



# **KoALICE** What we learned about heavy-quark hadronization in small and large collision systems

MinJung Kweon Inha University HHIQCD2024, 2024.11.6



### Hadronization





- Once the system reaches the crossover region with temperatures around the pseudo-critical temperature, partons constituting the QGP undergo colorneutralization into hadronic bound states
- a process generically denoted as hadronization.





### Hadronization



#### Question is... how much do we understand about hadronization in heavy-ion physics?



- Once the system reaches the crossover region with temperatures around the pseudo-critical temperature, partons constituting the QGP undergo colorneutralization into hadronic bound states
- a process generically denoted as hadronization.





## Suitable probes, heavy flavour hadrons

- initial hard scatterings (reasonably well described by perturbative QCD)
- However, still what we measure...

dynamics of heavy quarks from their creation at the onset of a heavy-ion collision through their evolution in the QCD medium until their detection as heavy hadrons

complex to describe using first-principles QCD!

• Heavy-quark (HQ) mass is much larger than the nonperturbative QCD scale  $\rightarrow$  produced mainly in

• Determination of HQ fragmentation functions can be carried out at next-to-leading order in the production process within an HQ mass expansion using the methods of HQ effective theory (HQET)

• We need a comprehensive description of the initial production of the heavy quarks, their interactions with the QGP, hadronization, and the interactions of heavy hadrons in the hadronic phase  $\rightarrow$  rather



## Heavy flavour production in medium: what we see



MinJung Kweon, Inha University, HIQCD2024



dynamics in QGP: energy loss via radiative ("gluon Bremsstrahlung") and collisional processes

- color charge (Casimir factor)
- quark mass (dead-cone effect)
- path length and medium density





## Heavy flavour production in medium: hadronization



MinJung Kweon, Inha University, HIQCD2024





## Heavy flavour production in medium: hadronization



Parametrized on data and assumed to be 'universal'











Independent fragmentation of partons into hadrons is the standard way to describe hadronization in elementary collision systems (pp, e<sup>+</sup>e<sup>-</sup>)

$$E\frac{d\sigma_H}{d^3P_H} = E_p \frac{d\sigma_i}{d^3p_i} \otimes \mathcal{D}_{i\to H}(z) \qquad z$$

*D*(*z*) is non-perturbative quantity but it is considered to be universal and usually extracted from experiments such as e<sup>+</sup>e<sup>-</sup> collisions.

ex. Peterson $\mathcal{D}_{Q \to H}(z) \propto \frac{1}{z[1 - \frac{1}{z} - \frac{\epsilon}{1-z}]^2} \qquad \epsilon =$ 

ex. in PYTHIA with a modified Lund string fragmentation function

$$\mathcal{D}_{Q \to H} \propto \frac{1}{z^{1+rbm_Q^2}} z^{a_\alpha} \left(\frac{1-z}{z}\right)^{a_\beta} \exp$$

MinJung Kweon, Inha University, HIQCD2024

 $= P_H/p$ 

$$= m_q^2/m_Q^2$$





## **Question on the universality**

#### **Fragmentation** Issues

#### **Fragmentation Function (FF):**

provides information about the energy fraction which is transferred from quark to a given meson (the larger  $m_Q$  the harder the fragmentation function)

#### **Questions to be answered:**

> what's the **proper parametrization** of non-perturbative frag. function?

- Peterson:  $f(z) \propto 1/[z(1-\frac{1}{z}-\frac{\varepsilon}{(1-z)})^2]$
- Kartvelishvili:  $f(z) \propto z^{\alpha}(1-z)$
- Lund symmetric:  $f(z) \propto \frac{1}{z}(1-z)^a \exp(-\frac{bm_t^2}{z})$
- Bowler:  $f(z) \propto \frac{1}{z^{1+r_b m_t^2}} (1-z)^a \exp(-\frac{bm_t^2}{z})$

is fragmentation function **universal**? (i.e. are FF portable from  $e^+e^-$  to ep and pp?).

