Formulation of $SU(N)$ Lattice Gauge Theories with Schwinger Fermions

Hanqing Liu

In collaboration with Tanmoy Bhattacharya (LANL), Shailesh Chandrasekharan (Duke) and Rajan Gupta (LANL)

Based on 2112.02090, 2312.17734 and work in progress

HHIQCD 2024 @YITP, KYOTO NOVEMBER 15, 2024

LA-UR-24-29558

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
-

Part I

Formulation of $SU(N)$ Hamiltonian lattice gauge theory with finite-dimensional Hilbert space using Schwinger fermions

Part II

Phase diagram of this formulation in 2d and comparison with the continuum theory

Connection to some of the previous talks

- General idea: similar to quantum link models, fermionic rishons (Uwe-Jens Wiese, Pietro Silvi)
- Technical aspect: similar to formulation of gauge link with Schwinger bosons (Indrakshi Raychowdhury)
- Numerical method: Tensor network (Akira Matsumoto, Pietro Silvi, etc.)

[Overview](#page-1-0)

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
- [Conclusions](#page-32-0)

[Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)

- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
-

Hamiltonian LGT and qubit-regularization of the Hilbert space

Kogut-Susskind Hamiltonian

Qubit regularization: same Hamiltonian, but truncates the link Hilbert space:

Contains all N-ality: string tensions at large distance are dictated by N-ality (screening)

- Smallest quadratic Casimir among each N -ality: minimize $\frac{g^2}{2}$ $\frac{q^2}{2}(L^{a2}+R^{a2})$
- Anti-symmetric representations: formulation using Schwinger fermions

Introducing Schwinger fermion representation of $SU(N)$

 $c^{\alpha\dagger}:\alpha=1,\cdots,N$ are fermion creation operators that transform in the fundamental representation of $SU(N)$:

$$
\{c^{\alpha}, c^{\beta}\} = \{c^{\alpha \dagger}, c^{\beta \dagger}\} = 0, \quad \{c^{\alpha}, c^{\beta \dagger}\} = \delta^{\alpha \beta}.
$$

The generators of $\mathrm{SU}(N)$ are defined as $Q^a:=c^{\alpha\dagger}T^a_{\alpha\beta}c^\beta$, where $[T^a,T^b]=\mathrm{i} f^{abc}T^c$ $\implies [Q^a, Q^b] = i f^{abc} Q^c.$

 $|0\rangle$ satisfies $c^{\alpha}|0\rangle = 0$ for $\alpha = 1, 2 \implies$ the trivial representation

$$
|\alpha_1 \cdots \alpha_k \rangle = c^{\alpha_k \dagger} \cdots c^{\alpha_1 \dagger} |0 \rangle.
$$

The number operator $\hat k:=\sum_{\alpha=1}^N c^{\alpha\dagger}c^\alpha$ distinguishes different irreps of $\mathrm{SU}(N)$ (number of boxes in the Young diagram ($\overline{(\blacksquare\cdots\square)^T}$), and is related to the Casimir operator as

$$
\sum_{a} (Q^a)^2 = \frac{N+1}{2N} (N - \hat{k}) \hat{k}
$$

Schwinger fermion representation of the link variables

Link algebra:

$$
[L_i^a, L_j^b] = i f^{abc} L_i^c \delta_{ij}, \quad [R_i^a, R_j^b] = i f^{abc} R_i^c \delta_{ij}, \quad [L_i^a, R_j^b] = 0,
$$

$$
[L_i^a, U_{jk}^{\alpha \beta}] = -T_{\alpha \gamma}^a U_{jk}^{\gamma \beta} \delta_{ij}, \quad [R_i^a, U_{jk}^{\alpha \beta}] = U_{jk}^{\alpha \gamma} T_{\gamma \beta}^a \delta_{ik},
$$

