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Why Hadron interactions?
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One of the most important quantities
which bridge particle physics and 

nuclear physics / astrophysics



NN phase shifts 
from experiments

Various 
applications

Neutron Stars

Nuclei

Super Novae
Phenomenological

Nuclear Forces

• Nuclear Forces play crucial roles
– Yet, no clear connection to QCD so far

Phen. NN potentials: #params = 30~40 
 QCD: #inputs = 6 : quark masses (mu, md, ms, mc, mb) & coupling αs 

Nuclear Forces: Foundation of nuclear physics
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Nuclear Forces from QCD

Phen. potentials
#params(2NF) = O(40) 
#params(3NF) = several

Pionfull/Pionless
EFT potentials                       

#params(2NF) = 24+… 
#params(3NF) = 2+…

or
#params(2NF) = 2+… 
#params(3NF) = 1+…

Effective DoF

QCD
(quarks) 
(gluons)

#params=6
quark masses 

& coupling Chiral Sym.                            
(w/ Effective DoF)

Lattice QCD LQCD potentials   
#params(2NF) = 0
#params(3NF) = 0
#params(YN,YY,YNN) = 0

(HAL method)

O
bservables

(Phase shifts, B.E.)



Several 
known

Several Tens 
known

Several Thousands known

Nuclear Forces  Baryon Forces (incl. Hyperons)

Renaissance in 
Strange World !

What is universal, and      
what is individual in baryon forces ?

Exotic Dibaryon ?

3D Nuclear Chart

Nucleons  :  u, d     quarks
Hyperons :   u, d, s quarks



Paradigm Shift in     
Unstable Nuclei

(New Magic Numbers !)

Important role of 3NF
T.Otsuka et al., PRL105(2010)032501

2D Nuclear Chart

 r-process Nucleosynthesis

What is 3NF ?

＋＋

2NF

3NF: Forces which 
cannot be explained 

by pair-wise 2NF
＋

Precise ab initio calculations / experiments  
 3NF is indispensable RIBF/FRIB

Nuclear Forces  Thee-Nucleon Forces (3NF)



Dense Matter  Interactions of                   
YN, YY, + NNN, YNN,… are crucial
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Akmal et al.(’98), Nishizaki et al.(’02), Takatsuka et al.(’08)

PSR1913+16

J0348+0432      
J1614-2230 

YNN(?)

Gravity

• Neutron Stars, Supernovae 
 EoS of dense matter

J0740+66203N

Y dof2N
How to sustain a neutron star 

against gravitational collapse ?

Quark matter ?
G. Baym et al., Rep.Prog.Phys 81(2018)056902
Fukushima, Fujimoto, Kojo, …

NICER

LIGO/Virgo/KAGRANS-NS merger

GW



Tcc

Nuclear/Hyperon Forces  Charmed/Bottomed Forces

Belle (II)

Many new exotic particles 
being reported!

Hadron interactions crucial to understand these “signals” !

X(3872)

LHC

up,down
quarks

heavylight ~ a few MeV

strange 
quark

~100 MeV ~300 MeV

ΛQCD

~1.3 GeV

charm 
quark

~4.2 GeV

bottom 
quark

top

chiral symmetry heavy quark symmetry

Heavy quarks: New doorway to the mysteries of QCD
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• Formula of QCD: very simple & beautiful

– Only 6 parameters

• Solving QCD: very challenging
– Coupling is “strong” at low energy
– Nonperturbative effects
– Quantum effects w/ infinite # of DoF

QCD (DoF=quarks/gluons)

quark masses (mu, md, ms, mc, mb, (mt))
coupling constant αs = g2/4π

(PDG2024)
QCD vacuum



Lattice QCD                           
First-principle calculation of QCD

4dim 
Euclid 
Lattice

a

L

quarks on sites

gluons on links

• Regularized system (finite a and L)
• Gauge-invariance manifest
• Fully-Nonperturbative
• DoF ~ 109-10 Monte-Carlo w/ Euclid time

– Numerical calc by supercomputers

K.G. Wilson 
(1974)

Fugaku



Status of Lattice QCD
Mass & structure of single hadrons well reproduced !

LQCD + LQED BMW Coll., Science 347(2015)1452

C.C. Chang et al. (CalLat Coll.), Nature 588 (2018)7708

Hadron (baryon, meson) masses Nucleon axial coupling
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Next challenge:
Interactions between     
2 (& 3, …) hadrons

HAL QCD Coll., PRD in press, arXiv:2406.16665

LQCD PACS-CS Coll., PRD81(2010)074503
BMW Coll., JHEP1108(2011)148



Traditional Nuclear Physics (1935(Yukawa) ~ 20th C.)

