2+1 d:

a†(1)
a†(2)

a†(2̄)
a†(1̄)

Local Loop Operator: 

ℒ++
ij = ϵαβa†

α(i)a†
β ( j)

Pictorial representation: 

Overcomplete basis



SU(2) LSH framework in d > 1

3 physical d.o.f = 6 (local loop quantum numbers in 2d)

                                                        - 2( Abelian Gauss’ law constraint along 2 link directions) 


             -1 (Mandelstam constraint )

Non-linear constraints, become increasingly complicated with increasing dimension

Overcomplete basis



SU(2) LSH framework in d > 1

Way out? Virtual point splitting scheme:

21 3 4

65 7 8

109 11 12

1413 15 16

1
1′ 

2 2′ 

3
3′ 

4 4′ 

5
5′ 

6 6′ 

7
7′ 

8 8′ 

9
9′ 

10 10′ 

11 11′ 

12 12′ 

13 13′ 

14 14′ 

15 15′ 

16
16′ 

2-d LSH defined on the hexagonal lattice



SU(2) LSH framework in d > 1

2d- LSH 
SU(2)

a†
α(1)a†

α(2)

a†
α(3)

Gauge Singlets SU(2)

ϵαβa†
α(1)a†

β (2)

ϵαβa†
α(3)a†

β (1)

ϵαβa†
α(2)a†

β (3)

3 physical d.o.f = 2 x 3 (local loop quantum numbers in 2d)

              - 3( Abelian Gauss’ law constraint) 


        + 0 (Mandelstam constraint )

Generalized for arbitrary dimension! 
Generalized to include matter!



x
x

x′ ≡ x
x

x′ ≡

x
x

x′ ≡ x
x

x′ ≡

x
x

x′ ≡ x
x

x′ ≡ x
x

x′ ≡

x
x

x′ ≡ x
x

x′ ≡x
x

x′ ≡

x
x

x′ ≡



SU(2) LSH Formalism: 2+1 d

Matter-Gauge interactions  
are same as in 1d



SU(2) LSH Formalism: 3+1 d

Matter-Gauge interactions are same as in 1+1d 
Pure gauge interactions are same as in 2+1d



Leads to exploring several new research directions:

Analog quantum 
simulation using LSH

Developing algorithm for 
simulating SU(2) gauge 

theory on universal 
quantum computers

LSH for full 
QCD

SU(3) gauge 
theory in 1+1d

Generalization 
to 3+1d

Add more field 
content

Quantum 
Algorithms

Exploring 
interesting Physics

Tensor Network 
calculations

Entanglement 
entropy

Thermalization 

Global 
symmetries



Loop-String-Hadron formulation of SU(3) gauge theory 

Not yet the full-fledged QCD 

In 1+1 dimension, to be generalised in d>2  
Single quark flavour 

Jesse Stryker

Collaborators:

Saurabh Kadam

The construction involves nontrivial complications 
over the SU(2) framework 

However, the final construction retains all essential 
features of the SU(2) framework and can be used in 

straightforward manner like in SU(2)

The LSH Hamiltonian for (3+1)d SU(3) gauge theory A concrete step towards 
quantum simulating QCD



LSH Formulation: key ingredients

Local gauge invariant Hilbert space

Local constraint on each link: Abelian Gauss’ law

Generalization to QCD
First attempt: SU(3) gauge theory in 1+1 dimension

Starting point: Prepotential formulation of SU(3) gauge theory 

Manifestly gauge invariant dynamics within the LSH Hilbert space 



Prepotential formulation of SU(3) gauge theory 
Ramesh Anishetty, Manu Mathur, IR, (2009), (2010)

Kogut-Susskind 
Formulation

Schwinger boson 
representation of SU(3)

Not a trivial generalisation 
of SU(2)

SU(3): rank 2


Fundamental and anti-fundamental representation: 
Two Schwinger boson triplets a†

α, b†α

Multiplicity problem caused by: 


 SU(3) singlets

3

∑
α=1

a†
αb†α ⇒ ≡ a† ⋅ b†

Chaturvedi and Mukunda J. Math. Phys. 43, 5262 (2002)

