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 Stable hadrons

Study of hadron resonances and interaction

 Hadron resonances

 Hadron resonances and hadron interaction
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 Hadron-hadron correlation 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

Femtoscopy
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Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 13 TeVsALICE pp 

 < 1TS0.7 < 

  0.12 fm± 0.01 ± = 1.18 0r
 0.06± = 0.64 λ

p+ K⊕p -K
Coulomb
Coulomb+Strong (Kyoto Model)

lich Model)uCoulomb+Strong (J

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 7 TeVsALICE pp 

 < 1TS0.7 < 

 fm- 0.15
+ 0.17 0.02 ± = 1.13 0r

 0.08± = 0.76 λ

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 5 TeVsALICE pp 

 < 1TS0.7 < 

 fm- 0.15
+ 0.17 0.02 ± = 1.13 0r

 0.07 ± = 0.68 λ

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250
)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250
)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250
)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration

Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data

CðQÞ¼N
!
1þλ

"
−1

2
expð−r20Q2Þþ1

4

jfðkÞj2

r20

"
1− 1

2
ffiffiffi
π

p d0
r0

$

þRefðkÞffiffiffi
π

p
r0

F1ðQr0Þ−
ImfðkÞ
2r0

F2ðQr0Þ
$

þares expð−r2resQ2Þ
%
; ð4Þ

where k ¼ Q=2, F1ðzÞ ¼
R
1
0 ex

2−z2=zdx and F2ðzÞ ¼
ð1 − e−z

2Þ=z in Eq. (4). The scattering amplitude is
given by

fðkÞ ¼
"
1

f0
þ 1

2
d0k2 − ik

$−1
; ð5Þ

where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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Experimental data in various sectors 

• pϕ

• K±p
• ΛΛ

4 ALICE Collaboration / Physics Letters B 797 (2019) 134822

Fig. 1. Results for the fit of the pp data at √s = 13 TeV. The p–p correlation function (left panel) is fitted with CATS (blue line) and the !–! correlation function (right 
panel) is fitted with the Lednický model (yellow line). The dashed line represents the linear baseline from Eq. (5), while the dark dashed-dotted line on top of the !–! data 
shows the expected correlation based on quantum statistics alone, in case of a strong interaction potential compatible with zero.

only significant contribution is p–!→p–p, where the p–! inter-
action is modeled using the scattering parameters from a next-to-
leading order (NLO) χEFT calculation [41] and the corresponding 
correlation function is computed using the Lednický model. The 
remaining residuals are considered flat, apart from p–#−→p–!, 
p–$0 →p–! and p–#(1530)− →p–#− , where the interaction can 
be modeled. For the p–#− interaction a recent lattice QCD poten-
tial, from the HAL QCD collaboration [42,43], is used. The p–$0 is 
modeled as in [44], while p–#(1530)− is evaluated by taking only 
the Coulomb interaction into account.

After all corrections have been applied to Ctot(k∗), the final fit 
function is obtained by multiplying it with a linear baseline (a +
bk∗) describing the normalization and non-femtoscopy background 
[25]

Cfit(k
∗) = (a + bk∗)Ctot(k∗). (5)

Fig. 1 shows an example of the p–p and !–! correlation func-
tions measured in pp collisions at 

√
s = 13 TeV, together with 

the fit functions. The p–p experimental data show a flat behav-
ior in the range 200 < k∗ < 400 MeV/c, thus by default the slope 
of the baseline is assumed to be zero (b = 0) and the corre-
lation is fitted in the range k∗ < 375 MeV/c. The resulting r0
values are 1.182 ± 0.008(stat)+0.005

−0.002(syst) fm in pp collisions at √
s = 13 TeV and 1.427 ± 0.007(stat)+0.001

−0.014(syst) fm in p–Pb colli-
sions at √sNN = 5.02 TeV. In pp collisions at 

√
s = 7 TeV the source 

size is r0 = 1.125 ± 0.018(stat)+0.058
−0.035(syst) fm [25].

The systematic uncertainties of the radius r0 are evaluated fol-
lowing the prescription established during the analysis of pp col-
lisions at 

√
s =7 TeV [25]. The upper limit of the fit range for the 

p–p pairs is varied within k∗ ∈ {350, 375, 400} MeV/c and the in-
put to the λ parameters is modified by 20%, keeping primary and 
secondary fractions constant.

Two further systematic variations are performed for the p–p 
correlation. The first concerns the possible effect of non-femto-
scopy contributions to the correlation functions, which can be 
modeled by a linear baseline (see Eq. (5)) with the inclusion of 
b as a free fit parameter. The final systematic variation is to model 
the p–! feed-down contribution by using a leading-order (LO) [41,
45] computation to model the interaction. The effect of the latter 
is negligible, as the transformation to the p–p system smears the 
differences observed in the pure p–! correlation function out.

To investigate the !–! interaction the source sizes are fixed to 
the above results and the !–! correlations from all three data 
sets are fitted simultaneously in order to extract the scattering 

parameters. The correlation functions show a slight non-flat be-
havior at large k∗ , especially for the pp collisions at 

√
s = 13 TeV 

(right panel in Fig. 1). Thus the fit is performed by allowing a non-
zero slope parameter b (see Eq. (5)). The fit range is extended to 
k∗ < 460 MeV/c in order to better constrain the linear baseline. 
Due to the small primary λ parameters (see Table 1) the !–! cor-
relation signal is quite weak and the fit shows a slight systematic 
enhancement compared to the expected Ctot(k∗) due to quantum 
statistics only, suggestive of an attractive interaction. However, the 
current statistical uncertainties do not allow the !–! scattering 
parameters to be extracted from the fit. Therefore, an alternative 
approach to study the !–! interaction will be presented in the 
next section. Systematic uncertainties related to the !–! emission 
source may arise from several different effects, which are discussed 
in the rest of this section.

Previous studies have revealed that the emission source can be 
elongated along some of the spatial directions and have a mul-
tiplicity or mT dependence [46,47]. In the present analysis it is 
assumed that the correlation function can be modeled by an ef-
fective Gaussian source. The validity of this statement is verified 
by a simple toy Monte Carlo, in which a data-driven multiplicity 
dependence is introduced into the source function and the result-
ing theoretical p–p correlation function computed with CATS. The 
deviations between this result and a correlation function obtained 
with an effective Gaussian source profile are negligible.