QCD

Attraction

Repulsive Core

Traditional    
“Resolution”

Proton

Neutron

Phenomenological            
Two-Nuclear Forces (2NF)

Based on

Y. Nambu:  

“Even now, it is impossible to       
completely describe nuclear forces 
beginning with a fundamental equation.    
…, a practically impossible task.”

(Quarks: Frontiers in Elementary Particle Physics” 
(World. Sci. (1985))

r [fm]



Novel theoretical framework

Massive numerical simulations

First-principles LQCD calc for     
2NF becomes possible ! 

（Ishii-Aoki-Hatsuda, ’07)

Nuclear Physics in the New Era (21th C. ~)

LQCD Two-Nuclear Forces     
give theoretical basis               

for nuclear physics
QCD

proton

neutron
New 

“Resolution”

r [fm]



• Outline
– Introduction
– Brief review of scattering theory
– Scattering on the lattice

• Luscher’s finite volume method
• HAL QCD method

– S/N problem
– More on HAL QCD method
– Reliability issue and NN controversy
– Summary
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Scattering problem

• Consider the two particle scattering by potential 

– Incoming state: 

– Outgoing state:

– Cross section

15

For simplicity, we consider the 
central potential, 

V



Scattering problem
• Green function 

– Solution of Schrodinger eq.

• Partial wave decomposition 

– General solution is given by Bessel and Neumann func

Born approximation



Scattering problem
• Asymptotic behavior and phase shift 

• S-matrix

17



Scattering problem

(Fig taken from Igi-Kawai book)

Attractive potential

Repulsive potential

Levinson’s theorem

(Nl : #bound states)

NN scatt



Scattering problem
• Cross section 

• Low-energy expansion

– S-wave is dominant

19

a:  scattering length
r0:  effective range



Scattering problem
• Analytical structure 
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in-coming out-going

X : pole
○ : zero

Re[k]

Im[k]

Bound state

Re[k]

Im[k]

If potential has IR-cut (V(r)=0 for r>R), F(k), S(k) are analytic for all k-plane



Scattering problem
• Analytical structure 
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in-coming out-going

X : pole
○ : zero

If potential is, e.g., Yukawa-type at large r, 
there exists non-analytic region (left-hand cut)

Re[k]

Im[k]

Bound state

Re[k]

Im[k]



Scattering problem
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Fig. from Hyodo (原子核研究)

Poles in S-matrix for
Bound state (B), Virtual state (V), Resonance (R)



Phase shift in QFT
• Unitarity and the form of T-matrix 
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Elastic scattering in center of mass

Insert 
complete 

basis



Phase shift in QFT

Relation with cross section

Using partial wave decomposition,

we obtain

 T-matrix can be parametrized as



• Outline
– Introduction
– Brief review of scattering theory
– Scattering on the lattice

• Luscher’s finite volume method
• HAL QCD method

– S/N problem
– More on HAL QCD method
– Reliability issue and NN controversy
– Summary
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Maiani-Testa’s No-go theorem

See also Bruno-Hansen, JHEP06(2021)043
26

• Consider a correlation function in infinite V limit 

Maiani-Testa, PLB245(1990)245

Physical scattering 

scattering length

“No-go theorem”

“with a coefficient proportional to an off-shell amplitude, 
with no direct meaning in terms of observable quantities”

In the infinite V in 
Euclidean time, you can 
access only threshold

(Information of phase 
(complex-ness) is lost)



Interactions on the Lattice

• Luscher’s finite volume method
– Phase shift & B.E. from temporal correlation in finite V

• HAL QCD method 
– “Potential” from spacial (& temporal) correlation in finite V
– Phase shift & B.E. by solving Schrodinger eq in infinite V

M.Luscher,  CMP104(1986)177
CMP105(1986)153
NPB354(1991)531

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89
HAL QCD Coll., PTEP2012(2012)01A105
Aoki-Doi, Front.Phys.8(2020)307
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Luscher’s formula: Scatterings on the lattice
• Consider Schrodinger eq at asymptotic region

– (periodic) Boundary Condition in finite V                                                  
 constraint on energies of the system

– Energy E and phase shift (at E) are related

R L

28



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 1+1 dim QM

R L
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Solution in infinite V

PBC poses a quantization condition 

= in finite   V

In the case of free theory



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 1+1 dim QM

R L
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Solution at asymptopic region

Consider finite V effect w/ PBC

PBC poses a quantization condition 

and obtain solution in infinite/finite V at asymptotic region (where potential=0)

In the case of interacting theory

matching                          at asymptotic region



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 3+1 dim QM (S-wave)

R L

31

Solution in infinite V

generally complicated, 
but solution at asymptotic region (r > R) is simple



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 3+1 dim QM (S-wave)

R L
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Solution in finite V

Assume that there exists asymptotic region                 
within a finite box :  R < L/2

Consider a solution at asymptotic region R < r < L/2



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 3+1 dim QM (S-wave)

R L
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matching                             at asymptotic region

Luscher’s formula

Luscher’s zeta function



Luscher’s formula: Scatterings on the lattice
– Example in two bosons in 3+1 dim QM (S-wave)

R L
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A simpler formula suitable for intuitive understanding

Large V expansion

a: scattering length

As intuitive derivation, 
one can obtain LO formula from Born approximation



Interactions from Luscher’s formula

Luscher’s formula (red lines) gives                           
quantization condition (kinematical constraint) on finite V
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(high-end version of k=(2pi/L)n in free theory)

Quantization condition itself does not 
have any information on dynamics

(fixed L)



Interactions from Luscher’s formula

Intersections of
(1) Luscher’s quantization condition
(2) Interaction (e.g., shown by ERE)

are realized on a lattice

(fixed L)



How to obtain phase shift in practice? (fixed L)

• Calculate the energy spectrum of 2-hadron on finite V lattice
– Temporal correlation in Euclidean time  energy 

• Convert the energy shift to phase shift by Luscher’s formula              
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Unbound : 1/a > 0
Bound   : 1/a < 0

Unbound example Bound example

(various L)



(non-rela) QM  QFT

• Essentially the same formula can be used

• QM wave func.  Nambu-Bethe-Salpeter (NBS) wave func.
– Interaction kernel (or so-called “potential”) can be defined

(see later)

– The interaction does not become exactly zero at large r
• Systematic error of 

• N.B. To use Luscher’s method, one has to check whether the      
volume is sufficiently large compared to the interaction range

• [ Energy vs. asymptotic momentum ] becomes relativistic              
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• Outline
– Introduction
– Brief review of scattering theory
– Scattering on the lattice

• Luscher’s finite volume method
• HAL QCD method

– S/N problem
– More on HAL QCD method
– Reliability issue and NN controversy
– Summary
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How to define/calc Hadron interactions? 
L

at
tic

e 
Q

C
D

NBS wave func. Lat Hadron Force

(at asymptotic region)

41

Potential
Faithful to phase shifts

Ishii-Aoki-Hatsuda PRL99(2007)022001

HAL QCD method

(Schrodinger eq.)



NBS wave func and its asymptotic behavior

(Example for two distinguishable spinless boson system)

Nambu-Bethe-Salpeter (NBS) wave func.

Consider equal time NBS w.f. in the center of mass

Insert a complete set

Inelastic states:                       
neglected for simplicity

By LSZ reduction formula … 42

Y. Nambu, PTP5(1950)614
Hayashi-Munakata, 素粒子論研究3(1951)89, PTP7(1952)451 
Salpeter-Bethe, Phys.Rev.84(1951)1232
(See also Salpeter, 0811.1050 for some history)



NBS wave func and its asymptotic behavior
By LSZ reduction formula …

43

(disconnected) (connected)

half on-shell T-matrix (p, ka, kb: on-shell, q: off-shell)

(integral dominated by on-shell contribution)



NBS wave func and its asymptotic behavior
Using partial wave decomposition,

44

etc.

We obtain

Information of phase shift is encoded in asymptotic region
with the same functional form as QM

C.-J.Lin et al., NPB619(2001)467 Ishizuka, Pos LAT2009 (2009) 119 Aoki-Hatsuda-Ishii PTP123(2010)89



“Potential” as a representation of S-matrix 

• Consider the wave function at “interacting region”

– U(r,r’): faithful to the phase shift by construction
• U(r,r’): NOT an observable, but well defined

– Potential is NOT unique, but different potentials are    
phase-shift equivalent potentials

– Choosing the pot.  choosing the “scheme” (sink op.) 

• U(r,r’): E-independent, while non-local in general

45

R LProbe interactions in “direct” way



Proof of Existence of E-independent potential 

• We consider the linear-indep wave functions and define

• We define the non-local potential

• The above potential trivially satisfy Schrodinger eq.

[START] local but E-dep pot.  (L3xL3 dof)

[GOAL] non-local but E-indep pot.  (L3xL3 dof)

Intuitive 
understanding

c.f. Krolikowski-Rzewuski, Nuovo Cimento, 4, 1212 (1956)



“Potential” as a representation of S-matrix 

• Consider the wave function at “interacting region”

– U(r,r’): faithful to the phase shift by construction
• U(r,r’): NOT an observable, but well defined

– Potential is NOT unique, but different potentials are    
phase-shift equivalent potentials

– Choosing the pot.  choosing the “scheme” (sink op.) 

• U(r,r’): E-independent, while non-local in general
– Non-locality  derivative expansion

47

R LProbe interactions in “direct” way

Okubo-Marshak(1958)

LO LO NLO NNLO



Most general form of the NN potential

• Imposed condition
– Hermiticity
– Energy/Momentum conservation
– Galilei invariance
– Rotational invariance
– Parity conservation
– Time reversal
– Pauli principle

• LO

• NLO
Independent DoF in Isospin space:



“Potential” as a representation of S-matrix 

• Consider the wave function at “interacting region”

– U(r,r’): faithful to the phase shift by construction
• U(r,r’): NOT an observable, but well defined

– Potential is NOT unique, but different potentials are    
phase-shift equivalent potentials

– Choosing the pot.  choosing the “scheme” (sink op.) 

• U(r,r’): E-independent, while non-local in general
– Non-locality  derivative expansion

– Phase shifts at all E (below inelastic threshold) obtained                                       
by solving Scrodinger eq in infinite V 49

R LProbe interactions in “direct” way

Okubo-Marshak(1958)



Elementary particle vs composite particle?
LSZ reduction formula :  elementary particle

50

“almost-local field” B(x) is used for composite particle

Nishijima-Haag-Zimmermann (NHZ) reduction formula : composite particle 
K. Nishijima, Phys.Rev.111(1958)995, 133(1964)B204
R. Haag, Phys.Rev 112(1958)669)
W.Zimmerman, Nuovo Cim X10 (1958) 597
(See also 西島和彦, 日本物理学会誌 47(1992)859 for history)

The same reduction formula can be used as far as

Example for nucleon op.

(1) space-time translation like an elementary field

(2) B(x) may be expressed as (the limit of) a polynomial in the basic field A(x):

h(r) : sufficiently smooth and decrease rapidly (stronger than any power for large r)



Coupled Channel

• Asymptotic behavior of NBS wave func

51
S.Aoki et al. (HAL Coll.), Proc. Jpn. Acad. Ser. B87(2011)

Ex.)  A + B  C + D

where

(beyond inelastic threshold)



Coupled Channel
• T-matrix parametrization by unitarity

• Asymptotic behavior 

•  Coupled channel potentials can be defined



Coupled Channel
• Proof of Existence of E-indep potential

• Generalization to A+B  C+D+E, etc. possible
– 2-body relativistic, otherwise non-rela approx. necessary

53

Vector of NBS

Norm

S.Aoki et al. (HAL Coll.), PRD87(2013)034512

E-indep pot.

NBS wave func.



Extension to multi-particle systems (n>=3)

• Unitarity of S-matrix
S.Aoki et al. (HAL Coll.), PRD88(2013)014036

Hyper-spherical func in D=3(n-1) dim

diagonalization

54

Similar formula to 2-body system                     
(w/ diagonalization matrix U which includes dynamics)

c.f. R.B. Newton (1974) for n = 3

(non-rela approx.)

Gongyo-Aoki PTEP2018(2018)093B03



Extension to multi-particle systems (n>=3)

• NBS wave function
S.Aoki et al. (HAL Coll.), PRD88(2013)014036

Lippmann-Schwinger eq.

Expansion w/ hyper-coordinate

Similar asymptotic behavior to 2-body system

c.f. Finite V spectrum, n=3 only, relativistic: Hansen, Sharpe, Briceno, …

(non-rela approx.)

Gongyo-Aoki PTEP2018(2018)093B03



L
at

tic
e 

Q
C

D
NBS wave func. Lat Hadron Force

HAL QCD method
Sc

at
te

ri
ng

 E
xp

.

Phase shiftsAnalog to … Phen. Potential

E-indep (& non-local)  Potential



Digression: Nishijima’s thesis
He wrote his Ph.D. thesis 
on the subject of field theory of composite particle 
(not on the strangeness!)
「場の理論に於ける多体問題」(1955, Osaka U.)

57

(Photo from Wikipedia)

西島和彦 素粒子論研究81巻3号(1990)168



Digression: Nishijima’s thesis
He wrote his Ph.D. thesis 
on the subject of field theory of composite particle 
(not on the strangeness!)
「場の理論に於ける多体問題」(1955, Osaka U.)

58

(Photo from Wikipedia)

K. Nishijima, Soryushiron Kenkyu, Vol. 81, Issue 3 (1990)168 
+ English translation by ChatGPT

The discussion about bound states took up the most time. Once you understand it, 
the work involving strangeness is the kind of task that can be written in a day. 

That's why I made the paper on bound states my dissertation.

At that time, Osaka City Univ. did not confer degrees. So, I started looking for a 
university that did, and there it was right in front of me. Osaka Univ. was within 

walking distance, so I went there and said I wanted to get a degree. There were no 
other choices, and Ryoyu Utiyama san became the chief examiner. Utiyama-san said, 'I 
completely understood this kind of discussion, but I don’t know if the other examiners 
will. If you explain it in a way the other examiners can understand, I’ll pass you.' In 
reality, it wasn’t phrased like that; the way he said it was much harsher (laughs). 

Anyway, the examiners studied very hard, they understood, and I was able to pass.
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