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Overview

Part I
Formulation of SU(N) Hamiltonian lattice gauge theory with finite-dimensional Hilbert space

using Schwinger fermions

Part II
Phase diagram of this formulation in 2d and comparison with the continuum theory
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Connection to some of the previous talks

General idea: similar to quantum link models, fermionic rishons (Uwe-Jens Wiese, Pietro
Silvi)

Technical aspect: similar to formulation of gauge link with Schwinger bosons (Indrakshi
Raychowdhury)

Numerical method: Tensor network (Akira Matsumoto, Pietro Silvi, etc.)
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Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
− 1

4g2

∑
□

(W□ +W †
□) + t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.)

fermion hoppingelectric field magnetic field:

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

Traditional Qubit regularization

Hilbert space L2(G) =
⊕

λ∈ŜU(N)
Vλ ⊗ V ∗

λ

(Peter-Weyl theorem)
HQ :=

⊕
λ∈Q Vλ ⊗ V ∗

λ

(Symmetry is preserved)
Irreps ŜU(N): Young diagrams with

at most N − 1 rows
Q = {◦, , , , · · · , , }
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Reasons for Q-scheme

Q = {◦, , , , · · · , , }

Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)

Smallest quadratic Casimir among each N-ality: minimize g2

2

(
La2 +Ra2

)
Anti-symmetric representations: formulation using Schwinger fermions

4 25



Introducing Schwinger fermion representation of SU(N)

cα† : α = 1, · · · , N are fermion creation operators that transform in the fundamental
representation of SU(N):

{cα, cβ} = {cα†, cβ†} = 0, {cα, cβ†} = δαβ .

The generators of SU(N) are defined as Qa := cα†T a
αβc

β , where [T a, T b] = ifabcT c

=⇒ [Qa, Qb] = ifabcQc.
|0⟩ satisfies cα|0⟩ = 0 for α = 1, 2 =⇒ the trivial representation

|α1 · · ·αk⟩ = cαk† · · · cα1†|0⟩.

The number operator k̂ :=
∑N

α=1 c
α†cα distinguishes different irreps of SU(N) (number of

boxes in the Young diagram ( · · · )T ), and is related to the Casimir operator as∑
a

(Qa)2 =
N + 1

2N
(N − k̂)k̂
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Schwinger fermion representation of the link variables

Link algebra:

[La
i , L

b
j ] = ifabcLc

iδij , [Ra
i , R

b
j ] = ifabcRc

iδij , [La
i , R

b
j ] = 0,

[La
i , U

αβ
jk ] = −T a

αγU
γβ
jk δij , [Ra

i , U
αβ
jk ] = Uαγ

jk T
a
γβδik,

Each link is made of two Schwinger fermions lα†, rα† : α = 1, · · · , N

{lα, lβ†} = δαβ , {lα, lβ} = {lα†, lβ†} = 0,

{rα, rβ†} = δαβ , {rα, rβ} = {rα†, rβ†} = 0,

{lα, rβ†} = {lα†, rβ} = {lα, rβ} = {lα†, rβ†} = 0,

Schwinger fermion representation of the link variables:

La = lα†T a
αβl

β , Ra = rα†T a
αβr

β , Uαβ = lα
1√
k̂lk̂r

rβ†

Peter-Weyl theorem, or conservation of electric flux =⇒ kl + kr = N .
|kl = N ; kr = 0⟩ ≡ |kl = 0; kr = N⟩ (does not ruin global fermion parity).
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Schwinger fermion representation of the KS Hamiltonian

Kogut-Susskind Hamiltonian

H =
g2

2

∑
⟨i,j⟩

N + 1

N
(N − k̂)k̂ − 1

4g2

∑
□

(W□ +W †
□) + t

∑
⟨i,j⟩

(cα†i lαi )
1√
k̂li k̂rj

(rβ†j cβj ) + h.c.

fermion hoppingelectric field magnetic field:

where

W□ = lα1
1

1√
k̂l1 k̂r2

rα2†
2 lα2

2

1√
k̂l2 k̂r3

rα3†
3 lα3

3

1√
k̂l3 k̂r4

rα4†
4 lα4

4

1√
k̂l4 k̂r1

rα1†
1

Advantages:

manifestly gauge invariant on each site. Gauss law: conservation of quark number plus
Schwinger fermion number mod N .
gauge invariant operators on each site are bosonic

7 25



Gauge invariant operators

C†
x,µ := cα†x fαx,µ, Fx,µν := fα†x,µf

α
x,ν .

F †
x,µν = Fx,νµ and Fx,µµ = F †

x,µµ = k̂x,µ by definition.
These operators satisfies

[Cµ, C
†
ν ] = Fµν − n̂δµν .

[Fµν , Fρσ] = Fµσδνρ − Fρνδµσ

[Fµν , Cρ] = Cµδνρ,

[Fµν , C
†
ρ] = −C†

νδµρ,

which is the algebra of U(2d+ nf ). (l = F ⊕ n̂ and p = C
form a Cartan decomposition.)

fx,µfx,−µ

fx,ν

fx,−ν

fx+µ,−µfx−µ,µ

fx+ν,−ν

fx−ν,ν
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Where is N?