Each link is made of two Schwinger fermions $l^{\alpha\dagger}, r^{\alpha\dagger}$: $\alpha = 1, \cdots, N$

$$
\begin{aligned}\n\{l^{\alpha}, l^{\beta\dagger}\} &= \delta^{\alpha\beta}, \quad \{l^{\alpha}, l^{\beta}\} = \{l^{\alpha\dagger}, l^{\beta\dagger}\} = 0, \\
\{r^{\alpha}, r^{\beta\dagger}\} &= \delta^{\alpha\beta}, \quad \{r^{\alpha}, r^{\beta}\} = \{r^{\alpha\dagger}, r^{\beta\dagger}\} = 0, \\
\{l^{\alpha}, r^{\beta\dagger}\} &= \{l^{\alpha\dagger}, r^{\beta}\} = \{l^{\alpha}, r^{\beta}\} = \{l^{\alpha\dagger}, r^{\beta\dagger}\} = 0,\n\end{aligned}
$$

Schwinger fermion representation of the link variables:

$$
L^{a} = l^{\alpha \dagger} T^{a}_{\alpha \beta} l^{\beta}, \quad R^{a} = r^{\alpha \dagger} T^{a}_{\alpha \beta} r^{\beta}, \quad U^{\alpha \beta} = l^{\alpha} \frac{1}{\sqrt{\hat{k}_{l} \hat{k}_{r}}} r^{\beta \dagger}
$$

Peter-Weyl theorem, or conservation of electric flux $\implies k_l + k_r = N$. $|k_l = N; k_r = 0\rangle \equiv |k_l = 0; k_r = N\rangle$ (does not ruin global fermion parity).

Schwinger fermion representation of the KS Hamiltonian

Kogut-Susskind Hamiltonian

where

$$
W_{\square} = l_1^{\alpha_1} \frac{1}{\sqrt{\hat{k}_{l_1} \hat{k}_{r_2}}} r_2^{\alpha_2 \dagger} l_2^{\alpha_2} \frac{1}{\sqrt{\hat{k}_{l_2} \hat{k}_{r_3}}} r_3^{\alpha_3 \dagger} l_3^{\alpha_3} \frac{1}{\sqrt{\hat{k}_{l_3} \hat{k}_{r_4}}} r_4^{\alpha_4 \dagger} l_4^{\alpha_4} \frac{1}{\sqrt{\hat{k}_{l_4} \hat{k}_{r_1}}} r_1^{\alpha_1 \dagger}
$$

Advantages:

- manifestly gauge invariant on each site. Gauss law: conservation of quark number plus Schwinger fermion number mod N.
- gauge invariant operators on each site are bosonic

Gauge invariant operators

$$
C_{x,\mu}^{\dagger} := c_x^{\alpha \dagger} f_{x,\mu}^{\alpha}, \quad F_{x,\mu\nu} := f_{x,\mu}^{\alpha \dagger} f_{x,\nu}^{\alpha}.
$$

$$
F_{x,\mu\nu}^{\dagger} = F_{x,\nu\mu}
$$
 and
$$
F_{x,\mu\mu} = F_{x,\mu}^{\dagger} = \hat{k}_{x,\mu}
$$
 by definition. These operators satisfies

$$
[C_{\mu}, C_{\nu}^{\dagger}] = F_{\mu\nu} - \hat{n}\delta_{\mu\nu}.
$$

\n
$$
[F_{\mu\nu}, F_{\rho\sigma}] = F_{\mu\sigma}\delta_{\nu\rho} - F_{\rho\nu}\delta_{\mu\sigma}
$$

\n
$$
[F_{\mu\nu}, C_{\rho}] = C_{\mu}\delta_{\nu\rho},
$$

\n
$$
[F_{\mu\nu}, C_{\rho}^{\dagger}] = -C_{\nu}^{\dagger}\delta_{\mu\rho},
$$

which is the algebra of $U(2d + n_f)$. ($I = F \oplus \hat{n}$ and $p = C$ form a Cartan decomposition.)

Since the Hamiltonian can be written solely in terms of gauge invariant operators C_u and $F_{u\nu}$ that form $U(2d + N_f)$ algebra, where is the information of the original gauge group $SU(N)$?

Since the Hamiltonian can be written solely in terms of gauge invariant operators C_u and $F_{u\nu}$ that form $U(2d + N_f)$ algebra, where is the information of the original gauge group SU(N)?

