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Motivation

Every curved manifold can be isometrically embedded into
some higher-dimensional Euclidean spaces.

Euclidean lattice space

Curved space

Embed as
domain-wall
[Nash 1956]

Edge modes are localized at the curved domain-wall.
= They feel "gravity" by the equivalence principle.

How about Weyl fermion? 3



Embedding a Curved Space [Nash, 1956]

For any n-dim. Riemann space (Y, g), there is an embedding
f : Y → Rm (m≫ n) such that Y is identified as

xµ = xµ(y1, · · · , yn) (µ = 1, · · · ,m)(
xµ : Cartesian coordinates of Rm

yi : Coordinates of Y

and the metric is written as

gij =
∑
µν

δµν
∂xµ

∂yi
∂xν

∂yj
.

Vielbein and spin connection are also induced!

Any Riemannian manifold can be identified as a submanifold of
a flat Euclidean space!
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“Gravity" in Condensed Matter Physics

[Onoe et al., 2012] observed a
gravitational effect on 1D

uneven peanut-shaped C60

polymer.

The Hamiltonian on a curved surface is
[Jensen and Koppe, 1971; da Costa, 1981]

H = − ℏ2

2m∗

[
1
√
g
∂i
(√
ggij∂j

)
+ h2 − k

]
,

{
h: Extrinsic curvature
k: Gaussian curvature

Density of states depends on the curvatures.
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Dirac Fermion on Curved Domain-Wall [SA and H. Fukaya, 2022]

• Edge modes (γnormal = +1) appear at the wall.
• They feel gravity through the induced spin connection.
• The continuum limit is unique (lattice spacing → 0).
• Rotational symmetry is automatically recovered.

cf. flat case [Kaplan, 1992], spherical TI [Takane and Imura, 2013]
6



Weyl Fermion on Single Spherical Domain-wall

We investigate a Free fermion system with S2 domain-wall.

D =

3∑
i=1

σi
∂

∂xi
−m

→ /DS2 1

2
(1 + σ3)

• Spectrum

• Edge modes

• Continuum Limit

• Restoration of Symmetry

Kan will assign U(1) gauge connection.

cf. S1: [Kaplan and Sen, 2024], [Kaplan’s talk]
S2: [Clancy and Kaplan, 2024] 7
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Flat Domain-wall

We consider a Hermitian massive Dirac
operator in (n+ 1)-dim space:

H =γ̄

(
n∑
i=1

γi∂i + γs∂s +m(s)

)
.

Assuming ψ(x, s) = η+(x)e
−|m|s and

γsη+ = +η+, we find

Hψ(x, s) =

(
commutes with γs

γ̄
n∑
i=1

γi∂i

)
η+(x)e

−|m|s

sO

m

−m

Edge states are localized at

Domain-wall

s = 0 and γ̄
∑n

i=1(γ
i∂i) ≃ i /Dn !
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Hermitian Dirac operator with curved domain-wall

We analyze a Hermitian Dirac operator with a curved domain-wall:

H = γ̄

(
n+1∑
I=1

γI
∂

∂xI
+msign(f)

)
= γ̄( /D +msign(f))

The gamma matrices are

γI =

{
−σ2 ⊗ γ̃I (I = 1, · · · , n)
σ1 ⊗ 1 (I = n+ 1)

γ̄ = σ3 ⊗ 1.

f = 0 defines a domain-wall Y in X = Rn+1.
cf. Takane and Imura [2013] considered the curved DW as a surface of a topological

insulator.
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Purpose of This Section

We solve the eigenvalue problem of H = γ̄( /D +msign(f)) on Rn+1.
In the limit of large m, we show that eigenstates with |E| < m:

• Are localized at the domain-wall Y = {f = 0},

• Exhibit positive chirality γnormal = n · γ = +1,

• Feel gravity through the spin connection on Y .