: Irreducible 
Schwinger boson 

representation of SU(3) 
  

A†
α, B†α

A†
α ⋅ B†α ≈ 0
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Prepotential formulation of SU(3) gauge theory 
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Abelian Gauss’ Law

Directed flow of electric flux on a link: From triplet to anti-triplet

Imposes continuity of the flux lines

NA(L, x) = NB(R, x)

NB(L, x) = NA(R, x)



LSH formulation of SU(3) gauge theory 



Loop-String-Hadron formulation of SU(3) gauge theory 

Local ingredients:

Singlets can be 
formed using:

δα
β ≡ ⋅

ϵαβγ or ϵαβγ ≡ ∧



Loop-String-Hadron basis: onsite SU(3) invariant basis
Local ingredients:

Singlets can be formed using:

δα
β ≡ ⋅

ϵαβγ or ϵαβγ ≡ ∧



Loop-String-Hadron basis: Pictorial Representation

LSH state:



LSH Formulation: SU(3) in 1+1 dimension



Global Loop-String-Hadron basis: Pictorial Representation

LSH state:

Snapshots of loops-strings-
hadron configurations at each site 

We further need to 
weave these along 

links
Abelian Gauss laws



Local LSH state:

Abelian Gauss laws

LSH Formulation: key ingredients for SU(3) in 1+1 dimension



Towards building the LSH Hamiltonian

Kogut-Susskind 
Hamiltonian

Irreducible Schwinger boson representation of SU(3) 
coupled to on-site staggered fermions

Local LSH operators weaved 
together by the Abelian Gauss law

Local 
building 
blocks



acting on



Diagonal functions are in terms of



Towards building the LSH Hamiltonian KS Hamiltonian in LSH basis:
re-written in terms of LSH 

operators 

Structurally identical to the SU(2) LSH construction



Towards building the LSH Hamiltonian KS Hamiltonian in LSH basis:
re-written in terms of LSH 

operators 

Structurally identical to the SU(2) LSH construction

Numerically benchmarked with completely gauge fixed (pure gauge) Hamiltonian



  The LSH Hamiltonian Numerically benchmarked with completely gauge fixed (pure gauge) Hamiltonian

Fermionic Hamiltonian with long range interaction

Contains degeneracy 
Due to global symmetries



  The LSH Hamiltonian Global symmetries

Globally conserved charges

Or,

Degeneracy in fermionic formulation : 



LSH Formulation: SU(3) in 2+1 dimension and beyond

(b) (c)

(a)

1̄ x 1

2
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Loop configurations for 2d lattice

Perform point splitting

Too many loop degrees of freedom

Loops on 
triangular 

lattice 



LSH Formulation: SU(3) in 2+1 dimension and beyond

Loops on triangular 
lattice : 

redundant loop d.o.f. still 
exist

Mandelstam constraint:

Occupation number basis: 
insufficient



LSH Formulation: SU(3) beyond 1+1 dimensions
First focus: trivalent vertex

Choose a naive basis:

Remnant Mandelstam Constraint:



LSH Formulation: SU(3) beyond 1+1 dimensions

Is the naive basis a good choice?

Yes, it solves the Mandelstam constraint

But, not always orthogonal !!!

≡

Way out: Brute force orthogonalisation - elegance of the framework is lost!

Alternatively: Find the hidden 7th quantum number

As the first attempt: Find orthogonal subspaces



LSH Formulation: SU(3) beyond 1+1 dimensions

• The problem is due to presence of the Littlewood Richardson Coefficients associated 
with direct product of irres:


• To find orthonormal states characterised by 7 quantum 
numbers at each site, in order to match with the physical 
degrees of freedom.


• Seventh Casimir Candidate: 


• The seventh Casimir is diagonalised in each (                        ) sector. 


• Examples: 
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LSH Formulation: SU(3) beyond 1+1 dimensions
As the first attempt: Find orthogonal subspaces Has been normalised.