Zuzana Rúriková

Charm Fragmentation Function June 7, 2006













## Hadronization in vacuum



MinJung Kweon, Inha University, HIQCD2024

ALI-PREL-326024

### Hadronization in vacuum





→ recombination of partons in QGP close in phase space

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \dots, x_n; p_1, \dots)$$

#### Statistical hadronization

- $\rightarrow$  equilibrium + hadron-resonance gas + freeze-out temperature

# Way of heavy-flavour have

#### Fragmentation

- $\rightarrow$  production from hard-scattering
- $\rightarrow$  fragmentation functions: data pa

# $\sigma_{pp \rightarrow h} = PDF(x_a, Q^2)PDF(x_b, Q^2)$





#### $n_{\rm C}/\nu$

- $(p_n) \delta(p_T \sum_i p_{iT})$
- Have described first AA observations in light sector for the enhanced baryon/meson ratio and elliptic flow splitting

→ production depends on hadron masses and degeneracy, and on system properties require total charm cross section







### Charm vs. light baryon-to-meson ratio



Gluon fragmentation...



# Role of strangeness in wavy-quark hadronization



MinJung Kweon, Inha University, HIQCD2024

- Strangeness enhancement: yield-ratio between
  - (multi)strange hadrons and pion larger in heavy-ion collisions
- than minimum-bias pp collisions
- Smooth increase vs. event multiplicity, without a clear collision-system dependence
- What do we learn from strange D-meson production about heavy-quark hadronization
  - evolve vs. event multiplicity?
  - sensitive to QGP-induced effects (e.g. strangeness)
  - enhancement, coalescence, E-loss, flow, ...)?







### Charm baryon production in pp at a glance



JHEP 12 (2023) 086



## **Charm-quark fragmentation fraction**



Normalized by the sum of the p<sub>T</sub>-integrated cross sections of D<sup>0</sup>, D<sup>+</sup>, D<sub>s</sub><sup>+</sup>, J/ $\psi$ ,  $\Lambda_c^+$ ,  $\Xi_c^0$ ,  $\Xi_c^+$ Conclusion: baryon enhancement at the LHC with respect to e<sup>+</sup>e<sup>-</sup> collisions is caused by different hadronisation mechanisms at play in the parton-rich environment produced in pp collisions

MinJung Kweon, Inha University, HIQCD2024

 $\Sigma_c^0$ : Larger feed-down to  $\Lambda_c^+$  (40%, 17% in e<sup>+</sup>e<sup>-</sup>)





### How about in Pb-Pb?



• Ratio increases from pp to mid-central and central Pb-Pb at intermediate  $p_{T}$ • Trend qualitatively similar to what is observed for  $\Lambda/K_{s^0}$  ratios

MinJung Kweon, Inha University, HIQCD2024







MinJung Kweon, Inha University, HIQCD2024

# 0.05

0.06

[I]

- Modified mechanism of hadronization in all hadronic collision systems with respect to charm fragmentation
- hadronization process itself?





MinJung Kweon, Inha University, HIQCD2024



and in  $e^+e^-$  collisions at LEP [68] for prompt and non-prompt production.

|                                                          | pp                                                                                                                                                                                 | <b>e+e-</b>                            |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                          | ALICE                                                                                                                                                                              | LEP average [68]                       |
| prompt $\Lambda_c^+/D^0$<br>non-prompt $\Lambda_c^+/D^0$ | $0.49 \pm 0.02(\text{stat})^{+0.05}_{-0.04}(\text{syst})^{+0.01}_{-0.03}(\text{syst}) \ [60]$<br>$0.47 \pm 0.06(\text{stat}) \pm 0.04(\text{syst})^{+0.03}_{-0.04}(\text{extrap})$ | $0.105 \pm 0.013$<br>$0.124 \pm 0.016$ |

#### Significantly higher than that measured in e<sup>+</sup>e<sup>-</sup>

MinJung Kweon, Inha University, HIQCD2024

#### Phys. Rev. D 108, 112003 (2023)

**Table 2:**  $p_{\rm T}$ -integrated  $\Lambda_{\rm c}^+/{\rm D}^0$  production ratio measured at midrapidity (|y| < 0.5) in pp collisions at  $\sqrt{s} = 13$  TeV





### **Baryon to meson ratios of different flavors**



MinJung Kweon, Inha University, HIQCD2024

- All the measurements for beauty, charm, and strange hadrons show a similar trend as a function of  $p_T$  and are compatible within the uncertainties
- $\rightarrow$  Similar baryon-formation mechanism among light, strange, charm and beauty hadrons?