Possible differences in the effective emitting sources of p–p and 
!–! pairs due to the strong decays of broad resonances and mT
scaling are evaluated via simulations and estimated to have at 
most a 5% effect on the effective source size r0. This is taken into 
account by including an additional systematic uncertainty on the 
r!–! value extracted from the fit to the p–p correlation.

4. Results

In order to extract the !–! scattering parameters, the correla-
tion functions measured in pp collisions at 

√
s =7, 13 TeV as well 

as in p–Pb collisions at √sNN = 5.02 TeV are fitted simultaneously. 
The right panel in Fig. 1 shows the !–! correlation function ob-
tained in pp collisions at 

√
s = 13 TeV together with the result 

from the fit.
Since the uncertainties of the scattering parameters are large, 

different model predictions are tested on the basis of their agree-
ment with the measured correlation functions.

One option is to use a local potential and obtain C(k∗) based 
on the exact solution from CATS, with the source size fixed to the 
value obtained from the fit to the p–p correlations. Many of the 

• pΩ

STAR AuAu: PRL 114,022301(2015) 
ALICE : PLB 797 (2019) 134822 
         PbPb: PRC99, 024001 (2019) 

pp
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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uncertainty associated with the calculation (see Methods section ‘Corrections 
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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selection criteria of protons and kaons as well as the lower
limit of the sphericity. These variations are chosen such that
any combination leads to a maximum change of !20% of
Nsame within k" < 200 MeV=c in order to retain the
statistical significance. Systematic uncertainties associated
with the background description are evaluated by varying
the fit ranges and the order of the polynomial assumed for
Cbaselineðk"Þ. Uncertainties related to the unfolding are
accounted for according to Ref. [38]. This results in a
relative systematic uncertainty at low k" of 2.8%.
In correlation measurements, the detected pairs are

emitted in the final state of the scattering processes. The
correlation function of the sample is then sensitive to elastic
and inelastic channels produced in the collision [58].
Inelastic channels opening below threshold act as an
effective increase of the correlation function. The relevant
channels for the p-ϕ system, Λ-K and Σ-K are located
substantially below threshold. Channels appearing above
threshold lead to a cusp structure in Cðk"Þ in the vicinity of
the threshold. Because of the large uncertainties and the
broad bin width, no such structures are observed at the
opening of the Λ-K" (k" ¼ 221.6 MeV=c) and Σ-K"

(k" ¼ 357.4 MeV=c) thresholds.
In order to interpret the measured genuine p-ϕ correla-

tion one has to consider that the p-ϕ interaction features
one isospin and two spin configurations. Since the latter
cannot be disentangled, spin-averaged results are pre-
sented. The strong p-ϕ interaction is modeled employing
the Lednický-Lyuboshits approach [57]. Coupled channel
effects are incorporated via an imaginary contribution to the
scattering length. For large values of d0, the term ∝ d0=r0
that corrects the asymptotic wave function for small sources
has an impact on the modeled correlation function [34].
Additionally, in line with studies of charmonium states
[23,59], phenomenological potentials are employed to

model the p-ϕ interaction [24], including Yukawa-
type, VYukawaðrÞ ¼ −A × r−1 × e−α×r, and Gaussian-type
VGaussianðrÞ ¼ −Veff × e−μ×r

2
potentials. The correlation

functions based on these potentials are obtained with the
correlation analysis tool using the Schrödinger equation
(CATS) [60].
The particle-emitting source is extracted from studies of

p-p and p-Λ pairs [33], which demonstrated that by
accounting for the effect of strong resonances feeding to
the particle pair of interest, a common source for both pairs is
found. The primordial source depends on the transverse
massmT of the particle pair and is obtained by evaluating the
core radius at the hmTi ¼ 1.66 GeV=c2 of the p-ϕ pairs.
The strong decays feeding to protons are explicitly consid-
ered [33], while for the ϕ a 100% primordial fraction is
assumed [14]. The resulting source function is parametrized
by a Gaussian profile with reff ¼ ð1.08! 0.05Þ fm.
The interaction parameters are extracted by fitting the

genuine p-ϕ correlation function Cp-ϕðk"Þ with the respec-
tive model within k" < 200 MeV=c. The systematic uncer-
tainties of the procedure are assessed by varying the upper
limit of the fit range by !30 MeV=c and the source radius
within its uncertainties.
The real and imaginary parts of the scattering length

obtained from the Lednický-Lyuboshits fit are ℜðf0Þ ¼
0.85! 0.34ðstatÞ ! 0.14ðsystÞ fm and ℑðf0Þ ¼ 0.16!
0.10ðstatÞ ! 0.09ðsystÞ fm. The resulting effective range
is d0 ¼ 7.85! 1.54ðstatÞ ! 0.26ðsystÞ fm. ℜðf0Þ deviates
by 2.3σ from zero, indicating the attractiveness of the p-ϕ
interaction in the approximate vacuum of pp collisions.
Notably, ℑðf0Þ vanishes within uncertainties, indicating
that inelastic processes do not play a prominent role in the
interaction. Instead, the elastic p-ϕ interaction appears to
be dominant in vacuum. The scattering length is larger than
values found in literature: a recent analysis of data recorded
with the CLAS experiment reports jf0j ¼ ð0.063!
0.010Þ fm [61]; a value of around f0 ¼ 0.15 fm is con-
sistent with LEPS measurements of the ϕ cross section
[62,63]; studies of an effective Lagrangian combining
chiral SU(3) dynamics with vector meson dominance
obtain f0 ¼ ð−0.01þ i0.08Þ fm [64]; and a QCD sum
rule analysis finds f0 ¼ ð−0.15! 0.02Þ fm [65]. The
obtained scattering lengths are rather model dependent
since the data refer to the properties of the ϕmeson inside a
nucleus and not to a two-body system as in this work. This
underlines the importance of direct measurements of the
two-body N-ϕ interaction to provide constraints for theo-
retical models.
Finally, the data are employed to constrain the param-

eters of phenomenological Gaussian- and Yukawa-type
potentials. As the imaginary contribution of the scattering
length is consistent with zero, only real values are used for
the parameters. The fits yield a comparable degree of
consistency as the fit with the Lednický-Lyuboshits
approach. The resulting values for the Gaussian-type
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FIG. 2. The genuine p-ϕ correlation function Cp-ϕðk"Þ with
statistical (bars) and systematic uncertainties (boxes). The red
band depicts the results from the fit employing the Lednický-
Lyuboshits approach [57]. The width corresponds to one standard
deviation of the uncertainty of the fit.
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 

