Equation of state in neutron stars from a bottom-up holographic QCD model

Akihiro Iwanaka (RCNP, Osaka U.)

Collaborators : Daisuke Fujii (JAEA), Atsushi Hosaka (RCNP, JAEA), Tadakatsu Sakai (KMI, Nagoya U.), Motoi Tachibana (Saga U.)

2024/11/07 HHIQCD@YITP

An ultimate purpose of QCD studies To obtain the QCD phase diagram

To challenge it Focus on neutron stars

QCD phase diagram

K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74 014001 (2011)

QCD phase diagram

K. Fukushima and T. Hatsuda, Rep. Prog. Phys. **74** 014001 (2011)

Neutron Star for QCD

P. Demorest, et al., Nature **467**, 1081 (2010)

Which model is better?

Holographic QCD **O** Finite density **O2** Strong coupling **OB** Chiral transition

Holographic QCD

Note: Large N_c limit, $\lambda = g^2 N_c$ is fixed

Previous study

Hard-wall model Lorenzo Bartolini, et al., Phys. Rev. D 105, 126014 (2022)

Massless quarks

Introducing the quark mass

An advantage of bottom-up models, it is hard for the D4-D8 model

Nethod

Hard-wall model

Cut-off AdS (Confined phase)

J. Erlich, et al., PRL **95**, 261602 (2005)

 $ds^{2} = \frac{L^{2}}{\tau^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right), \quad 0 \le z \le z_{\rm IR}$ Cut-off (Hard-wall)

Procedure

Cut-off AdS (Confined phase)

Add matters IR b.c. 02V b.c. Solving EoM

01. Action of matters

$$\begin{split} S_{\rm g} &= -\frac{N_c}{12\pi^2} \int d^4 x dz \sqrt{-g} \left[\frac{1}{2} {\rm Tr}(L_{MN} L^{MN}) + \frac{1}{4} \hat{L}_{MN} \hat{L}^{MN} + \{R \leftrightarrow L\} \right], \\ S_{\rm CS} &= \frac{N_c}{16\pi^2} \int d^4 x dz \, \epsilon_{MNPQR} \left[\frac{1}{4} \hat{L}_M \left({\rm Tr}[L_{NP} L_{QR}] + \frac{1}{6} \hat{L}_{NP} \hat{L}_{QR} \right) - \{R \leftrightarrow L\} \right], \\ S_{\Phi} &= \frac{N_c}{12\pi^2} \int d^4 x dz \, \sqrt{-g} \left\{ {\rm Tr} \left[(D_M \Phi)^{\dagger} D^M \Phi \right] + 3 {\rm Tr}[\Phi^{\dagger} \Phi] \right\}. \end{split}$$

Bi-fundamental Scalar fields

 $L_M, R_M : SU(2)$ gauge field $\hat{L}_M, \hat{R}_M : U(1)$ gauge field $\Phi :$ scalar field $M, N, \dots = 0, 1, 2, 3, z$

$$L_{MN} = \partial_M L_N - \partial_N L_M - i[L_M]$$

$$L_{MN}^a = \partial_M L_N^a - \partial_N L_M^a + f^{abc} I$$

$$D_M \Phi = \partial_M \Phi - i \mathscr{L}_M \Phi + i \Phi \mathscr{L}_M$$

$$\mathscr{L}_M = L_M^a \frac{\tau^a}{2} + \hat{L}_M \frac{I_2}{2}$$

$$(\tau^a : \text{Pauli matrix}, a = N_c = 3, L = 1.$$

 $\mathscr{L}_z = \mathscr{R}_z = 0$ (gauge fixing)

Ansatz

Homogeneous Ansatz "Mean-field approximation"

 \longleftrightarrow

 \longleftrightarrow

 $\Phi = \omega_0(z) \frac{I_2}{2}$

 $\mathscr{L}_0 = -\mathscr{R}_0 = \hat{a}_0(z)\frac{I_2}{2}$

 $\mathscr{L}_i = -\mathscr{R}_i = -H(z)\frac{1}{2}$

Current quark mass Chiral condensate

Baryon chemical potential Baryon number density

Axial vector potential Axial vector meson condensate

Action with Ansatz

U(2) Flavor gauge fields (Left&Right)

Chern-Simons term

$$S_{\rm g} = -\frac{N_c}{12\pi^2} \int d^4x dz \, \frac{1}{z} \left\{ 3H^4 \right\}$$
$$S_{\rm CS} = \frac{3N_c}{8\pi^2} \int d^4x dz \, \hat{a}_0(z) \, H^2(z)$$
$$S_{\Phi} = -\frac{N_c}{12\pi^2} \int d^4x dz \, \frac{1}{z^3} \left\{ \frac{3}{2} \right\}$$