Note: for LHCb, different normalization & should consider decay kinematics (for the other case)

\* These three tunes are characterized by different constraints on the time dilation and causality







MinJung Kweon, Inha University, HIQCD2024

• Similar to the light flavor sector?







### In Catania, coalescence + fragmentation in pp





## **Coalescence** in pp vs p<sub>T</sub> in Catania



MinJung Kweon, Inha University, HIQCD2024

• All the coalescence does not affect significantly D<sup>0</sup>, but is dominant for baryons  $\Lambda_c$  and  $\Xi_c$ 







### Catania baryon to meson ratio

#### Phys.Rev.C 107 (2023) 064901





MinJung Kweon, Inha University, HIQCD2024



ALI-PUB-567906

Catania Coal+Fragm. very close to pp FF



## **PYTHIA Color Reco**

Altmann et al., arXiv 2405.19137



(b) Junction reconnection.

• When string color reconnection is switched-on in pp:  $\rightarrow$  Very large baryon  $\Lambda_c$  enhancement  $(\bar{q})$  $\rightarrow$  not that relevant for D  $\overline{q}$ Not so different qualitatively wrt Coalescence and **POWLANG Local color recombination** 

![](_page_29_Figure_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

## Many models in market enhancing baryon production

- Coalescence [+Fragmentations] model:

![](_page_30_Figure_3.jpeg)

MinJung Kweon, Inha University, HIQCD2024

### → Catania, Coal-TAMU(KO), Ko-Cao, CCNU-Duke, [QCM], PHSD, RRM-TAMU, Nantes-EPOS4HQ,...

Ex) EPOS4HQ

 $\rightarrow$  To describe HF spectra & ratios needs Coalescence in phase space ~Catania

**Only difference wrt Catania:** 

- Assume RQM states like in SHM

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_12.jpeg)

## What is obvious?, what is vague, what is unknown, ...

- Coalescence  $\rightarrow$  a common framework for heavy-flavor hadronization from pp to AA?
- Other approaches such as PYTHIA-CR, POWLANG-LCN, ... point also to
  - In medium local recombination
  - -Large evolution from  $e^+e^-$  to pp while reshuffling in  $p_T$  from pp to AA

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_7.jpeg)

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

MinJung Kweon, Inha University, HIQCD2024

![](_page_34_Picture_2.jpeg)

# **Charm-quark fragmentation-fraction ratio**

Strange to non-strange charm-meson production ratio

![](_page_35_Figure_2.jpeg)

# doesn't show any significant dependence of the collision system & energy!

MinJung Kweon, Inha University, HIQCD2024

![](_page_35_Picture_5.jpeg)