Answer: It is hidden in the representation!

$$
(C_{\mu}^{\dagger})^{N+1} = 0, \ (F_{\mu\nu}^{\dagger})^{N+1} = 0 \quad \text{when } \mu \neq \nu.
$$

A trivial example:

$$
C_{\mu} = |\mu\rangle\langle 0|, \quad C_{\mu}^{\dagger} = |0\rangle\langle \mu|, \quad F_{\mu\nu} = |\mu\rangle\langle \nu|,
$$

Form a representation of the U($2d + 1$) algebra in the case of $N = 1$.

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
-

The continuum theory of 2d QCD

 $SU(N)$ Yang-Mills theory coupled to single-flavor massless Dirac fermions

$$
{\cal L}_0 = \frac{1}{2\tilde{g}^2}\,{\rm tr}\, F^2 + \bar\psi^\alpha{\rm i}\displaystyle{\not}D\psi^\alpha
$$

Symmetries:

- $\tilde{g}^2 = 0$: free fermion, $\mathrm{O}(2N)_L \times \mathrm{O}(2N)_R$ chiral symmetry. $(\psi^\alpha = \frac{1}{\sqrt{2}})$ $\frac{1}{2}(\xi^{2\alpha-1}-i\xi^{2\alpha})$
- $\tilde{g}^2 > 0$: Gauge symmetry $\mathrm{SU}(N)$, $\quad \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R$ $(N=2)$; $\mathrm{U}(1)_L \times \mathrm{U}(1)_R$ $(N \geq 3)$.

Bosonization:

- $\tilde{g}^2 = 0$: U $(N)_1$ or $\text{SO}(2N)_1$ WZW model. Central charge: $c = N$.
- $\tilde{g}^2 > 0$: $\mathrm{SO}(2N)_1/\,\mathrm{SU}(N)_1$ or $\mathrm{U}(N)_1\big/\,\mathrm{SU}(N)_1 \cong \mathrm{U}(1)_N$ coset WZW model. Central charge: $c = c(SO(2N)_1) - c(SU(N)_1) = N - (N - 1) = 1$.
	- ▶ $N = 2$: SO(4) \cong SU(2)_s × SU(2)_c, coset is SU(2)₁ WZW model in the charge sector.

Symmetries from the lattice

- Continuum symmetries forbid any relevant or marginal couplings.
- When regularizing the theory on the lattice using staggered fermions, $U(1)_L \times U(1)_R \to U(1) \times \mathbb{Z}_2^{\chi} (\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \to \mathrm{SU}(2) \times \mathbb{Z}_2^{\chi} \text{ for } N=2)$. \mathbb{Z}_2^χ forbids mass terms, but allows coupling between currents: $J_{L,R}^a:=\frac{1}{2}\xi_{L,R}^T T^a\xi_{L,R}$

Full continuum theory

$$
\mathcal{L} = \frac{1}{2\tilde{g}^2} \operatorname{tr} F^2 + \bar{\psi}^\alpha \mathrm{i} D\!\!\!/ \psi^\alpha + \sum_a \lambda^a J^a_L J^a_R
$$

- $N \geq 3$: two independent couplings: λ_0 (Thirring coupling) and $\lambda_{\tilde{c}}$
- $N = 2$: one independent coupling: $\lambda_0 = \lambda_{\tilde{c}} = \lambda_c$

RG flow

 $N > 3$:

$$
\begin{split} \frac{\mathrm{d}\lambda_0}{\mathrm{d}\ln\mu} &= -\frac{N-1}{2\pi}\lambda_{\tilde{c}}^2,\\ \frac{\mathrm{d}\lambda_{\tilde{c}}}{\mathrm{d}\ln\mu} &= -\frac{1}{N\pi}\lambda_0\lambda_{\tilde{c}}, \end{split}
$$

 $N = 2$:

$$
\frac{\mathrm{d}\lambda_c}{\mathrm{d}\ln\mu}=-\frac{1}{2\pi}\lambda_c^2.
$$

Mixed anomaly between $\mathrm{U}(1)$ and \mathbb{Z}_2^χ \implies the gapped phase should spontaneously break \mathbb{Z}_2^{χ} , the translation-by-one-site symmetry on the lattice.