Since the Hamiltonian can be written solely in terms of gauge invariant operators Cµ and Fµν

that form U(2d+Nf ) algebra, where is the information of the original gauge group SU(N)?

Answer: It is hidden in the representation!

(C†
µ)

N+1 = 0, (F †
µν)

N+1 = 0 when µ ̸= ν.

A trivial example:

Cµ = |µ⟩⟨0|, C†
µ = |0⟩⟨µ|, Fµν = |µ⟩⟨ν|,

Form a representation of the U(2d+ 1) algebra in the case of N = 1.
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The continuum theory of 2d QCD

SU(N) Yang-Mills theory coupled to single-flavor massless Dirac fermions

L0 =
1

2g̃2
trF 2 + ψ̄αi /Dψα

Symmetries:

g̃2 = 0: free fermion, O(2N)L ×O(2N)R chiral symmetry. (ψα = 1√
2
(ξ2α−1 − iξ2α))

g̃2 > 0: Gauge symmetry SU(N), SU(2)L × SU(2)R (N = 2); U(1)L ×U(1)R (N ≥ 3).

Bosonization:

g̃2 = 0: U(N)1 or SO(2N)1 WZW model. Central charge: c = N .
g̃2 > 0: SO(2N)1

/
SU(N)1 or U(N)1

/
SU(N)1 ∼= U(1)N coset WZW model.

Central charge: c = c(SO(2N)1)− c(SU(N)1) = N − (N − 1) = 1.
▶ N = 2: SO(4) ∼= SU(2)s × SU(2)c, coset is SU(2)1 WZW model in the charge sector.
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Symmetries from the lattice

Continuum symmetries forbid any relevant or marginal couplings.
When regularizing the theory on the lattice using staggered fermions,
U(1)L ×U(1)R → U(1)× Zχ

2 (SU(2)L × SU(2)R → SU(2)× Zχ
2 for N = 2).

Zχ
2 forbids mass terms, but allows coupling between currents: Ja

L,R := 1
2ξ

T
L,RT

aξL,R

Full continuum theory

L =
1

2g̃2
trF 2 + ψ̄αi /Dψα +

∑
a

λaJa
LJ

a
R

N ≥ 3: two independent couplings: λ0 (Thirring coupling) and λc̃
N = 2: one independent coupling: λ0 = λc̃ = λc
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RG flow

N ≥ 3:

dλ0
d lnµ

= −N − 1

2π
λ2c̃ ,

dλc̃
d lnµ

= − 1

Nπ
λ0λc̃,

N = 2:

dλc
d lnµ

= − 1

2π
λ2c .

Mixed anomaly between U(1) and Zχ
2

=⇒ the gapped phase should spontaneously
break Zχ

2 , the translation-by-one-site
symmetry on the lattice.

0

Gapless Gapped

RG flow for N = 2
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Phases in the strong coupling limit

H =
g2

2

∑
⟨i,j⟩

(
La2
ij +Ra2

ij

)
+ t

∑
⟨i,j⟩

(cα†i Uαβ
ij c

β
j + h.c.)− U

∑
i

ni(N − ni)

generalized Hubbard coupling

g2/t≫ 1:

1

2

(
La2
ij +Ra2

ij

)
|k⟩ = N + 1

2N
k(N − k)|k⟩,

gauge links prefer k = 0 (trivial rep)

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

Similar analysis for −U/t≫ 1.
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Strong coupling expansion - spin-chain phase

↑↓ ↑↓ ↑↓
Baryons

(N = 2)

When g2/t≫ 1 or −U/t≫ 1, treat hopping terms as a perturbation:

XXZ spin chain: Heff =
∑
⟨i,j⟩

J⊥(XiXj + YiYj) + Jz(ZiZj − 1)

where

J⊥ = (−1)N−1 N

2(N − 1)!

tN

(N+1
2N g2 + 2U)N−1

, Jz =
N

2(N − 1)

t2

N+1
2N g2 + 2U

When N = 2, |J⊥| = |Jz| (gapless) =⇒ SU(2) symmetry ↔ SU(2)1 WZW model.

When N > 2, |J⊥| < |Jz| (gapped, Néel) =⇒ U(1) symmetry ↔ U(1)N WZW model.
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Strong coupling expansion - dimer phase

when U/t≫ 1, each site is forced to have one fermion
(N = 2)

↑ ↓ ↑ ↓ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↑

gapped, dimerized, doubly degenerate, expected from ’t
Hooft anomaly matching

Spin-chain phase

Dimer phase
(degenerate,

’t Hooft anomaly)
U

g2
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Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

−U/t≫ 1: Raise links in-between to higher irreps,
confined

↑↓ ↑↓ ↑↓↑ ↓

String tension: Tk = g2
N + 1

2N
k(N − k).

−U/t≫ 1 or g2/t≫ 1:

String tension: Tk = g2
N + 1

2N
k(⌊N

2
⌋ − k).

=⇒ Deconfined for N = 2, 3

Deconfined

Confined

?

U

g2

Confinement diagram for N = 2, 3
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Confining phase

0 2 4 6 8 10 12 14 16
r

5

0

5

10

15

20

E 1

g2

5
4
3
2
1
0

0.14
0.5

Energy as a function of the distance r between the test quarks at N = 2, k = 1 and L = 20 for U = −10.
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String tensions at large U

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
g2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0T

String tensions at U = 4
Numerical results
Linear fit

T = 0.685(8)g2 + 0.239(5)

Strong coupling result: T = 0.75g2

Surprisingly, when g2 = 0, T > 0. (In
traditional theory, when g2 = 0 the gauge
field can be absorbed)
In the qubit regularization, electric field
term is generated by the hopping term in
the RG sense:

Hij = cα†i Uαβ
ij c

β
j + cβ†j (Uαβ

ij )†cαi

− 1

β
log(trf e

−βHij )

{
∝ 1 : traditional
∝ La2

ij +Ra2
ij : qubit
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Marginal operator, level crossing and critical point

SU(2)1 WZW has SU(2)L × SU(2)R symmetry
Lowest 5 states: (sL, sR) = (0, 0) and ( 12 ,

1
2 )

On the lattice: chiral symmetry is broken
λcJL · JR is allowed, can be tuned by U

SU(2)L × SU(2)R
broken−−−−→ SU(2)diag

(sL, sR) = (
1

2
,
1

2
) −→ stot = 1, 0

⟨JL · JR⟩ =
1

2
⟨(JL + JR)

2 − J2
L − J2

R⟩

=
1

2

(
stot(stot + 1)− sL(sL + 1)− sR(sR + 1))

λc is marginal, β-function:

dλc
d lnµ

= − 1

2π
λ2c

3 2 1 0 1 2 3
U

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

Level crossing at g2 = 0
k = 0, stot = 0
k = , stot = 0
k = , stot = 1

DMRG: ITensora
aM. Fishman et al., 2022, SciPost Phys. Codebases

19 25



Critical point extrapolation in L

Uc(L) = Uc(∞) +AL−a

0.00 0.01 0.02 0.03
1/L2.4

7.0

7.5

8.0

8.5

U
c

1e 2

g2 = 0
fitting
numerical results

Uc(∞) = −0.08769(3)

4 6 8 10 12
L

0.01

0.10

1.00

|U
c(g

2 ,
L)

U
c(g

2 ,
)|

1e 1

g2

1
0
1
2
3
4
5
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Phase Diagram

2 1 0 1 2
U

0

2

4

g2

Gapless Gapped

Phase Diagram
numerical results

Phase diagram

0

Gapless Gapped

Flow diagram
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Central charge in the conformal phase

0 5 10 15 20 25 30 35 40

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

S

Entanglement Entropy at g2 = U = 0
numerical results
fitting

IR central charge via entanglement entropy:

S =
cIR
3

log
( L

πa
sin

πℓ

L

)
+ const.

between two subsystems with size ℓ and L− ℓ.

0.00 0.02 0.04 0.06 0.08 0.10
1/L

1.00

1.02

1.04

1.06

1.08

1.10

c I
R

cIR(L) at g2 = 0
U = 1
U = 0.5
U = 0
U = 0.1
U = 0 (g2 = 1)

Central charge extrapolation

cIR(∞) ranges from 0.9988(7) to 0.9998(9).
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Central charge by approaching critical points from gapped phase

0 20 40 60 80 100 120 140 160 180 200
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S

Entanglement Entropy at g2 = 0, U = 1

UV central charge via entanglement entropy

S =
c

6
log

ξ

a
+ const.

ξ is correlation length.

10 15 20 25 30 35 40 45 50 55 60
r

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

D
iD

i+
r

1e 4

DiDi + r  at g2 = 0
U = 1.1
U = 1.0
U = 0.9
U = 0.8
U = 0.7

Di := (−1)i
1

2
(Qz

iQ
z
i+1 −Qz

i−1Q
z
i ),

⟨DiDi+r⟩ =
A

r
e−

r
ξc
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10 100

0.4

0.6

0.8

1.0

1.2

S
Massive phase

g2 = 0.5
g2 = 0
g2 = 2
g2 = 5

c = 1.737(6), 1.693(4), 1.66(1), 1.66(1)

Multiple sectors that decouple at the critical
point and become critical simultaneously,
entanglement entropy is given by the sum

S0 =
∑
i

Si =
∑
i

ci
6
ln
ξi
a
+ const.,

If ξc diverges, and ξs diverges as ξs
a ∝ ( ξca )

α,
this simplifies to

S0 =
ceff
6

ln
ξc
a

+ const.,

where ceff = 1 + α. According to a, ceff = 1 + α
is achieved with jmax = 3

2 links.
aM. C. Bañuls et al., 2017, Phys. Rev. X arXiv:

1707.06434 (hep-lat)
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Conclusions

Formulated SU(N) lattice gauge theories using Schwinger fermions.

Remarkably, the resulting theory can be expressed purely in terms of gauge-invariant
operators, which form a U(2d+Nf ) algebra.

This formulation applies to any SU(N) gauge group in any spacetime dimension.

Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space, as well
as signal of the free fermion fixed point.
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Thanks for attention!
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