Here, the chirality for a spinor ψ is defined as

⟨ψ|γnormal|ψ⟩ =
∫
Rn+1

dn+1x ψ†γnormalψ.
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Appropriate vielbein

We take an appropriate vielbein on Rn+1(
∂

∂x1
, · · · , ∂

∂xn+1

)
→
(
e1, · · · , en︸ ︷︷ ︸
vielbein on Y

, en+1 =
∂

∂t

)
,

where eI = e JI
∂
∂xJ

and t denotes the distance from Y .
The gamma matric in the normal direction is written by

γnormal = e Jn+1γJ

and the Hermitian Dirac operator is

H = γ̄

(
γI

∂

∂xI
+msign(f)

)
= γ̄

(
γI(e−1) JI eJ +msign(f)

)
= γ̄

(
sγJs−1eJ +msign(f)

)
.

Here, s = exp
(
1
4

∑
IJ αIJγ

IγJ
)

is defined as s−1γJs = γIe JI .
(αIJ = −αJI ∈ R)
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Induced Spin Connection

By taking the local Lorentz trsf s, γnormal and H changes to

s−1γnormals =γ
n+1 = σ1 ⊗ 1

s−1Hs =γ̄
(
γJ
(
eJ +

Pure Spin Connection

s−1eJ(s)
)
+msign(f)

)
=γ̄

n∑
i=1

γi
(
ei +

Induced Spin Connection

ωi,jk
γjγk

4

)
+ γ̄γn+1

(
∂

∂t
−

Extrinsic Curvature

1

2
trh+mϵγn+1

)

=σ1 ⊗ i /DY + σ3σ1
(
∂

∂t
− 1

2
trh+ σ1mϵ

)
⊗ 1

Low-energy modes must eliminate the second term.
ψ ∼ e−|m|t, γnormalψ = +ψ, Hψ = i /DY ψ

They are localized at the wall and feel gravity through indeced
spin connection! 14
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S2 domain-wall

Domain wall:

m(r) =

{
−m (r < r0)

+M → +∞ (r ≥ r0) O x

y

−m

+M → ∞

Dirac operator:

D =

3∑
i=1

σi
∂

∂xi
+m(r) = σr

(
∂

∂r
+

1

r

)
+m(r)− σr

DS2

r
,

DS2
=

3∑
i=1

σiLi + 1, σr =
x

r
σ1 +

y

r
σ2 +

z

r
σ3.

Boundary condition: σrψ(x) = ±ψ(x) at r = r0
17



Effective Dirac op and Dirac op. of S2

A local Lorentz transformation

R =

(
e−iϕ

2 cos
(
θ
2

)
−e−iϕ

2 sin
(
θ
2

)
ei

ϕ
2 sin

(
θ
2

)
ei

ϕ
2 cos

(
θ
2

) )eiϕ
2

changes ψ → R−1ψ and

DS2

→ i

(
σ1

∂

∂θ
+

σ2
sin θ

(
∂

∂ϕ
+

Spinc connection on S2

i

2
− cos θ

2
σ1σ2

))
,

σr → σ3

Edge states feel gravity through the induced connection!
[Takane and Imura, 2013].
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Eigenstate of D†D and DD†

Let χ± satisfy

DS2
χ± = λχ∓, (λ = 1, 2, · · · )

σrχ± = ±χ±.

In the large m limit, we assume ψ± = 1
r e

−m|r−r0|χ±, then we get

Dψ+ =

(
σr

(
∂

∂r
+

1

r

)
+mϵ− σr

DS2

r

)
ψ+ ≃ λ

r0
ψ−.

D†ψ− =

(
−σr

(
∂

∂r
+

1

r

)
+mϵ+ σr

DS2

r

)
ψ− ≃ λ

r0
ψ+.

D†Dψ+ =
(
λ
r0

)2
ψ+ and DD†ψ− =

(
λ
r0

)2
ψ−

Chiral fermion appears at the wall! 19
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S2 Domain-wall Fermion on Lattice

We consider a lattice on B3 with the radius r0.

The (Wilson) Dirac op is

D =
1

a

(
3∑

i=1

[
σi∇i −∇†

i

2
+

1

2
∇i∇†

i

]
−m

)
.

(∇iψ)x = ψx+î − ψx, (∇†
iψ)x = ψx−î − ψx

+OBC

We analyze D†D and DD†.