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
-

Phases in the strong coupling limit

generalized Hubbard coupling

$$
H = \frac{g^2}{2} \sum_{\langle i,j \rangle} \left(L_{ij}^{a2} + R_{ij}^{a2} \right) + t \sum_{\langle i,j \rangle} \left(c_i^{\alpha \dagger} U_{ij}^{\alpha \beta} c_j^{\beta} + \text{h.c.} \right) - \frac{U \sum_i n_i (N - n_i)}{i}
$$

 $g^2/t \gg 1$:

$$
\frac{1}{2}(L_{ij}^{a2} + R_{ij}^{a2})|k\rangle = \frac{N+1}{2N}k(N-k)|k\rangle,
$$

gauge links prefer $k = 0$ (trivial rep)

-

 α

$$
\uparrow \downarrow \longrightarrow \text{Baryons} \qquad \qquad \uparrow \downarrow \qquad \qquad \uparrow \downarrow \qquad (N=2)
$$

Similar analysis for $-U/t \gg 1$.

Strong coupling expansion - spin-chain phase

When $g^2/t \gg 1$ or $-U/t \gg 1$, treat hopping terms as a perturbation:

$$
XXZ \text{ spin chain: } H_{\text{eff}} = \sum_{\langle i,j \rangle} J_{\perp} (X_i X_j + Y_i Y_j) + J_z (Z_i Z_j - 1)
$$

where

$$
J_{\perp} = (-1)^{N-1} \frac{N}{2(N-1)!} \frac{t^N}{\left(\frac{N+1}{2N}g^2 + 2U\right)^{N-1}}, \quad J_z = \frac{N}{2(N-1)} \frac{t^2}{\frac{N+1}{2N}g^2 + 2U}
$$

■ When $N = 2$, $|J_1| = |J_z|$ (gapless) \implies SU(2) symmetry \leftrightarrow SU(2)₁ WZW model. ■ When $N > 2$, $|J_{\perp}| < |J_{z}|$ (gapped, Néel) \implies U(1) symmetry \leftrightarrow U(1)_N WZW model.

Strong coupling expansion - dimer phase

when $U/t \gg 1$, each site is forced to have one fermion $(N = 2)$

gapped, dimerized, doubly degenerate, expected from 't Hooft anomaly matching

Confinement in the strong coupling limit

Put two test quarks and pull them apart, see how the energy changes:

 $-U/t \gg 1$: Raise links in-between to higher irreps, confined

↑ ↑↓ ↑↓ ↑↓↓ String tension: T^k = g ² N + 1 2N k(N − k). ²/t ≫ 1: String tension: T^k = g ² N + 1 2N k(⌊ N 2 ⌋ − k). =⇒ Deconfined for N = 2, 3

 $-I$

Confinement diagram for $N = 2, 3$

Confining phase

Energy as a function of the distance r between the test quarks at $N = 2$, $k = 1$ and $L = 20$ for $U = -10$.

String tensions at large U

- Strong coupling result: $T = 0.75g^2$
- Surprisingly, when $g^2 = 0$, $T > 0$. (In traditional theory, when $g^2=0$ the gauge field can be absorbed)
- \blacksquare In the qubit regularization, electric field term is generated by the hopping term in the RG sense:

$$
H_{ij} = c_i^{\alpha\dagger} U_{ij}^{\alpha\beta} c_j^{\beta} + c_j^{\beta\dagger} (U_{ij}^{\alpha\beta})^{\dagger} c_i^{\alpha}
$$

$$
-\frac{1}{\beta}\log(\mathrm{tr}_f\,\mathrm{e}^{-\beta H_{ij}})\begin{cases} \propto 1 & \text{: traditional} \\ \propto L_{ij}^{a2}+R_{ij}^{a2}: \text{qubit} \end{cases}
$$