(0,0,0)

(1,1, − 2)

(2, − 1, − 1)



LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: Plaquette / LSH at corners

• Link operator:




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: Plaquette / LSH at corners

• Gauge Invariant LSH Corner operators at a trivalent vertex:




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: Plaquette / LSH at corners

• Magnetic Hamiltonian in LSH framework:


+ H.C.



LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: in the naive basis

• Fundamental LSH operators:
 • On-site LSH operators in Hamiltonian:




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: in the naive basis

• The algebra of all possible LSH operator closes: allows one to perform calculation of 
matrix elements in LSH basis




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: in the naive basis

• On-site LSH operators acting on LSH basis states at a trivalent vertex:


• Algebraic calculation of matrix 
element is tedious: This job has now 
been automatised.




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: in the naive basis

• The action of LSH operators on LSH basis: examples




LSH Formulation: SU(3) beyond 1+1 dimensions

Dynamics of LSH operators: in the naive basis

• The action of LSH operators on LSH basis: the resultant state can be found 
pictorially


• Algebraic calculation of matrix element is tedious: This job has now been 
automatised.


• Next task: to construct the Hamiltonian matrix.




LSH Formulation: SU(3) in 2+1 dimension and beyond

Challenges: • Point splitting does not solve all the Mandelstam constraints.

• Still remain one unsolved constraint at each site.

• Naive basis is not orthonormal.

Aim: • To come-up with an elegant 
Hamiltonian calculation for SU(3) in 
3+1 dimension.

Work is in progress…

Jesse Stryker

Collaborators:

Saurabh KadamAahiri Naskar, 
Grad student, 

BITS Goa

May require a second 
point splitting for SU(3)



Part II: Applications



Benefits of working in the LSH framework: Applications in quantum simulation

Already demonstrated for SU(2)

Symmetry protection protocol:

Emil Mathew, 
Grad. Student, 
BITS-Pilani, Goa

LSH framework:  
no local non-Abelian 

symmetry

Global symmetries: global SU(2)Local symmetries: AGL



Benefits of working in the LSH framework: Applications in quantum simulation

Symmetry protection protocol for SU(3):

Global charges Local charges



Symmetry protection protocol for SU(3):

Manifestly violating global symmetries leads to all local symmetries to be violated



Applications in quantum simulation

Already demonstrated for SU(2)

Analog Quantum Computation
Key advantage:

1+1d dynamics: 
dynamics of 

strings

In LSH: string 
ends are purely 
fermionic object

Continuity of strings 
are guaranteed by 
AGL: protected by 
global symmetries

Raka Dasgupta



Experimental Demonstration: minor modification/combination of 

Pair creation dynamics in lattice gauge theory

Application: Analog Quantum Simulation



Simulated Dynamics: cartoon
Application: Analog Quantum Simulation



Numerical Comparison: Exact diagonalization on 6 site lattice
Application: Analog Quantum computation



Generalization of this scheme for SU(3): under investigation

Application: Analog Quantum computation

1+1d dynamics: 
dynamics of SU(3) 

strings and hadrons 
in LSH framework

Simulated by SU(3) 
Fermi-Hubbard 

model

Continuity of strings are guaranteed 
by AGL: protected by global 

symmetries

Collaborators: Madhumita Kabiraj, Emil Mathew, Raka Dasgupta

Preliminary results



Benefits of working in the LSH framework: Digital quantum simulation

Already demonstrated for SU(2)



Digitization of LSH Hilbert space

Binary Representation of Loop Quantum Numbers

Matter site Gluonic site



Oracle to check the Abelian Gauss law

d >1

1d



Benefits of working in the LSH framework: Applications in quantum simulation

Work in progress for SU(3)

Physicality Oracle: Preliminary construction
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Useful component for state preparation algorithms such as QAOA 
and error detection in a simulation

Fran Ilčić, 
Grad. student,

BITS Goa



Benefits of working in the LSH framework: Applications in quantum simulation

Already demonstrated for SU(2)

Digital Quantum Computation

A detailed analysis establishes benefits of using LSH framework 

on universal quantum computers both in 

near-term far-term 

“The loop-string-hadron formulation further retains the non-Abelian gauge symmetry despite the inexactness of the digitized 
simulation, without the need for costly controlled operations. Such theoretical and algorithmic considerations are likely to be 

essential in quantumly simulating other complex theories of relevance to nature.”