$A^{4}(z) + 3[\partial_{z}H(z)]^{2} - [\partial_{z}\hat{a}_{0}(z)]^{2}\},$

 $\partial_z H(z),$

 $\left\{ H^{2}(z)\omega_{0}^{2}(z) + \frac{1}{2} \left[\partial_{z}\omega_{0} \right]^{2} - \frac{3}{2} \frac{1}{z^{2}} \omega_{0}^{2}(z) \right\}$

More two terms

Potential on the hard-wall

$$S = \frac{S_g}{S_g} + \frac{S_{CS}}{S_{CS}}$$

$$\frac{m_b^2}{2z^4}\,\omega_0^2(z)$$

$S_c = -\int d^4x \frac{N_c}{12\pi^2} \left(\frac{1}{2\epsilon^4} \omega_0^2(\epsilon) + \frac{3\log\epsilon}{2\epsilon^2} \omega_0^2(\epsilon) H^2(\epsilon) + 3\log\epsilon H^4(\epsilon) \right)$

Our proposal

Mesonic IR b.c. $(z = z_{IR})$

b.c.

Neumann

$$\begin{split} \partial_z \omega_0(z_{\rm IR}) &= -\frac{12\pi^2}{N_c} \left(3kH^2 \omega_0 + m_b^2 \omega_0 + \frac{\lambda}{4} \omega_0^3 \right), \\ \partial_z \hat{a}_0(z_{\rm IR}) &= 0, \\ \partial_z H(z_{\rm IR}) &= 0. \end{split}$$

03. UV b.c.

Values of bulk fields on the UV boundary

UV b.c. (z = 0)

$$\partial_z \omega_0(0) = m = 3 \text{ MeV}$$

$$\hat{a}_0(0) = \mu$$

$$H(0) = \phi = B$$

External fields in dual QFT

 \longleftrightarrow

 \longleftrightarrow

 \longleftrightarrow

Current quark mass Baryon chemical potential Axial vector potential

Gauge independent external fields

NR

The physical chemical potential μ_{B}

Gauge independence gives

$$\mu_B \propto \mu - A = \int_0^{z_{\rm IR}} dz \, \hat{F}_0$$

Gauge independent external fields

The physical axial vector potential

Hedgehog structure gives

 $\hat{\phi} T^i \propto (\phi - B) T^i = \int_0^{z_{\text{IR}}} dz F_{iz}$

To exclude the axial external field

$$\phi = B$$

GKP-W method

Gradients of bulk fields near the UV boundary

 a_2, h_2, w_2

Gubser-Klebanov-Polyakov-Witten method

 \longleftrightarrow

$$d_B = -\frac{2}{3\pi^2}a_2$$

 $J = \frac{N_c}{\pi^2} h_2 + \frac{N_c}{2\pi^2} \phi \left(\frac{m^2}{4} + \phi^2\right) - \frac{3N_c}{8\pi^2} \mu \phi^2$

S. S. Gubser, et al., Phys. Lett. B 428 (1998) 105–114 E. Witten, Adv. Theor. Math. Phys. 2 (1998)

Expectation values of observables

\leftrightarrow	Chiral condensate
\longleftarrow	Baryon number density
\longleftarrow	Axial vector meson condensate

Parameters

03

Meson mass spectrum 01 AdS radius place of the hard-wall $L^{-1} = z_{\text{IR}}^{-1} = 323 \text{ MeV}$

 $(k_2, B) = (15, 0.4/L)$

Critical chemical potential Parameter k_2 in S_{IR} & IR b.c. $H(z_{IR}) = B$

Results

Grand potential density Ω/V

Two transitions

- Chirality
- Baryon number density

All transitions are

phase transitions

0.0 -0.5 -0.5 -1.0 -1.5

Baryon number denstiy n_B

Critical baryon density $n_c \sim 3.5 n_0$ $(n_0 = 0.17 \text{ fm}^{-3})$

Increasing linearly

Chiral condensate ξ

Chiral symmetry is almost restored

Decreasing function

Axial vector condensate J

Axial vector mesons condense

It has a lower bound at $\mu_B \sim 6 \text{ GeV}$

Equation of state

Almost linear with gradient $\simeq 1$ Speed of sound $d\varepsilon$

p [GeV/fm³⁻

Speed of sound

Speed of sound

at $\mu_R \sim 2 \text{ GeV}$

Mass-Radius plot

2.0 Maximal mass $\sim 2.2 M_{\odot}$ Maximal radius ~ 9 km 1.5 M/M_{\odot} 1.0 0.5 Acceptable result

Summary

- Pourpose

Method

Result

Outlook

Studying the QCD EoS from holographic QCD

Hard-wall model + Switching IR b.c.

 Baryonic matter appears with first transition Acceptable M-R curve is obtained

Introducing strange quark

Fin.