STAR AuAu

ALICE pp

Femtoscopic data
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 Line shapes of : relation to interactionC(q)

Source size dependence
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

Bound state 
or repulsive  
 ( )a0 > 0

Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

• Attractive int. w/ bound state  
  ( , large ) a0 > 0 |a0 |

• Repulsive int. ( , small ) a0 > 0 |a0 |

Suppressed C(q)

Suppressed  for Large C(q) R
Enhanced  for small C(q) R

• Attractive int. w/o bound state ( ) a0 < 0

Enhanced  C(q)

• Scattering length  and source size   
determines the suppression/enhancement  
of line shape 

a0 R

* a0 = − ℱ(q = 0)
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 Line shapes of : relation to interactionC(q)
Source size dependence

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
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 How to control source size R

Hadron correlation in high energy nuclear collision

R
p

•  collisionspp

Pb

p

p
Pb

Pb

Pb

Pb

• Pb collisionsp • PbPb collisions

• peripheral • central

∼ 1 fm ≳ 5 fm∼ 3 fm∼ 1.5 fm
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 interaction and  correlationK̄N K−p
 interaction and  K̄N Λ(1405)

K−pπΣ K̄0n

Λ(1405)
Λ(1380)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen

aK−p
0

M. Bazzi, et al.. PLB 704 (2011)

• Structure of  and  Λ(1405) Λ(1380)
• two pole structure

•  molecular pictureK̄N
 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)
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Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula
S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
R. Lednicky, et.al. Phys. At. Nucl. 61(1998) 

• Contribution from coupled-channel source 

C(q) = ∫ d3r S(r) |ψ (−)(q; r) |2 + ∑
j≠K−p

ωj ∫ d3r Sj(r) |ψ (−)
j (q; r) |2

, , , , , K−p K̄0n π0Σ0 π+Σ− π−Σ+ π0Λ

K−

p
CK−p

FSI

• Enhance  
• Enhance cusp structure   
•  : production rate  
         (compared to measured channel)

C(q)

ωi

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

R = 1 fm

 interaction and  correlationK̄N K−p
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Source size dependence of coupled-channel effect 
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• Less prominent cusp structure 
• Weaker coupled-channel source contribution

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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Constraining the KN coupled channels ALICE Collaboration
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Figure 7: Scaling factor (a j) for K0n (black circles) and pS (red squares) extracted from the different fits of the
K�p correlation function as a function of the core radius rcore extracted for pp, p–Pb and Pb–Pb collisions. The
vertical error bars and boxes represent the statistical and systematic uncertainties on the extracted parameters,
respectively. The widths of the boxes represent the systematic uncertainty associated to each extracted rcore. The
black and red bands represent the uncertainty coming from the yield estimates in TF and the variations applied in
the BW kinematics summed in quadrature as described in the text for K0n and pS, respectively.

be equal to unity if the coupling strength is correctly estimated within the Kyoto model. From the fits to
the measured correlation functions with the state-of-the-art Kyoto model, calculated within the coupled
channel approach, it is possible to observe that the dynamics of the coupled channels is under control in
the case of pS, while the deviation from unity of aK0n indicates that the transition between the K�p and

the K0n channel, as currently implemented in the Kyoto model, is too weak. Hence, the data presented
in this work provide a unique constraint to pin down the coupling strength to the K0n channel.
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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Figure 6: (K�p � K+p) correlation functions obtained in Pb–Pb collisions at
p

sNN = 5.02 TeV in the 60–70%
(left), 70–80% (middle) and 80–90% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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Figure 6: (K�p � K+p) correlation functions obtained in Pb–Pb collisions at
p

sNN = 5.02 TeV in the 60–70%
(left), 70–80% (middle) and 80–90% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
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sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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(left), 70–80% (middle) and 80–90% (right) centrality intervals. The measurement is shown by the black markers,
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blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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• Latest  correlation results K−p

• Pb  : 0-20%, 20-40% 40-100% 
• PbPb : 60-70%, 70-80% 80-90%

p

• Discrepancy around  threshold 
between chiral SU(3)  model and exp. data 
for small source data 

K̄0n

Fit with αj

Theor.

• Analysis with scale factor αj

• Scale the coupled-channel source contribution  
   by scaling factor

CK−p = Cel
K−p + ∑

j

αjCinel
j

•  ~ 2 gives better agreement αK̄0n

implying the stronger coupling

 interaction and  correlationK̄N K−p
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 interaction and -dibaryon stateNΞ H

-  interaction ( ) and -dibaryonΛΛ NΞ S = − 2 H

• Flavor-singlet dihyperon “H”R. L. Jaffe, PRL 38 (1977), 195. 

• Binding energy of double  hypernucleusΛ

 does NOT form (deep) bound stateΛΛ
Takahashi et al., PRL87 (2001) 212502

pΞ−ΛΛ nΞ0

Re s

226022542231

8 ⊗ 8 = 1 ⊕ 8A ⊕ 8S ⊕ 10 ⊕ 1̄0 ⊕ 27
•  : Unique sector in flavor Octet-Octet baryon int.J = 0

• Pauli arrowed  
• Attractive color-magnetic int. 