21



Spectrum and Edge modes of D†D

We solve D†Dψ = E2ψ when r0 = 24a,ma = 0.35.

• Localized at the boundary
• σrψ = +ψ

• There is a gap from zero (as a gravitational effect )
• Agrees well with the continuum prediction

22



Spectrum and Edge modes DD†

We also compute DD†ψ = E2ψ.

The result is almost the same as D†D, but edge modes are
negative chiral modes:

σrψ = −ψ

It seems that a chiral theory is possible...
23



Continuum Limit and Finite-volume Effect

Continuum limit a→ 0

(mr0 = 8.4 is fixed)

Agree well with
the conti. prediction!

Large volume limit r0 → ∞
(ma = 0.35 is fixed)

Saturates in the large r0 limit!

24



Restoration of Rotational Symmetry

The rotational symmetry
automatically recovers in the

continuum limit!

25
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Conclusion

We investigate a FREE fermion system with a S2 domain-wall.

• Weyl fermions appear at the wall.

• Continuum limit is good!

• Low-energy theory seems chiral.

But what if link variables exist?
Kan will explain this situation in detail.
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Outlook

• Symmetric mass generation.

• Embedding
4D Schwarzschild space into
6D flat space [Kasner, 1921].

ds2 =dx2 + dy2 + dz2 + dX(r, τ)2 + dY (r, τ)2 + dZ(r, τ)2

=

(
1− β

4πr

)
dτ2 +

dr2

1− β
4πr

+ r2dΩ2

28
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Lattice gauge theory on a curved space

We can not approximate d-dim space with d-dim square lattice.
Can’t handle gravity!



Triangular Lattice

Arbitrary space can be discretized by a triangular lattice.
Their lengths and angles represent the gravity.
[Regge, 1961; Ambjørn et al., 2001; Brower et al., 2017]

Triangular lattice on 2-dim sphere [Brower et al., 2017]

However, continuum limit is not unique and symmetry
restoration is non-trivial.



Curved Kaplan Domain-Wall [SA and H. Fukaya, 2022]

• Edge modes (γnormal = +1) appear at the wall.
• They feel gravity through the induced spin connection.
• The continuum limit is unique (lattice spacing → 0).
• Rotational symmetry is automatically recovered.

cf. flat case [Kaplan, 1992], spherical TI [Takane and Imura, 2013]



With nontrivial U(1) link variables

When the monopole exists in the ball, another 0-mode appears
around the monopole.

An obstacle in formulating lattice chiral gauge theory.



Induced Spin Connection

By taking the local Lorentz trsf s, γnormal and H changes to

s−1γnormals =γ
n+1 = σ1 ⊗ 1

s−1Hs =γ̄
(
γJ
(
eJ +

Pure Spin Connection

s−1eJ(s)
)
+msign(f)

)
=γ̄

n∑
i=1

γi
(
ei +

Induced Spin Connection

ωi,jk
γjγk

4

)
+ γ̄γn+1

(
∂

∂t
−

Extrinsic Curvature

1

2
trh+mϵγn+1

)

=σ1 ⊗ i /DY + σ3σ1
(
∂

∂t
− 1

2
trh+ σ1mϵ

)
⊗ 1

s−1eJ(s) is a pure gauge field but edge states are influenced by
the nontrivial spin connection on Y !



Edge mode

In the large m limit, we find an edgemode of H as

ψ = se−m|t| exp

(∫ t

0
dt′

1

2
trh

)(
1

1

)
⊗ χ(y)(

i /DY χ =

n∑
i=1

γi
(
ei +

Spin connection on Y

ωi,jk
γjγk

4

)
χ = λχ

)
.

The eigenvalue of H is obtained by

Hψ = se−m|t| exp

(∫ t

0
dt′

1

2
trh

)(
1

1

)
⊗ i /DY χ(y) = λψ

γnormalψ = s(σ1 ⊗ 1)s−1ψ = +ψ ψ is a chiral mode

Massless chiral modes appear at the wall and feel gravity
through the induced spin connection!
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