|                           | $d\sigma/dy _{ y <0.5}$ (µb), $p_{\rm T}>0$                                                                                        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $D^0$                     | 749 ± 27 (stat.) $^{+48}_{-50}$ (syst.) ± 12 (lumi.) ± 6 (BR)                                                                      |
| $\mathrm{D}^+$            | $375 \pm 32$ (stat.) $^{+35}_{-35}$ (syst.) $\pm$ 6 (lumi.) $\pm$ 6 (BR)                                                           |
| $\mathrm{D}^+_\mathrm{s}$ | $120 \pm 11 \text{ (stat.)} ^{+12}_{-13} \text{ (syst.)} ^{+25}_{-10} \text{ (extrap.)} \pm 2 \text{ (lumi.)} \pm 3 \text{ (BR)}$  |
| $\Lambda_{ m c}^+$        | $329 \pm 15$ (stat.) $^{+28}_{-29}$ (syst.) $\pm 5$ (lumi.) $\pm 15$ (BR)                                                          |
| $\Xi_{\rm c}^0$ [52]      | $194 \pm 27 \text{ (stat.)} ^{+46} _{-46} \text{ (syst.)} ^{+18} _{-12} \text{ (extrap.)} \pm 3 \text{ (lumi.)}$                   |
| $\Xi_{\mathrm{c}}^+$      | $187 \pm 25 \text{ (stat.)} ^{+19}_{-19} \text{ (syst.)} ^{+13}_{-59} \text{ (extrap.)} \pm 3 \text{ (lumi.)} \pm 82 \text{ (BR)}$ |
| $\mathrm{J}/\psi$ [84]    | $7.29 \pm 0.27$ (stat.) $^{+0.52}_{-0.52}$ (syst.) $^{+0.04}_{-0.01}$ (extrap.)                                                    |
| $D^{*+}$                  | $306 \pm 26 \text{ (stat.)} ^{+33}_{-34} \text{ (syst.)} ^{+48}_{-17} \text{ (extrap.)} \pm 5 \text{ (lumi.)} \pm 3 \text{ (BR)}$  |
| $\Sigma_{ m c}^{0,+,++}$  | $142 \pm 22 \text{ (stat.)} ^{+24}_{-24} \text{ (syst.)} ^{+24}_{-32} \text{ (extrap.)} \pm 2 \text{ (lumi.)} \pm 6 \text{ (BR)}$  |

#### f<sub>x</sub>: probability for a charm quark to hadronize with another quark of flavour x $\Rightarrow$ D<sub>s</sub>+/D<sup>0</sup>+D+

Production of prompt strange D mesons / prompt non-strange D mesons in e<sup>+</sup>e<sup>-</sup>, ep and pp collisions

![](_page_35_Picture_10.jpeg)

# How about in Pb-Pb?

![](_page_36_Figure_1.jpeg)

MinJung Kweon, Inha University, HIQCD2024

#### Physics Letters B 839 (2023) 137796 2 ALICE <sup>+</sup> **1.8** – pp, √*s* = 13 TeV —— stat. 🙁 SHMc 30-50% Pb-Pb 1.6 ▼ pp, √*s* = 5.02 TeV syst. 🖈 Catania SHMc + FastReso + corona ▲ p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV extr. ♣ TAMU Catania 1.4 B Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ total $\clubsuit$ PYTHIA 8 TAMU 1.2 $\vdash$ $\land$ Au–Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ STAR, PRL 124 (2020) 172301 0.8 10 $p_{_{T}}$ (GeV/c) 0.6 0.4 pp -88 0.2 SHMc + FastReso + corona 10<sup>2</sup> $10^{3}$ 10

<sup>10</sup> p<sub>+</sub> (GeV/c)

Modified mechanism of hadronization in all hadronic collision systems with respect to charm fragmentation tuned on e<sup>+</sup>e<sup>-</sup> and e<sup>-</sup>p measurements?

![](_page_36_Figure_6.jpeg)

![](_page_36_Figure_7.jpeg)

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

 $\bigcirc$ 

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_3.jpeg)

## Beauty

![](_page_40_Figure_1.jpeg)

# Hadronization in vacuum

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_6.jpeg)

# $D_s^+$ meson vs. $\Lambda_c^+$ baryon production

*Physics Letters B* 829 (2022) 137065

![](_page_42_Figure_2.jpeg)

MinJung Kweon, Inha University, HIQCD2024

![](_page_42_Picture_5.jpeg)

# With 2 strangeness

![](_page_43_Figure_1.jpeg)

С

S

U

D

MinJung Kweon, Inha University, HIQCD2024

# $\Box 0 \neq D 0$

JHEP 12 (2023) 086

![](_page_43_Figure_5.jpeg)

ALI-PUB-567881

![](_page_43_Picture_7.jpeg)

# Many models in market enhancing baryon production

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_3.jpeg)

## Heavy flavour production in medium: hadronization

![](_page_45_Figure_1.jpeg)

Parametrized on data and assumed to be 'universal'

#### In A-A collisions:

→ Energy-loss of hard-scattered partons while traversing the QGP  $\rightarrow$  Modified fragmentation function D(z) by "rescaling" the variable z

MinJung Kweon, Inha University, HIQCD2024

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_9.jpeg)

![](_page_45_Picture_11.jpeg)