Predicted as “single hadron” below ΛΛ
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FIG. 1. s-wave coupled-channel HAL QCD potential. The colored shadow denotes the statistical error of each potential.

channel aJ=0
0 [fm] aJ=1

0 [fm]
pΞ− −1.21± 0.12+0.08

−0.00 − i1.52± 0.34+0.16
−0.25 −0.35± 0.06+0.09

−0.06 − i0.00± 0.00+0.00
−0.00

nΞ0 −2.53± 0.62+0.36
−0.46 − i0.74± 0.43+0.12

−0.21 −0.28± 0.04+0.02
−0.05

ΛΛ −0.76± 0.22+0.00
−0.14 -

TABLE I. The scattering length of the ΛΛ, nΞ0, and pΞ− channel at physical point with the physical basis. The Coulomb interaction is not
included. The values are listed as (central)± (stat. error)+−(syst. error). The error of ”0.00” denotes it is less than 5.0× 10−−3.

eigen-momenta of ΛΛ, nΞ0, and pΞ−, are +, −, and +, re-
spectively. The real part of this pole is just below the nΞ0

threshold by −3.93 MeV.3 Note that if the NΞ quasibound
state emerges, the pole must lie below nΞ0 threshold in the
(−,+,+) sheet, which is directly connected to physical scat-
tering energy. These near-threshold but in the irrelevant sheet
poles contribute to enhance the scattering length of the nΞ0

channel. Thus, considering the near-threshold virtual pole and
large absolute value of the nΞ0 scattering length, we can say
that the H dibaryon state is just barely unbound with the at-
tractive ΛΛ-NΞ interaction.4

3 See appendix for the relation between the attractive force and the virtual
pole position.

4 When the Coulomb potential is switched on, pΞ− atomic bound states
appear. The sizes of the atomic wave functions are much larger than the
source size, so the Coulomb attraction always contributes to enhance the
correlation function at small relative momenta in high-energy nuclear re-
actions.

III. CORRELATION FUNCTION FORMULA WITH
COUPLED-CHANNEL EFFECT

In high-energy heavy-ion collisions and high-multiplicity
events of pp and pA collisions, the hadron production yields
are well described by the statistical model so hadrons are con-
sidered to be produced independently. Under such conditions
the correlations between outgoing particles are generated by
the quantum mechanical scattering by the final state interac-
tion. We consider two particles, a and b, with relative mo-
mentum q = (mbpa − mapb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of cou-
pled channels, each denoted by j. In the pair rest frame of
the two measured particles, their correlation function C(q) is
given as [40, 46]:

C(q) =

∫
d3r

∑

j

ωjSj(r)|Ψ(−)
j (q; r)|2 , (1)

where the wave functionΨ(−)
j in the jth channel is written as

a function of the relative coordinate r in that channel, with
outgoing boundary condition for the measured channel. Sj(r)
and ωj are the normalized source function and its weight in the
jth channel. Thus the correlation function contains informa-
tion of both the hadron source and the hadron-hadron interac-

• HAL QCD  coupled-channel potentialΛΛ-NΞ
K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Strong attraction in   channel J = 0, I = 0 NΞ
apΞ−(J=0)

0 = − 1.21 − i1.52

 dibaryon state is just barely unbound.H

Fate of -dibaryon?H



 correlation functionpΞ−

 correlation function pΞ−

CpΞ− =
1
4

CpΞ−,singlet +
3
4

CpΞ−,triplet

Couples to  
(H-dibaryon channel)

ΛΛ

• Enhancement from pure  
   Coulomb case
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• Spin channel reduction
Singlet : Stronger enhancement 

Triplet : Weaker enhancement

S. Acharya et al. [ALICE], PLB 797 (2019).
pPb 5.02 TeV,  13 TeV collisions : pp

• Comparison with ALICE data 

Y. Kamiya, et al. PRC 105, 014915 (2022)
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Femtoscopic technique: 3-body

3

p1

p2

p3

C (p1, p2, p3) ≡
P (p1, p2, p3)

P (p1) P (p2) P (p3)
= 𝒩

Nsame  (Q3)
Nmixed  (Q3)

C (k*) = 𝒩
Nsame  (k*)
Nmixed  (k*)

Q3 = −q2
ij − q2

jk − q2
ki qμ = (pi − pj)

μ
− (pi − pj) ⋅ P

P2 Pμ P ≡ pi + pj

Experimentally studying three-body correlations, the 
small statistics requires to project the correlation function 
on 1-dimensional observable .Q3

C(p1, p2, p3) = ∭ S3 (x1, x2, x3) ψp1,p2,p3 (x1, x2, x3)
2

d3x1d3x2d3x3

Equivalently to two-body correlation:

Three body correlation :
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Lednicky model vs ALICE data
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         rK+d=1.41±0.04  fm                    rpd=1.08±0.06  fm
pd model calculations scaled by 1/15 

Kd data well reproduced 

 ⇒ fully formed deuterons 
present assuming small 
source

pd data not described

 ⇒ pd can’t be treated as 
effective two-body system

Considering protons, deuterons as 
distinguishable point-like particles 
leads to huge discrepancy

Talk slide from Oton Vazquez Doce’s  in FemTUM2022

Investigation of the three-body 
interactions of hadrons in pp 
collisions: p-p-p and p-p-Λ 
Laura Šerkšnytė, Raffaele Del Grande  
Technical University of Munich 
Based on: EPJC 82 2022 (TUM), arXiv:2206.03344 (ALICE)
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-  correlationY α(4He)

-  correlationY α

Further constraint on the  int? YN(YY )

αY
• Large binding energy of  

—> • Good description by two body treatment 

• -  potential: smeared potential range 
—> • Detailed potential shape may be investigated  

α

Y α
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.

 ALICE 
 Pb 5.02 TeV
pΞ−

p
ALICE PRL 123 (2019). 

ALICE Collaboration Physics Letters B 833 (2022) 137272

Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass ⟨mT⟩ =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(⟨mT⟩) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-

4

ALICE Collaboration Physics Letters B 833 (2022) 137272

Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass ⟨mT⟩ =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(⟨mT⟩) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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Λ potential (U
Λ
) in SHF

Skyrme Hartree-Fock equation

Parameters in Empirical and Chiral EFT

Chi2mom Chi3mom LY-IV H.Λ2

a1 (MeV fm^3) -352.20 -388.30 -500.89 -302.72

a2 (MeV fm^5) 39.35 47.28 16.00 23.73

a3 (MeV fm^5) 52.18 36.56 20.00 29.84

a4 (MeV fm^4) -356.96 -405.68 480.54 581.04

a5 (MeV fm^5) 1000.80 1256.74 0.00 0.00

RMSD (MeV) 1.59 0.75 0.74 0.78

J%Λ (MeV) -33.45 -30.03 -29.78 -31.23

L%Λ (MeV) -23.55 9.32 -36.24 -46.10

K%Λ (MeV) 415.00 532.30 217.80 277.40

m'Λ(mΛ 0.73 0.70 0.87 0.82

5

FIG. 2. Normalized baryon density dependence of the single-particle
potentials for ⇤ in the symmetric nuclear matter. GKW2 and GKW3
represent the results of the ⇤ single-particle potential with only two-
body interactions and two- and three-body interactions obtained from
the �EFT [23], respectively. The solid and dashed lines represent
the fitting results to GKW2 and GKW3, respectively. The dotted
and dash-dotted lines correspond to the ⇤ potentials, LY-IV [49] and
HP⇤2 [50], respectively.

of 13
⇤ C, 11.88 MeV. The experimental value is taken from

Ref. [65] with a correction of 0.5 MeV, which is pointed out
in Ref. [66]. There are two reasons for choosing 13

⇤ C: First,
it has a larger surface-energy effect compared with a heavier
nucleus. Second, the spherical Skyrme-Hartree-Fock method
is expected to provide a relatively good description of 13

⇤ C
because it has even numbers of protons and neutrons.

TABLE I. Sets of Skyrme potential parameters. Chi2 and Chi3 are
the fitting results to the �EFT calculations [23, 34]. LY-IV [49] and
HP⇤2 [50] are the ⇤ potentials, which can explain the ⇤ binding en-
ergy data. The symbol �B⇤ represents the mean squared deviation
of the calculated ⇤ binding energy from the experimental data as de-
fined by Eq. (29).

Chi2 Chi3 LY-IV HP⇤2
t⇤0 (MeV fm3

) �352.2 �388.3 �542.5 �399.9

t⇤1 (MeV fm5
) 143.7 120.4 56.0 83.4

t⇤2 (MeV fm5
) 13.7 68.7 8.0 11.5

t⇤3,1 (MeV fm4
) �951.9 �1081.8 1387.9 2046.8

t⇤3,2 (MeV fm5
) 2669 3351 0 0

x⇤
0 0 0 �0.153 �0.486

x⇤
3,1 0 0 0.107 �0.660

x⇤
3,2 0 0 0 0

J⇤ (MeV) �33.5 �30.0 �29.8 �31.2

L⇤ (MeV) �23.5 9.3 �36.2 �46.1

K⇤ (MeV) 415 532 218 277

m⇤
⇤/m⇤ 0.73 0.70 0.87 0.82

�B⇤ (MeV) 1.55 0.72 0.71 0.78

We show in Table I the Taylor coefficients and the normal-

ized effective mass at ⇢0, which characterize the ⇤ potential:

J⇤ = U⇤(⇢N = ⇢0, k⇤ = 0), (25)

L⇤ = 3⇢N
@U⇤

@⇢N

���
⇢N=⇢0,k⇤=0

, (26)

K⇤ = 9⇢2N
@
2
U⇤

@⇢
2
N

���
⇢N=⇢0,k⇤=0

, (27)

m
⇤
⇤

m⇤

���
⇢N=⇢0

=
1

1 +
2m⇤

~2 a
⇤
2 ⇢0

. (28)

C. ⇤ single-particle potential and ⇤ binding energy

We now present the results of the Skyrme-Hartree-Fock cal-
culations for ⇤ hypernuclei using the ⇤ Skyrme interaction
discussed in the previous section.

Figure 3 shows the ⇤ single-particle potential (18) for hy-
pernucleus 208

⇤ Pb. At a distance r < 4 fm where the nucleon
density ⇢N is close to the saturation density ⇢0, both Chi3 and
LY-IV have the potential depth of �30 MeV while Chi2 has a
slightly greater depth of �33 MeV. Those values reflect J⇤,
the ⇤-potential depth at ⇢0 (see Table I).

FIG. 3. ⇤ single-particle potential (18) for hypernucleus 208
⇤ Pb in

the coordinate space. The dashed and solid lines show the results
from the ⇤ potential Chi2 and Chi3, respectively. The dotted line
corresponds to the result from the LY-IV parameter sets.

Figure 4 compares the ⇤ binding energies calculated from
different ⇤ potentials at mass number A = 13–208 in 1s, 1p,
1d, 1f , and 1g orbitals. The experimental data at A = 16–
208 are listed in Table III. Chi3, which includes the ⇤NN

three-body force, reproduces the data. This implies that the
strong repulsive ⇤ potential, which is sufficient to suppress
the presence of ⇤ hyperons in dense nuclear matter, is con-
sistent with the observed ⇤ hypernuclear data. On the other
hand, Chi2, which includes only the ⇤N two-body force, pre-
dicts the overbinding of the data in the 1s orbital. This is be-
cause J⇤ is as deep as approximately �33 MeV for Chi2. We

•  potential model with different density dependenceNΛ
D. E. Lanskoy and Y. Yamamoto, PRC 55, 2330 (1997)

• LY-IV

N. Guleria, S. K. Dhiman, and R. Shyam, Nucl. Phys. A 886, 71 (2012)

• HP 2 Λ

• Well reproduces the binding energy of  in hypernuclei  Λ

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC 110 (2024), 014001

Weaker desnity dependence 
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ΛHe EB = 3.12 MeV
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• Nucleon density with Gaussian form: 
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FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line)
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short-range behavior of the ⇤↵ potential. The
Isle potential has a further strong repulsive core at a short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE.1 The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective-range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective-range
expansion, we evaluate the binding energy estimated by the
truncated effective-range expansion [70],

BERE
⇤ = �

1

2µ

✓
i

re↵
�

1

re↵

r
2re↵
a0

� 1

◆2

, (16)

in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective-range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.

Large difference in  
strength of repulsive core

Simple potential models
Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345 (1995) 

• Isle potential 

V(r) = V1e−r2/b2
1 + V2e−r2/b2

2
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(short range)

attractive part 
(long range)

• Single Gaussian (Isle)
V(r) = Ve−r2/b2

• parameters are chosen to reproduce EB

VΛα
• Potential shape dependence of ?CΛα
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• Dip for small source 

• Suppression for large source 

Effect of repulsive core

R = 1 fm

R = 3 fm
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ΛHe

•  are ordered from bottom to top as C(q)

—> Stronger core causes Stronger suppression 
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LY-IV
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FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.

is valid if R is much larger than the interaction range, as men-
tioned above.

To see the dependence on the momentum-dependent part
of the Skyrme-type potential, we compare the ⇤↵ correlation
functions calculated by using Chi3 with those by Chi3 w/o
mom in Fig. 6. For a source size of R = 1 fm, the corre-
lation functions show tiny but nonnegligible deviation, origi-
nated from the momentum dependence of the potential. From
Fig. 2, the momentum dependence of the potential induces
a sizable difference in the reduced effective mass of the ⇤↵
system. Nevertheless, its influence in the correlation function
is quantitatively small, presumably because of the subsequent
adjustment of the a⇤3 parameter to reproduce the ⇤ binding
energy of 5

⇤He. For R � 3 fm, the differences in the cor-
relation function are not noticeable. For such larger source
sizes, the LL formula works well, as seen above. Then, the
similarity between the correlation functions represents that the
differences in a0 and re↵ are not large enough to exhibit the
difference in the correlation functions.

IV. SUMMARY

In this paper, we extend the femtoscopy technique to the
system including light nuclei, and we provide quantitative pre-
dictions of the ⇤↵ momentum correlation functions that can
be measured in high-energy collisions. We have examined five
models of ⇤↵ potentials. Two of them are phenomenological
⇤↵ models (Isle and SG) [37]. The others are constructed by
substituting the ↵ density distribution for the Skyrme-type ⇤

potentials [58, 59]. All models reproduce the ⇤ binding en-
ergy of 5

⇤He and have a consistent interaction range of 2-3 fm,
while they have different properties at short range, includ-
ing both attractive ones and repulsive ones. The constructed
Skyrme-type potentials indicate that the repulsive nature of
the ⇤ potential at high densities induces the repulsive core in
the ⇤↵ interaction at short range.

While the correlation functions from the source with R & 3

fm are not sensitive to the short-range behavior of the ⇤↵ po-
tential, the difference of the potentials is manifest in the cor-
relation functions from the small-source system (R ⇠ 1 fm).

It is found that the correlation is suppressed in the order of
the repulsive strength of the ⇤↵ potential at short range. This
indicates that the ⇤↵ correlation function can constrain the
⇤↵ potential at short range, which cannot be explored in the
few-body ⇤ hypernuclear system because the variation in its
short range part does not make a difference in the calculated
⇤ binding energy [31]. Detailed knowledge of the ⇤↵ poten-
tial at short range would provide valuable information on the
property of ⇤ in dense nuclear medium, which is one of the
key ingredients needed to solve the hyperon puzzle of neutron
stars.

We examine the validity of the LL formula, which has been
utilized to extract the low-energy scattering parameters from
the correlation function measurements. For a small source
size of 1 fm, the LL formula is shown to severely deviate from
the exact result in the low-momentum region, since the system
with longer interaction range than the source size invalidates
the assumption made in the LL formula. We also study the
effect of the momentum dependence of the ⇤ potential, which
is not so firmly determined from the experimental data. We
compare the momentum dependent model with the one omit-
ting the momentum dependence of the ⇤ potential in symmet-
ric nuclear matter while fixing the ⇤ binding energy of 5

⇤He.
The difference between with and without the momentum de-
pendence is found to be small.

Since the source size of 1 fm is smaller than the rms radii of
↵, the feasibility of treating ↵ as a point-like particle should be
discussed. In the coalescence model picture, the yield of the
composite particle is represented as the product of the single-
particle yields and their correlation, and then the source func-
tion of the composite particle can be regarded as the effective
Gaussian source function [75–78]. A more rigorous treatment
for treating the ↵ particle as a composite particle is to calcu-
late the five-body scattering problem of ⇤+2n+2p ! ⇤+↵.
However, performing such calculations is beyond the scope of
this paper and is left as a future work.

We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
the property of the hyperons in nuclear medium. The exper-
imental measurement of the ⇤↵ correlation function may be
feasible at the collision energy

p
sNN < 10 GeV in which a

• Potential difference appear only in small source results

Large source results are useful to check  of EB
5
ΛHe

Isle -> Chi3 -> LY-IV -> SG (No core)
Same ordering with the strength of repulsive core R = 1 fm
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,",!−, and !0.1

Note that a0 in ""(J = 0) and n!0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p!−(J = 0) and n!0(J = 0) channels
are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)
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[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
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QCD potential, although the interactions in both channels
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as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,",!−, and !0.1

Note that a0 in ""(J = 0) and n!0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p!−(J = 0) and n!0(J = 0) channels
are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)

014915-3

FEMTOSCOPIC STUDY OF COUPLED-CHANNELS ... PHYSICAL REVIEW C 105, 014915 (2022)

FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,",!−, and !0.1

Note that a0 in ""(J = 0) and n!0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p!−(J = 0) and n!0(J = 0) channels
are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)

014915-3

 potential and  potentialNΞ Ξα

K. Sasaki et al., NPA, 121737 (2019). 

• Different channel weight 

• Effect of smeared repulsive core/attraction?

• HAL QCD  potential NΞ

E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022).VNΞ
VΞα

YITP-21-79, RIKEN-iTHEMS-Report-21, NITEP 116

Study on αΞ correlation function(仮)

Y. Kamiya,1, 2 A. Jinno,3 T. Hyodo,4, 2 and A. Ohnishi5
1Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

2RIKEN Interdisciplinary Theoretical and Mathematical Science Program (iTHEMS), Wako 351-0198, Japan
3Department of Physics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

4Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
5Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Dated: July 10, 2023)

TBA

PACS numbers: 25.75.Gz, 21.30.Fe, 13.75.Ev

I. INTRODUCTION

to be added...

II. FORMALISM

　
In this study, we employ the αΞ folding potential in

Ref. [1], which is obtained with the HAL QCD NΞ poten-
tial [2] This folding potential is given with the sum of the
Gaussian as

VαΞ(r) =
∑

i=1,20

Vi exp(−νir
2), (1)

where Vi is the potential strength and νi is the Gaussian range.
Because the isospin-spin ave averaged NΞ potential is given
as

Vave =
1

16

[
V (11S0) + V (11S0) + V (11S0) + 9V (33S1)

]
,

(2)

33S1 component is dominant in VαΞ. The potential shape
is shown in Fig. II. Due to the finite volume of α particle,
both the central repulsion and the attractive range are smeared
compared to the NΞ interaction. This interaction is attractive
but is not enough strong to support a bound state. Thus the
αΞ0 system, where only the strong interaction works, does
not have a bound state. The scattering length a0 and the effec-
tive range re are summarized in Table II. Note that we employ
the nuclear physics convention for the scattering length where
a0 > 0(< 0) for the repulsive interaction and the strongly
attractive interaction with a bound state (weak attractive inter-
action without supporting a bound state). The value of a0 is
sizable large which implies that the system is very close to the
unitary limit [3]. It can be understood that large re is due to
the smeared potential (1) has the long range.

On the other hand, for the αΞ− system, the further attrac-
tion by the Coulomb interaction works as

VCoulomb(r) =
Z1Z2α

r
(3)

with charge of particle i Zi and fine structure constant α. By
solving the Schrödinger equation with V = VαΞ + VCoulomb,
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FIG. 1. αΞ folding potential.

we find a Coulomb assisted shallow bound state with the bind-
ing energy B = 0.45 MeV. Note that this is not a Coulomb
bound state, which emerge for every Coulomb attractive pair
with keV order binding energy.

In the study of Ref. [4], the αΞ bound state with B =
2.16 MeV is found using chiral NLO NΞ amplitude. It is
not straight forward to construct a coordinate space potential
based on the Chiral NLO amplitude [4]. Instead, by multiply-
ing two to the VαΞ, we reproduce the binding energy of 2.16
MeV [1]. On the other hand, by using VαΞ/2, we can con-
sider the case where αΞ system does not have any bound state
for either charged or neutral system. Thus, in the following,
we consider the two additional potentials Vstrong = 2VαΞ and
Vweak = VαΞ/2 for the the deeply bound case and the un-
bound case, respectively. The scattering lengths and effective
ranges for the additional cases are shown in Table II.

The momentum correlation function in the high energy nu-
clear collisions is given by the Koonin-Pratt formula [5, 6];

C(q) =

∫
d3rS(r)

∣∣∣Ψ(−)(q; r)
∣∣∣
2
, (4)

where q is the relative momentum in the pair rest frame,
S(r) is the normalized source function, and Ψ(−)(q; r) is
the relative wave function with out going boundary condi-
tion. In this study, we employ the static Gaussian SR(r) ≡

r [fm]

• Folding  potential Ξα

[V(11S0) + 3V(13S1)
3V(31S0) + 9V(33S1)]/16

 correlationΞα

4 components  for  -wave :  s 11S0, 13S1, 31S0, 33S1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 50 100 150 200 250 300

t = 12

R = 1.2 fm

p⌅�C
p⌅

�

q [MeV/c]

p⌅� Full with Coulomb
p⌅� Full without Coulomb

pure Coulomb

CpΞ−
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• Large enhancement from  11S0

•  correlationpΞ−

• Large weight of 11S0
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• Long tail attraction by  exchange π
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Predictions for  bound state: Ξα 5
ΞH
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 correlationΞα

potential EB (Ξ0α) [MeV] EB (Ξ-α) [MeV]
VHAL (Unbound) 0.47

Vstrong = 2 *VαΞ 1.15 2.08
Vweak =  VαΞ /2 (Unbound) 0.18

Folding potential and variations
• : Folding potential based on  HAL QCD potential VHAL S = − 2

E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022). 
K. Sasaki et al., NPA, 121737 (2019). 

• Check V/  dependence of EB CΞα

H. Le, et al EPJA (2021)  

• Coulomb assisted bound state <— HAL QCD pot. 

 
 MeV EB = 0.47

 MeV EB = 2.16
• Behavior for Coulomb assisted  

bound state? 

• Can we distinguish  with ? 5
ΞH CΞ−α

E. Hiyama, et al PRC 106, 064318 (2022).
K. Sasaki et al., NPA, 121737 (2019). 

• Deeper bound state  <— chiral effective SU(3) pot.

α
Ξ−

α
Ξ0

α
Ξ−

α
Ξ0

• Bound state found only for Coulomb attractive pair

Large difference comes from 33S1
H. Le, et al EPJA (2021)  
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 correlationΞα

• Dip in  for  and  
                   • Suppression by repulsive core? 

q ∼ 100 MeV/c VHAL Vweak

• Source size dependence can 

•  Effect of detailed potential shape?

 correlationΞ0α
potential EB [MeV]

VHAL (Unbound)
Vstrong 1.15
Vweak (Unbound)

• , : strong enhancement  
                         • consistent with No 
VHAL Vweak

5
ΞH

• : Typical source size dependence with bound state 
              • Suppression for large  
              • Enhancement and dip for for small 

Vstrong
R

R

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, 2409.13207
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Detailed potential dependence 

 correlationΞα

Vweak
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2Re ℱ(q)
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F1(2qR) −

Im ℱ(q)
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R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
• Lednicky-Lyuboshitz (LL) formula

• Compare the folding potential results with simpler models

• Purely attractive Gaussian potential

4

C⌅↵ with Vstrong shows qualitatively different behavior from
those with VHAL and Vweak. This is attributed to the existence
of the bound state by Vstrong. In addition, the very strong en-
hancement of the correlation with VHAL at small momentum
reflects the significantly large scattering length |a0| > 500 fm.
As a consequence, three different potential models adopted
here can be distinguishable by the measurement of the ⌅

0
↵

correlation function, in particular for the large source R = 3-
5 fm. We find that the result with Vstrong shows the suppres-
sion or bump structure depending on the source size R. This
is a typical feature of C(q) for the attractive interaction with a
bound state. On the other hand, the correlation functions with
VHAL and Vweak show the enhancement in the low momen-
tum region characteristic for an attractive interaction without
a bound state, but a dip structure in the intermediate momen-
tum region (q ⇠ 200 MeV/c) is found. The dip structure is
more prominent in C(q) with a small source, R = 1 fm. Be-
cause such dip structure is not seen in the model calculation
with simple attraction [48], this should be related to the de-
tailed shape of the ⌅↵ potential.

To see the effect of the shape of the ⌅↵ folding potential, we
introduce the purely attractive one range Gaussian potential
given as

VGaussian(r) = V0 exp(�r
2
/b

2
), (6)

with the potential strength V0 and the range parameter b. We
construct the Gaussian potentials by choosing the range pa-
rameter as b = 3 fm and tuning V0 to reproduce the scattering
length a0 in Table I for each potential. We have checked that
the qualitative conclusions given below remain unchanged un-
der the variation of the value of b. The correlation functions
by the Gaussian potentials with R = 1 fm are compared with
the results from the original folding potentials VHAL, Vstrong,
and Vweak in Fig. 4. We find that the Gaussian potentials qual-
itatively reproduces the results of the original folding poten-
tials, while the correlation in the small momentum region is
somehow overestimated. In particular, the Gaussian potentials
corresponding to VHAL and Vweak without a bound state pro-
vide the enhancement of the correlation without a dip in the
intermediate momentum region, as expected. In other words,
the folding potentials with a repulsive core gives the suppres-
sion of the correlation functions in this region, causing a dip
structure. Thus, we conclude that the characteristic suppres-
sion found in the ⌅

0
↵ correlation with R = 1 fm in the in-

termediate momentum region is caused by the repulsive core
of the folding potential. This means that the correlation func-
tion from the small source may be useful to investigate the
existence and its strength of the repulsive core of the N⌅ in-
teraction.

To further discuss the effect of the potential shape to the
correlation, we evaluate the correlation functions with the
Lednicky-Lyuboshits (LL) formula [44, 49]

CLL(q) =1 +
|f(q)|2

2R2
F3

⇣
re↵

R

⌘

+
2Ref(q)p

⇡R
F1(2qR)� Imf(q)

R
F2(2qR), (7)

where F1(x) =
R x
0
dt e

t2�x2

/x, F2(x) = (1 � e
�x2

)/x,
F3(x) = 1�x/2

p
⇡, and f(q) = 1/(�1/a0+re/2q

2�iq) is
the s-wave ⌅↵ scattering amplitude calculated by the effective
range expansion with the threshold parameters in Table I. The
LL formula is obtained from the KP formula by approximat-
ing the full wave function by the asymptotic wave function.
This means that if the detailed shape of the potential affects
the correlation function, the LL formula estimation should be
deviated from the result of the Koonin-Pratt formula. In Fig. 4,
we compare the results by the KP formula (5) with the cor-
responding ones by the LL formula for VHAL, Vstrong, and
Vweak potentials with the source size R = 1 fm. As shown
in Fig. 4, for R = 1 fm case, the results with the LL formula
do not reproduce those with KP formula for all potentials. In
particular, in the low momentum region, CLL(q) rapidly de-
creases while the result of the KP formula shows the strong
enhancement. Note that C(q) defined in Eq. (5) is always
positive while CLL(q) can be negative in the small momen-
tum region when re is large and positive. The negative CLL(q)

seen in Fig. 4 also indicates that the LL formula is not appli-
cable in these cases. On the other hand, as shown in Fig. 5
for R = 3 fm and R = 5 fm cases, the LL formula gives
the good approximation of the KP formula results. This is
because the correlation from the large source is determined
mainly by the distortion of the wave function at large rela-
tive distance r where the detailed potential shape is irrelevant.
This failure of the LL formula for small source is qualitatively
consistent with what is found in the study of the ⇤↵ correla-
tion function [34].

Finally, we show the results of the ⌅
�
↵ correlation func-

tions in Fig. 6. Due to the Coulomb attraction, C(q) shows the
strong enhancement at the low momentum for all potentials.
The effect of the strong interaction emerges as the deviation
from the pure Coulomb result, where the strong interaction is
switched off. In contrast to the ⌅0

↵ correlation, the difference
between the adopted potentials in larger source is smeared by
the Coulomb attraction. Nevertheless, with a good resolution
of the measurement, it may be possible to distinguish differ-
ent potentials by the correlation function with R = 1-3 fm.
Through the comparison with C⌅0↵ in Fig. 3, we find that the
results with Vstrong and Vweak in the low momentum region
is simply enhanced due to Coulomb force from C⌅0↵. On the
other hand, C⌅�↵ with VHAL with R = 3 and 5 fm smaller
than the pure Coulomb case while C⌅0↵ shows the enhance-
ment. Namely, the correlation function of VHAL shows en-
hancement for the small source and suppression for the large
source with respect to the pure Coulomb result. This is noth-
ing but the source size dependence of the correlation func-
tion with a shallow bound state. This means that, when the
Coulomb assisted bound state exists, the typical source size
dependence can be observed in the ⌅

�
↵ correlation function

as the difference from the pure Coulomb result.

IV. CONCLUSION

Towards elucidating the N⌅ interaction, we We have dis-
cussed the ⌅↵ correlation function with the folding potential

• approximation by asymptotic  wave function  
  —> Good description for short range potential 

• Larger  than the folding potentials 
• No dip structure at /c

C(q)
q ∼ 100 MeV

• Large deviation due to the large effective range for 
   small source

Repulsive core causes dip in ! CΞα

re = 4.5 fm ( )VHAL

LL formula does not work for  from small source.C(q)

Gaussian 
VHAL
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 bound state and Coulomb effectΞ−α

 correlationΞα

•  and  : W.f. strongly localized in strong int. range. 
        → Short range int. is dominant.

•  : long range tail similar to pure Coulomb case 
        → Coulomb int. is dominant.
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 correlationΞ−α
potential EB [MeV]

VHAL 0.47
Vstrong 2.16
Vweak 0.18

• Dip structure at  MeV/c for  fm q ∼ 100 R = 1

  can be distinguished by the source size dependence5
ΞH

Repulsion core effect can be investigated with small source

•  and : Coulomb enhancement added to Vstrong Vweak CΞ0α

 correlationΞα

•  :  with  fm turns to be suppressedVHAL C(q) R = 3
—> Typical source size dependence with bound state 

• Coulomb int. added: 
—> Strong int. effect appear as deviation from pure Coulomb
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Summary

Femtoscopic study on the hadron interaction 
   • Direct approach to the low-energy interaction  
   • Sensitive to the near-threshold resonance  

 correlation  
 • Chiral SU(3) model give the good agreement with the various  data  
 • Finite deviation in small source indicates the stronger coupling 

 correlation function 
• Existence of   can be tested with the source size dependence 
• Dip structure at intermediate momentum by the repulsive core       

K−p
K−p

Ξα
5
ΞH

Thank you for your attention!
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LL formula for R = 1,3,5 fm
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Gaussian potenial for VHAL
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