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
-

Marginal operator, level crossing and critical point

- \blacksquare SU(2)₁ WZW has SU(2)_L \times SU(2)_R symmetry Lowest 5 states: $(s_L, s_R) = (0, 0)$ and $(\frac{1}{2}, \frac{1}{2})$
- On the lattice: chiral symmetry is broken $\lambda_c J_L \cdot J_R$ is allowed, can be tuned by U

$$
SU(2)_L \times SU(2)_R \xrightarrow{\text{broken}} SU(2)_{\text{diag}}
$$

$$
(s_L, s_R) = (\frac{1}{2}, \frac{1}{2}) \longrightarrow s_{\text{tot}} = 1, 0
$$

$$
\langle J_L \cdot J_R \rangle = \frac{1}{2} \langle (J_L + J_R)^2 - J_L^2 - J_R^2 \rangle
$$

$$
= \frac{1}{2} \big(s_{\text{tot}} (s_{\text{tot}} + 1) - s_L (s_L + 1) - s_R (s_R + 1) \big)
$$

 λ_c is marginal, β-function:

$$
\frac{\mathrm{d}\lambda_c}{\mathrm{d}\ln\mu} = -\frac{1}{2\pi}\lambda_c^2
$$

DMRG: ITensor*^a*

*^a*M. Fishman et al., 2022, *SciPost Phys. Codebases*

Critical point extrapolation in L

Phase diagram

Central charge in the conformal phase

IR central charge via entanglement entropy:

$$
S = \frac{c_{\text{IR}}}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi \ell}{L} \right) + \text{const.}
$$

between two subsystems with size ℓ and $L - \ell$.

Central charge extrapolation

 $c_{IR}(\infty)$ ranges from 0.9988(7) to 0.9998(9).

Central charge by approaching critical points from gapped phase

UV central charge via entanglement entropy

$$
S = \frac{c}{6} \log \frac{\xi}{a} + \text{const.}
$$

UV central charge via entanglement entropy

\n
$$
S = \frac{c}{6} \log \frac{\xi}{a} + \text{const.}
$$
\n
$$
D_i := (-1)^i \frac{1}{2} (Q_i^z Q_{i+1}^z - Q_{i-1}^z Q_i^z),
$$
\n
$$
\xi
$$
\nis correlation length.\n
$$
D_i := \frac{A}{r} e^{-\frac{r}{\xi_c}}
$$

 $c = 1.737(6), 1.693(4), 1.66(1), 1.66(1)$

Multiple sectors that decouple at the critical point and become critical simultaneously, entanglement entropy is given by the sum

$$
S_0 = \sum_i S_i = \sum_i \frac{c_i}{6} \ln \frac{\xi_i}{a} + \text{const.},
$$

If ξ_c diverges, and ξ_s diverges as $\frac{\xi_s}{a} \propto (\frac{\xi_c}{a})^{\alpha}$, this simplifies to

$$
S_0 = \frac{c_{\text{eff}}}{6} \ln \frac{\xi_c}{a} + \text{const.},
$$

where $c_{\text{eff}} = 1 + \alpha$. According to ^a, $c_{\text{eff}} = 1 + \alpha$ is achieved with $j_{\text{max}} = \frac{3}{2}$ links.

*^a*M. C. Bañuls et al., 2017, *Phys. Rev. X* arXiv: <1707.06434> (hep-lat)

- [Kogut-Susskind Hamiltonian and the Schwinger fermion formulation](#page-5-0)
- [The continuum theory of 2d QCD and its bosonization](#page-14-0)
- [Strong coupling analysis of phases and confinement](#page-18-0)
- [Numerical results for the critical physics](#page-25-0)
- [Conclusions](#page-32-0)
- Formulated $SU(N)$ lattice gauge theories using Schwinger fermions.
- Remarkably, the resulting theory can be expressed purely in terms of gauge-invariant operators, which form a $U(2d + N_f)$ algebra.
- **This formulation applies to any** $SU(N)$ **gauge group in any spacetime dimension.**
- Reproduced the IR phases of 2d QCD using finite-dimensional local Hilbert space, as well as signal of the free fermion fixed point.

Thanks for attention!