Benefits of working in the LSH framework: Applications in quantum simulation

Other ongoing works:
Tensor network calculations for non-Abelian gauge theories

Matrix Product State Ansatz for LSH in one spatial dimension

On-site tensor with three physical indices:  
1 bosonic and 2 fermionic



Benefits of working in the LSH framework: Applications in quantum simulation

Other ongoing works:
Tensor network calculations for non-Abelian gauge theories

Code is developed and benchmarked with  
exact-diagonalization for small systems

Produces static and dynamic results



Time-evolution of a string state on the interacting vacuum
MPS Calculations using LSH framework



Benefits of working in the LSH framework: Applications in quantum simulation

Other ongoing works:
Time-evolution of a dynamical string state



Time-evolution of a string state on the interacting vacuum

MPS preparation of interacting vacuum

tphys
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𝜆(t)
0.0

0.2

0.4

N = 128

MPS Calculations using LSH framework



Benefits of working in the LSH framework: Applications in quantum simulation

Other ongoing works:
Time-evolution of a dynamical string state



Probing effect of finite bond dimension: N=128

MPS Calculations using LSH framework



Probing cut-off dependence in dynamics: N=128
MPS Calculations using LSH framework



Probing cut-off dependence in dynamics: N=64
MPS Calculations using LSH framework



Probing cut-off dependence in dynamics: N=32
MPS Calculations using LSH framework



Benefits of working in the LSH framework: Applications in quantum simulation

Other ongoing works:
MPS calculations for non-Abelian gauge theories

Aniruddha Bapat

Jesse StrykerZohreh DavoudiSaurabh Kadam

Emil Mathew Navya Gupta

Collaborators:



Benefits of working in the LSH framework: Applications in quantum simulation

Under construction: PEPS Ansatz for LSH



Benefits of working in the LSH framework: Applications in quantum simulation

Understanding entanglement structure 
for non-Abelian gauge theories

Different 
distillation 

procedure for 
different choice 
of framework: 

 symmetry 
resolved 

entanglement 
entropy for  

non-Abelian 
gauge theories

Other ongoing works:

LSH framework: being abelianized, involve 
much simpler distillation procedure



Thermalization of gauge theoriesOngoing work:

Q. Does non-Abelian gauge theories exhibit quantum chaos? 

Attempt to find if  the eigenstate thermalisation hypothesis 
(ETH) hold for non-Abelian gauge theories

Check for ETH Markers: Level-spacing statistics, diagonal ETH, 
off-diagonal ETH 

Computational tool: Exact diagonalization/  
block diagonalization 

Using LSH framework 

Using LSH framework allows to push the boundary in terms of lattice size, 
cut-off and going beyond SU(2)



Conclusions

Hamiltonian simulation of SU(2) gauge theory is a tough job

⇒Considerably less progress in quantum simulating the same 

using angular momentum basis within KS framework
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Conclusions

Hamiltonian simulation of SU(2) gauge theory is a tough job

⇒Considerably less progress in quantum simulating the same 

using angular momentum basis within KS framework

LSH framework of SU(2) LGT shows considerable advantage

⇒Significant progress in the last couple of years in digital and analog 

quantum simulating the same

SU(3) LSH framework is in the making

⇒ Following the path of applications of SU(2) LSH, 

one can make the first concrete step towards 

quantum simulating QCD

⇒ Anaogous SU(3) angular momentum basis is not well understood, 

No progress so far beyond fully gauge removed 1d lattice

Hamiltonian simulation of SU(3) gauge theory is almost an impossible job

LSH framework in 3+1 dimension including multiple quark flavours: QCD



Thank You

Emil Mathew 
Grad student

Fran Ilčić  
Grad student

Aahiri Naskar 
   Grad student

Research group:

Collaborators:


