2+1+1 flavor QCD equation of state with Highly Improved Staggered Quarks

Alexei Bazavov Michigan State University

Hadrons and Hadron Interactions in QCD, Yukawa Institute for Theoretical Physics, Oct 14 — Nov 15, 2024

Outline

- QCD phase diagram
- Lattice QCD
- Highly Improved Staggered Quark action
- Discretization effects
- Chiral crossover and the 2+1 flavor QCD equation of state
- Charm sector: fluctuations
- 2+1+1 flavor QCD equation of state
- Conclusion

QCD phase diagram

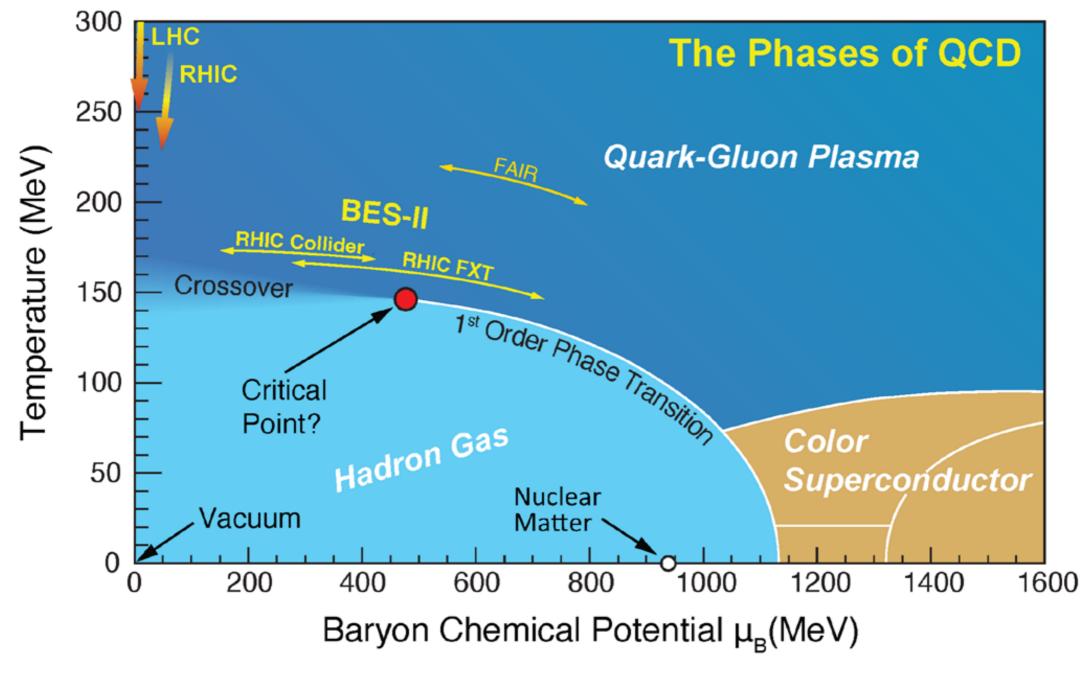
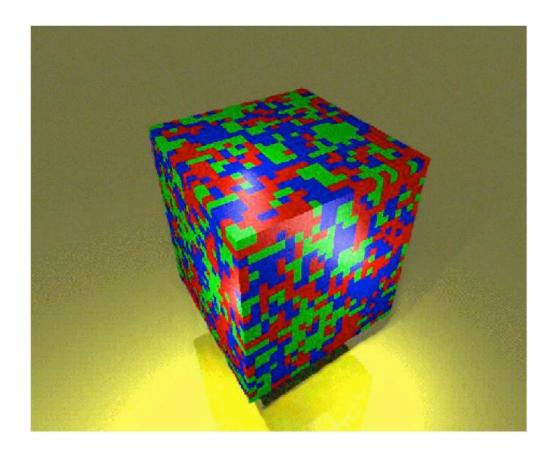


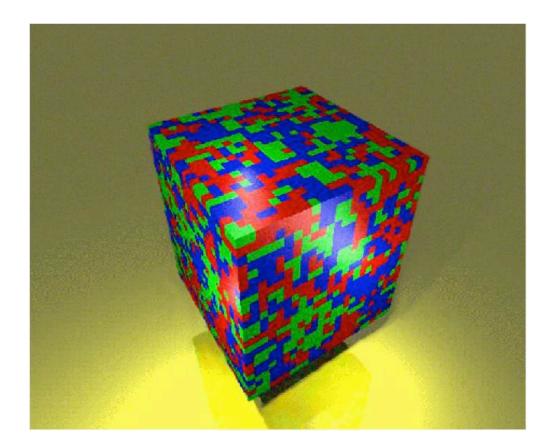
Image by Thomas Ullrich from 2023 NSAC LRP

Lattice QCD



- Euclidean space-time.
- Hypercubic lattice, momentum cutoff of the order π/a .
- Gauge-invariant regularization.
- Fermions integrated out.

Lattice QCD



- Euclidean space-time.
- Hypercubic lattice, momentum cutoff of the order π/a .
- Gauge-invariant regularization.
- Fermions integrated out.

• Stochastic sampling of path integrals

$$Z = \int DUe^{-S_g[U]} \det M[U].$$

• Physics is recovered in the continuum limit.

• Staggered Dirac operator:

$$M_{xy}[U] = 2m\delta_{xy} + \sum_{\mu} \eta_{x,\mu} (U_{x,\mu}\delta_{x,y-\hat{\mu}} - U_{x-\hat{\mu},\mu}^{\dagger}\delta_{x,y+\hat{\mu}}).$$

• Staggered Dirac operator:

$$M_{xy}[U] = 2m\delta_{xy} + \sum_{\mu} \eta_{x,\mu} (U_{x,\mu}\delta_{x,y-\hat{\mu}} - U_{x-\hat{\mu},\mu}^{\dagger}\delta_{x,y+\hat{\mu}}).$$

• To reduce the discretization effects replace the gauge links with weighted averages over multiple paths.

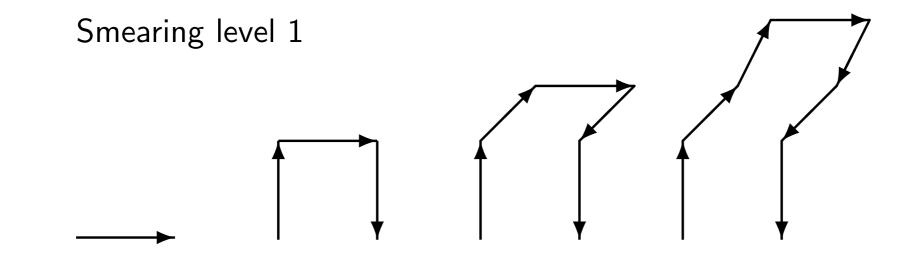
• Staggered Dirac operator:

$$M_{xy}[U] = 2m\delta_{xy} + \sum_{\mu} \eta_{x,\mu} (U_{x,\mu}\delta_{x,y-\hat{\mu}} - U^{\dagger}_{x-\hat{\mu},\mu}\delta_{x,y+\hat{\mu}}).$$

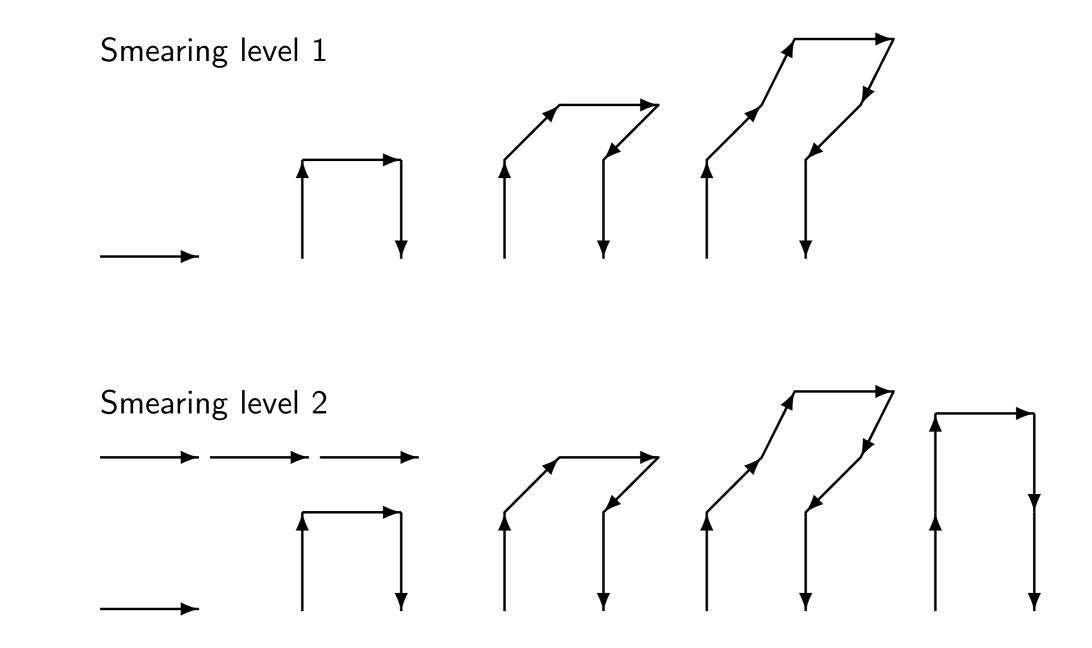
- To reduce the discretization effects replace the gauge links with weighted averages over multiple paths.
- The Highly Improved Staggered Quarks action: V[U] - Fat7 smearing, W[V] - U(3) projection, X[W] - Asq smearing. HPQCD, PRD75 (2007)

• Smearing suppresses the dominant discretization effects — from taste exchange interactions.

• Smearing suppresses the dominant discretization effects — from taste exchange interactions.



• Smearing suppresses the dominant discretization effects — from taste exchange interactions.



- MILC 2+1+1 setup:
 - One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, PLB (1985)
 - The tadpole factor u_0 is tuned from the plaquette.

Lepage, Mackenzie, PRD (1993)

- MILC 2+1+1 setup:
 - One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, PLB (1985)
 - The tadpole factor u_0 is tuned from the plaquette.
 - Two degenerate light quarks, strange and charm at the physical masses.
 - Lines of constant physics $m_{\pi} \approx 135$, 200 and 300 MeV.

- MILC 2+1+1 setup:
 - One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, PLB (1985)
 - The tadpole factor u_0 is tuned from the plaquette.
 - Two degenerate light quarks, strange and charm at the physical masses.
 - Lines of constant physics $m_{\pi} \approx 135$, 200 and 300 MeV.
 - RHMC updating, on the finest ensembles RHMD. Kennedy, Horvath, Sint, hep-lat/9809092 Clark, Kennedy, PRL (2007)

- HotQCD 2+1 setup:
 - Tree-level Symanzik-improved gauge action.

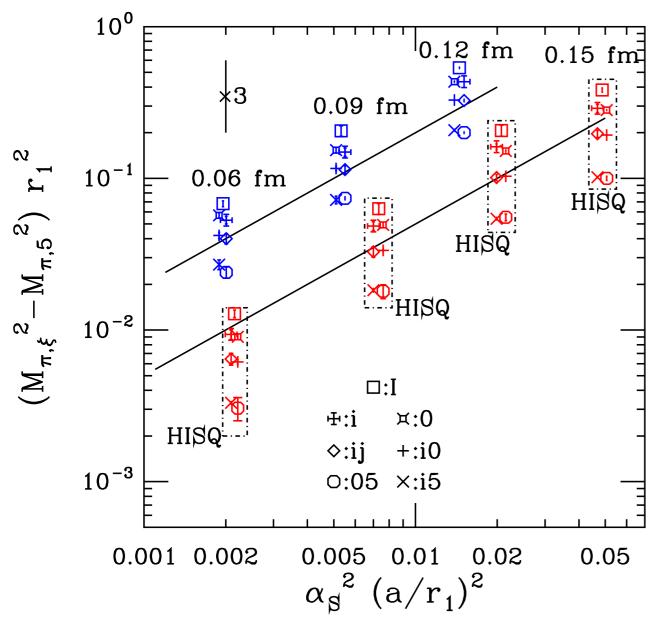
Lüscher, Weisz, PLB (1985)

- HotQCD 2+1 setup:
 - Tree-level Symanzik-improved gauge action.
 - Two degenerate light quarks, strange at the physical mass.
 - Lines of constant physics $m_{\pi} \approx 135$, 160 and 300 MeV.

- HotQCD 2+1 setup:
 - Tree-level Symanzik-improved gauge action.
 - Two degenerate light quarks, strange at the physical mass.
 - Lines of constant physics $m_{\pi} \approx 135$, 160 and 300 MeV.
 - RHMC updating.

Kennedy, Horvath, Sint, hep-lat/9809092 Clark, Kennedy, PRL (2007)

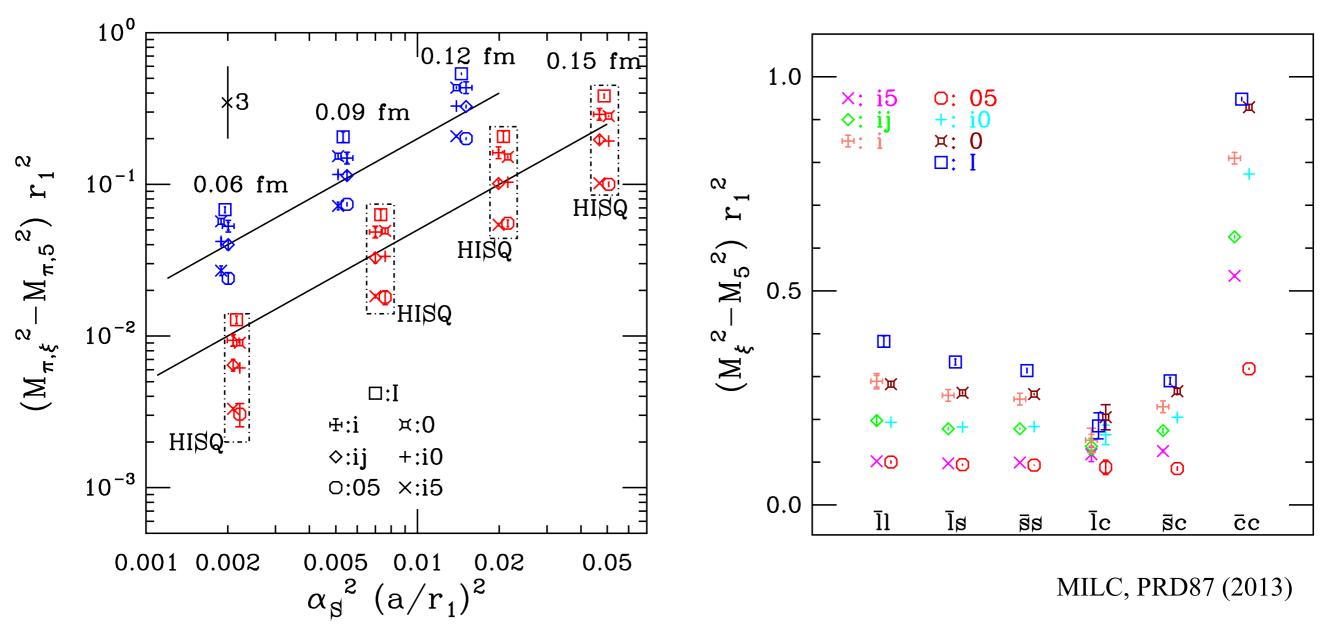
Pion taste mass splittings, 2+1+1 sea



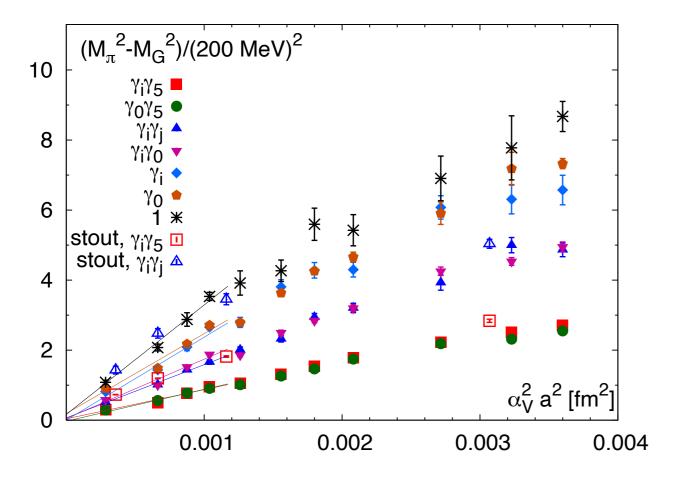
MILC, PRD87 (2013)

• HISQ vs asqtad pion taste splittings (left).

Pion taste mass splittings, 2+1+1 sea

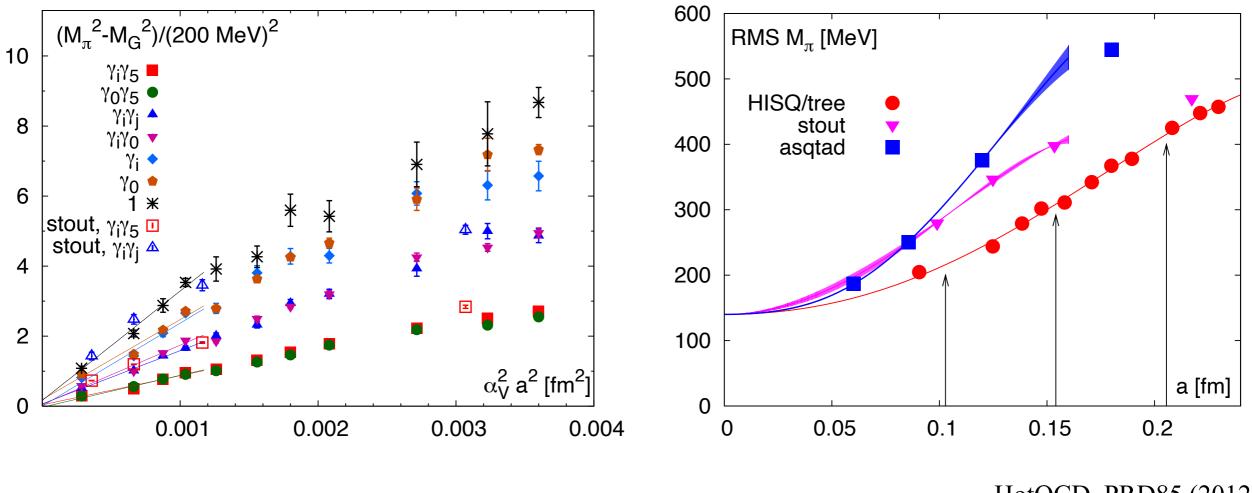


- HISQ vs asqtad pion taste splittings (left).
- Splitting pattern for different quark masses (right).



• HISQ pion taste splittings (left).

Pion taste mass splittings, 2+1 sea



HotQCD, PRD85 (2012)

- HISQ pion taste splittings (left).
- Root-mean-squared pion mass for HISQ, stout and asqtad (right).

Lines of constant physics approach

• Staggered fermions are especially convenient for the lines of constant physics (LCP) approach to finite-temperature calculations:

$$T(a) = \frac{1}{a N_{\tau}}$$
 at fixed N_{τ} .

Lines of constant physics approach

• Staggered fermions are especially convenient for the lines of constant physics (LCP) approach to finite-temperature calculations:

$$T(a) = \frac{1}{a N_{\tau}}$$
 at fixed N_{τ} .

- The continuum limit is taken as $1/N_{\tau}^2 \to \infty$.
- In finite-temperature geometry we fix the aspect ratio $N_s/N_{\tau} = 4$.

,

• Chiral condensate and susceptibility

$$\Sigma = \frac{1}{f_K^4} \left[m_s \langle \bar{u}u + \bar{d}d \rangle - (m_u + m_d) \langle \bar{s}s \rangle \right]$$
$$\chi^{\Sigma} = m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \Sigma$$

•

• Chiral condensate and susceptibility

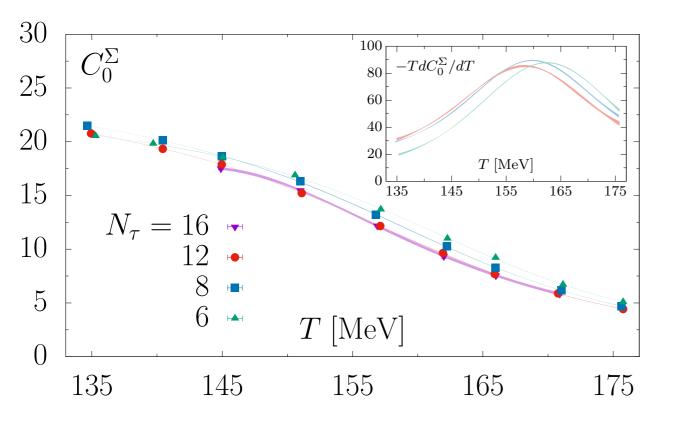
$$\Sigma = \frac{1}{f_K^4} \left[m_s \langle \bar{u}u + \bar{d}d \rangle - (m_u + m_d) \langle \bar{s}s \rangle \right]$$
$$\chi^{\Sigma} = m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \Sigma$$

• Taylor expansion

$$\Sigma(T,\mu_X) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\Sigma}(T)}{(2n)!} \left(\frac{\mu_X}{T}\right)^{2n}, \quad C_{2n}^{\Sigma}(T) = \frac{\partial^{2n} \Sigma}{\partial \left(\mu_X/T\right)^{2n}} \bigg|_{\mu_X = 0}$$

• Criteria to define T_c — relate to the singularities in the chiral limit $\partial_T^2 C^{\Sigma} 0(T) = 0,$ $\partial_T C_2^{\Sigma}(T) = 0,$ $\partial_T \chi^{\Sigma}(T) = 0,$ $\partial_T C_0^{\chi}(T) = 0,$ $C_2^{\chi}(T) = 0.$

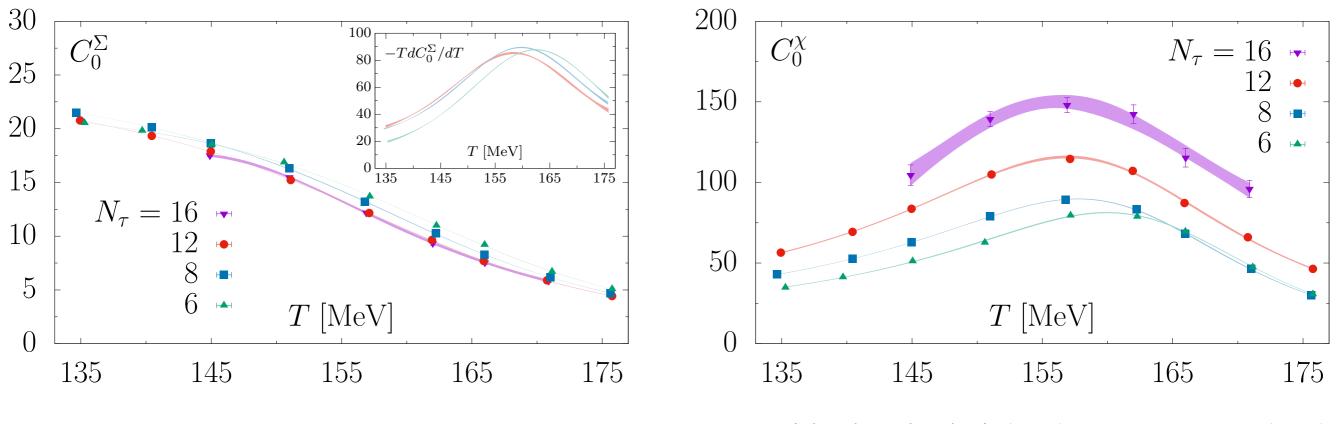
The chiral crossover



Steinbrecher, PhD thesis (2018), HotQCD, PLB795 (2019)

• Chiral order parameter Σ (left) at various cutoffs $N_{\tau} = 6, 8, 12, 16.$

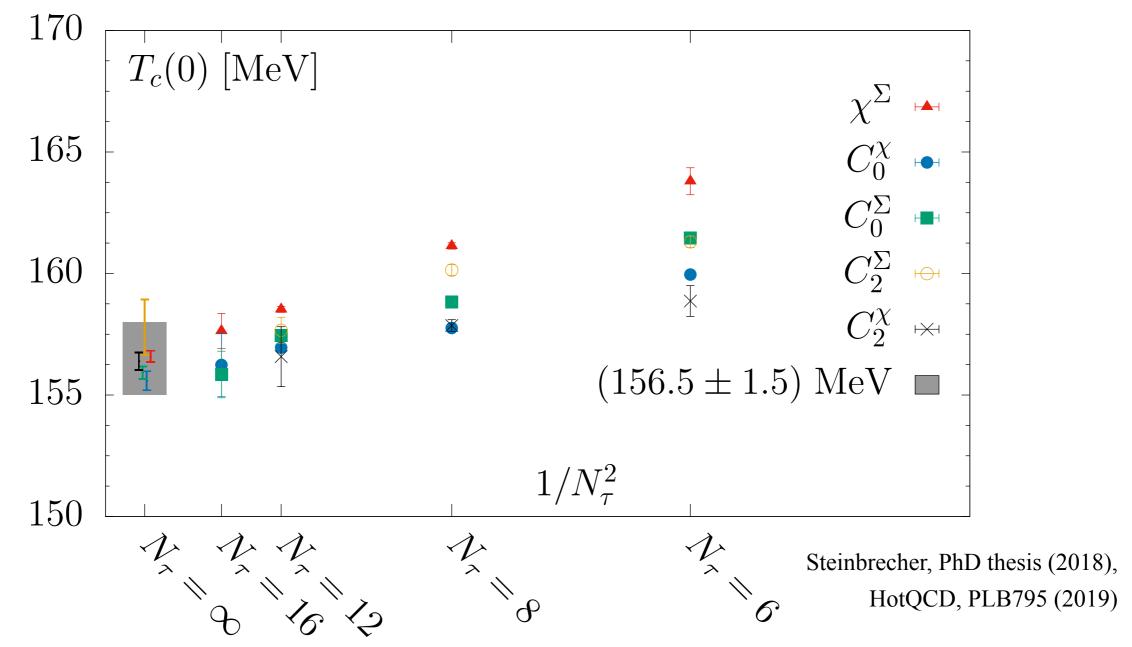
The chiral crossover



Steinbrecher, PhD thesis (2018), HotQCD, PLB795 (2019)

- Chiral order parameter Σ (left) at various cutoffs $N_{\tau} = 6, 8, 12, 16.$
- (Quark-line) disconnected chiral susceptibility (right).

The chiral crossover



• The chiral crossover temperature

 $T_c = 154(9)$ MeV, HotQCD (2012),

 $T_c = 156.5(1.5)$ MeV, HotQCD (2019).

Alexei Bazavov (MSU)

Nov 5, 2024

• The trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = \varepsilon - 3p = -\frac{T}{V}\frac{d\ln Z}{d\ln a},$$
$$Z = \int DUD\bar{\psi}D\psi \ e^{-S_g[U] - S_f[\psi,\bar{\psi},U]}.$$

• The trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = \varepsilon - 3p = -\frac{T}{V}\frac{d\ln Z}{d\ln a},$$
$$Z = \int DUD\bar{\psi}D\psi \ e^{-S_g[U] - S_f[\psi,\bar{\psi},U]}.$$

• Pressure via the integral method $\frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T}^{T} dT' \frac{\varepsilon - 3p}{T'^5}.$

Boyd et al., NPB (1996)

• (T_0, p_0) is chosen where the Hadron Resonance Gas (HRG) model is applicable.

• The trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = \varepsilon - 3p = -\frac{T}{V}\frac{d\ln Z}{d\ln a},$$
$$Z = \int DUD\bar{\psi}D\psi \ e^{-S_g[U] - S_f[\psi,\bar{\psi},U]}.$$

• Pressure via the integral method

Boyd et al., NPB (1996)

$$\frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \,\frac{\varepsilon - 3p}{T'^5}$$

• (T_0, p_0) is chosen where the Hadron Resonance Gas (HRG) model is applicable.

• $\frac{\varepsilon - 3p}{T^4}$ requires additive renormalization (vacuum subtraction) —

high computational cost.

Alexei Bazavov (MSU)

Nov 5, 2024

• Vacuum subtracted expectation value:

 $\Delta(X) = \langle X \rangle_{\tau} - \langle X \rangle_0.$

• Vacuum subtracted expectation value:

$$\Delta(X) = \langle X \rangle_{\tau} - \langle X \rangle_{0}.$$

• The 2+1 flavor trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = -R_{\beta}(\beta)\Delta(S_g)$$

$$+R_{\beta}(\beta)R_{m_s}(\beta)\left[2m_l\Delta(\bar{\psi}_l\psi_l)+m_s\Delta(\bar{\psi}_s\psi_s)\right].$$

• Vacuum subtracted expectation value:

$$\Delta(X) = \langle X \rangle_{\tau} - \langle X \rangle_{0}.$$

• The 2+1 flavor trace anomaly

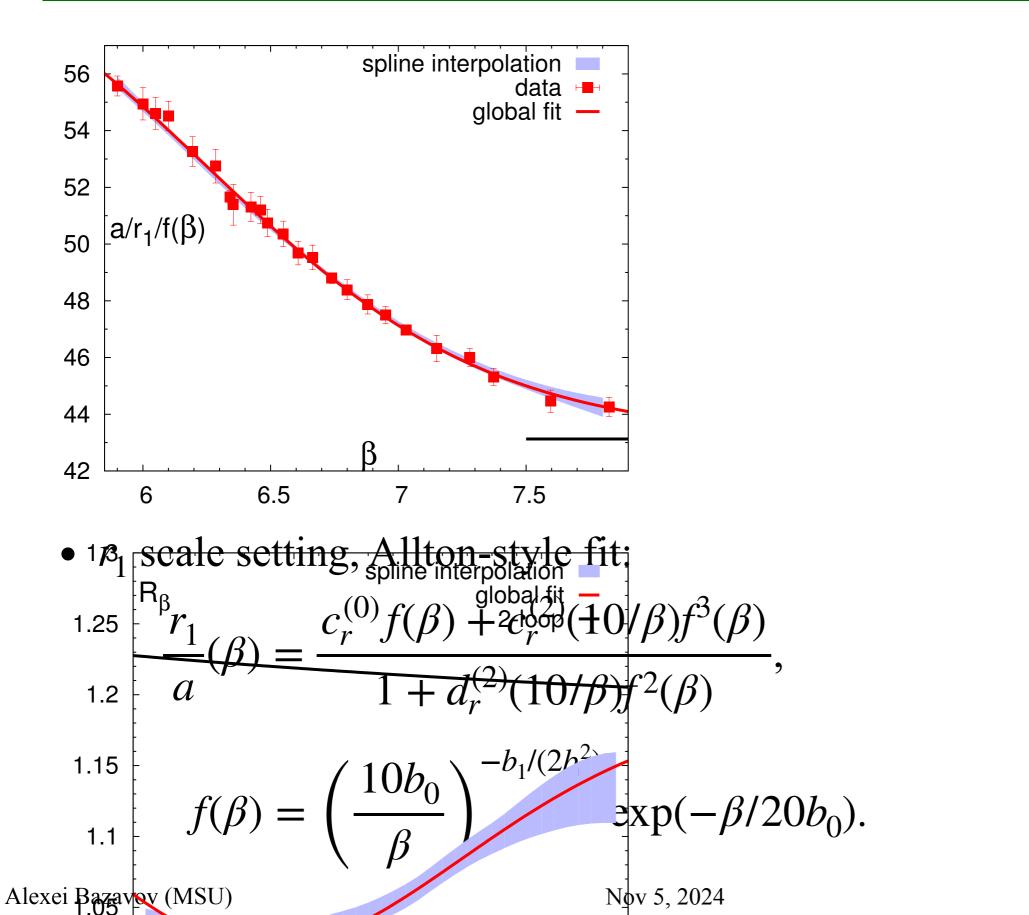
$$\frac{\Theta^{\mu\mu}}{T^4} = -R_{\beta}(\beta)\Delta(S_g)$$

$$+R_{\beta}(\beta)R_{m_s}(\beta)\Big[2m_l\Delta(\bar{\psi}_l\psi_l)+m_s\Delta(\bar{\psi}_s\psi_s)\Big].$$

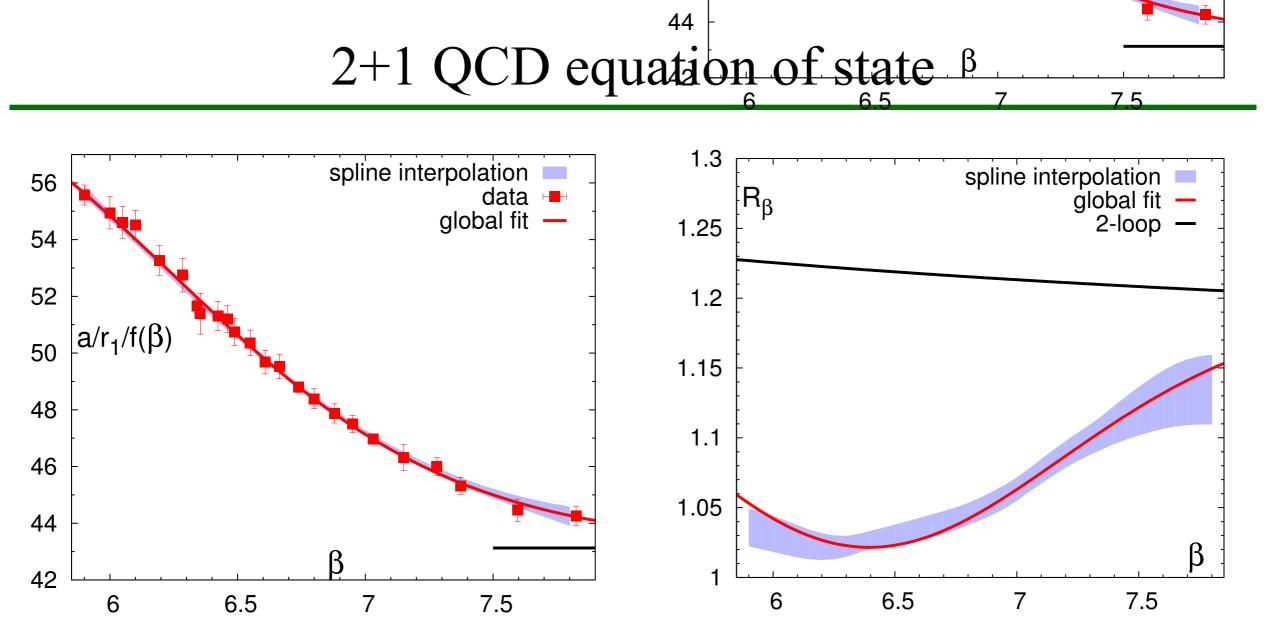
• The beta-functions ($\beta = 10/g^2$)

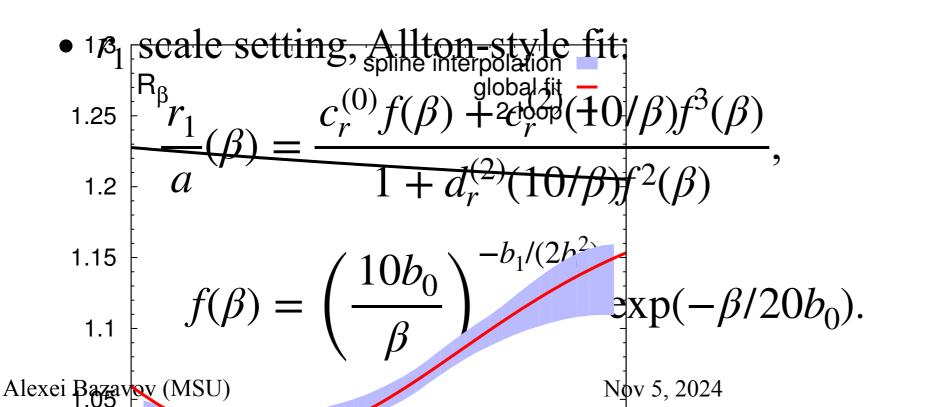
$$R_{\beta}(\beta) = T \frac{\mathrm{d}\beta}{\mathrm{d}T} = -a \frac{\mathrm{d}\beta}{\mathrm{d}a} = (r_1/a)(\beta) \left(\frac{\mathrm{d}(r_1/a)(\beta)}{\mathrm{d}\beta}\right)^{-1},$$
$$R_{m_q}(\beta) = \frac{1}{am_q(\beta)} \frac{\mathrm{d}am_q(\beta)}{\mathrm{d}\beta} \qquad \text{for } q = s \,.$$

2+1 QCD equation of state

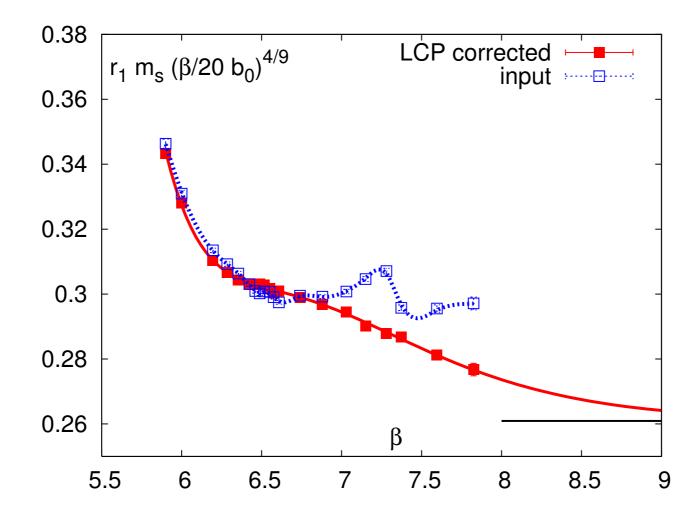


HotQCD, PRD90 (2014)





HotQCD, PRD90 (2014)

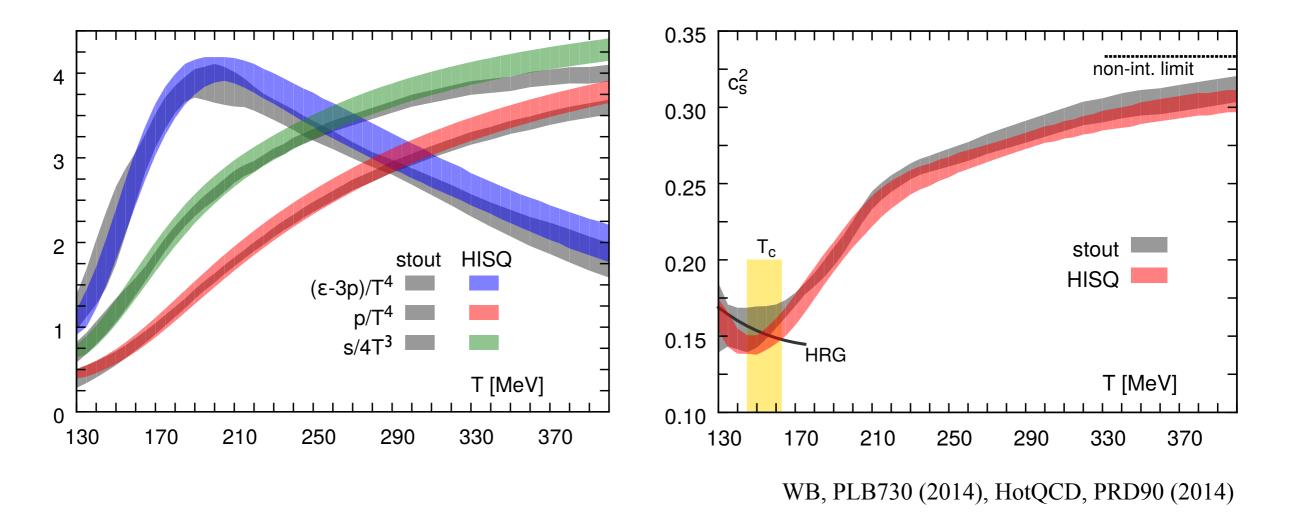


• Strange quark mass LCP HotQCD
$$am_q(\beta) = \frac{c_q^{(0)} f(\beta) + c_q^{(2)} (10/\beta) f^3(\beta)}{1 + d_q^{(2)} (10/\beta) f^2(\beta)} \left(\frac{20b_0}{\beta}\right)^{\frac{4}{9}}.$$

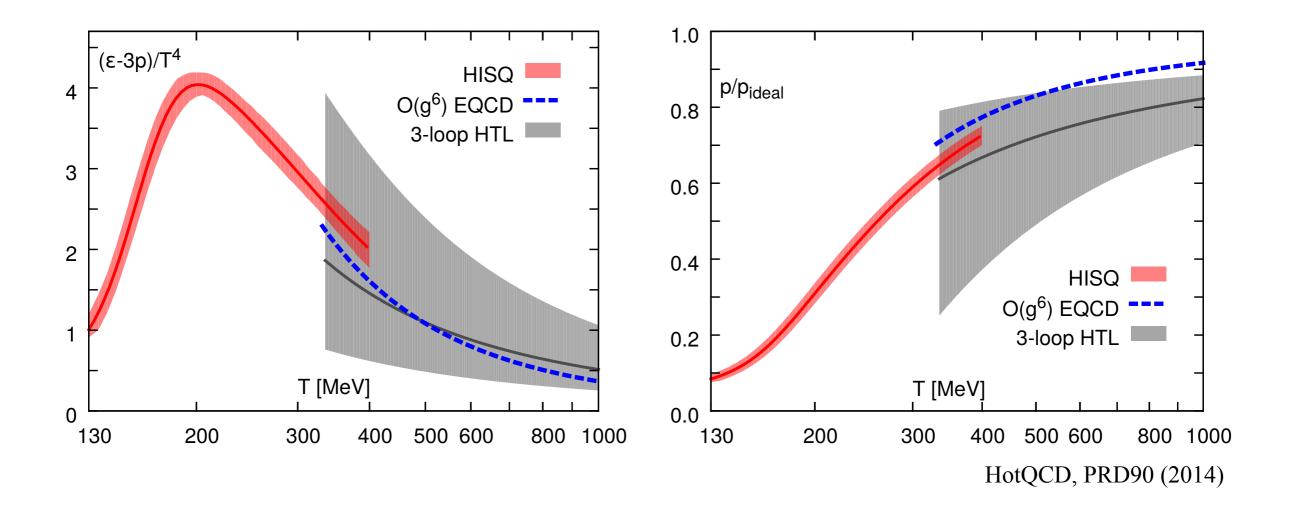
• Light quark mass $m_l = m_s/20$.

Alexei Bazavov (MSU)

HotQCD, PRD90 (2014)



• Trace anomaly, *p*, *s* (left) and speed of sound (right) at zero baryon chemical potential.



• Comparison with perturbative calculations.

Laine and Schroeder (2006), Haque et al. (2014)

• At high enough temperature the cutoff dependence of the pressure resembles the cutoff dependence of the second-order quark number susceptibilities.

- At high enough temperature the cutoff dependence of the pressure resembles the cutoff dependence of the second-order quark number susceptibilities.
- Approximate the cutoff dependence as

$$\frac{p^q(T,N_\tau)}{p^q(T)} \simeq \frac{\chi_2^l(T,N_\tau)}{\chi_2^l(T)}.$$

- At high enough temperature the cutoff dependence of the pressure resembles the cutoff dependence of the second-order quark number susceptibilities.
- Approximate the cutoff dependence as

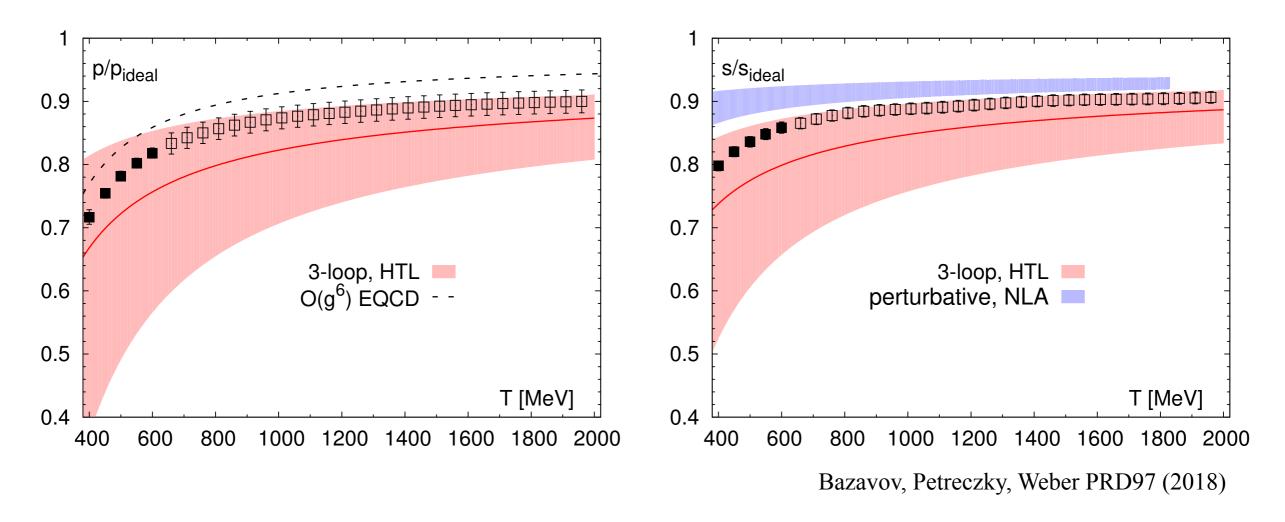
$$\frac{p^q(T,N_\tau)}{p^q(T)} \simeq \frac{\chi_2^l(T,N_\tau)}{\chi_2^l(T)}.$$

• Then the continuum pressure

$$p(T) = p(T, N_{\tau}) + corr(T, N_{\tau}),$$

$$corr(T, N_{\tau}) = p^{q}(T) \left(1 - \frac{p^{q}(T, N_{\tau})}{p^{q}(T)}\right).$$

• (Cutoff effects in the gluon pressure are assumed small, if improved gluon action is used.)



- Pressure (left) and entropy (right) normalized by the Stefan-Boltzmann limit in 2+1 flavor QCD.
- The open symbols represent a *continuum estimate*.

• Generalized susceptibilities:

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P\left(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C\right) / T^4 \right]}{\partial \hat{\mu}_B^k \ \partial \hat{\mu}_Q^l \ \partial \hat{\mu}_S^m \ \partial \hat{\mu}_C^n} \bigg|_{\vec{\mu}=0},$$

with $\hat{\mu}_X = \mu_X / T$.

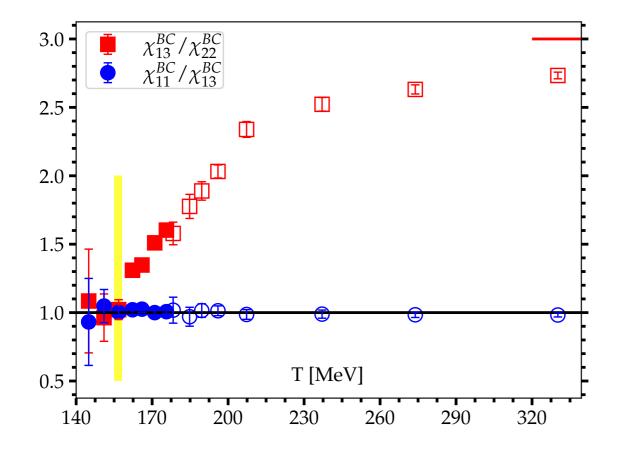
• Generalized susceptibilities:

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P\left(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C\right) / T^4 \right]}{\partial \hat{\mu}_B^k \ \partial \hat{\mu}_Q^l \ \partial \hat{\mu}_S^m \ \partial \hat{\mu}_C^n} \bigg|_{\vec{\mu}=0},$$

with $\hat{\mu}_X = \mu_X / T$.

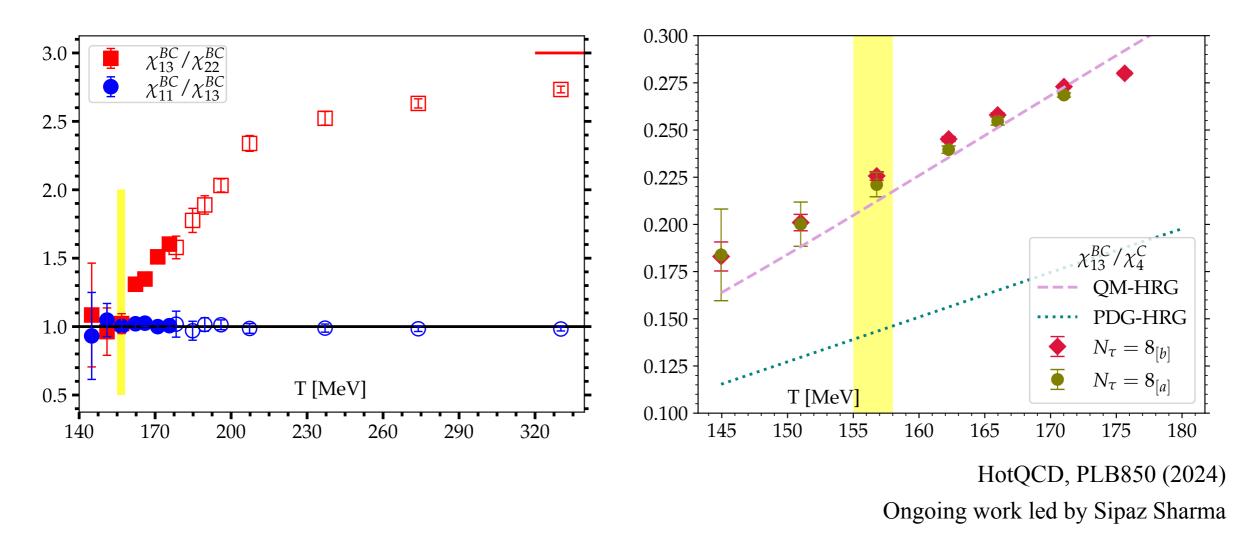
• Partial pressure of the charmed hadrons in HRG:

$$P_{B/M}^C(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{i \in C-B/M} g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T)$$
$$\times \cosh(B_i \hat{\mu}_B + Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$



HotQCD, PLB850 (2024) Ongoing work led by Sipaz Sharma

• Ratios of baryon-charm fluctuations (left).



- Ratios of baryon-charm fluctuations (left).
- Comparison with HRG (right).

• Extension of the HRG model: $P_C(T, \overrightarrow{\mu}) = P_M^C(T, \overrightarrow{\mu}) + P_B^C(T, \overrightarrow{\mu})$ Mukherjee, Petreczky, Sharma, PRD93 (2016)

$$+P_q^C(T) \cosh\left(\frac{2}{3}\hat{\mu}_Q + \frac{1}{3}\hat{\mu}_B + \hat{\mu}_C\right).$$

• Extension of the HRG model:

Mukherjee, Petreczky, Sharma, PRD93 (2016)

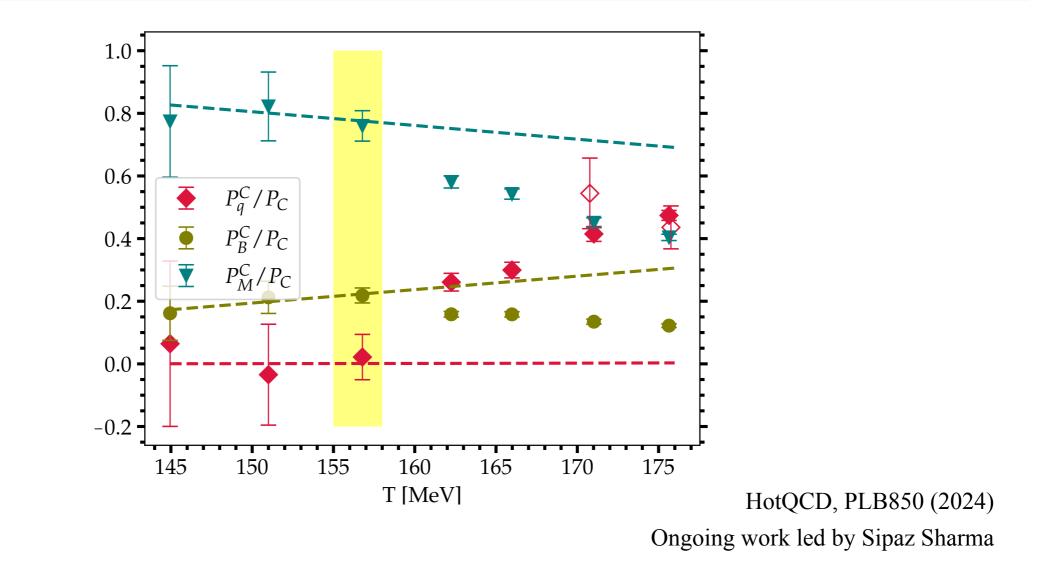
$$P_C(T, \overrightarrow{\mu}) = P_M^C(T, \overrightarrow{\mu}) + P_B^C(T, \overrightarrow{\mu}) + P_R^C(T, \overrightarrow{\mu}) + P_q^C(T) \cosh\left(\frac{2}{3}\hat{\mu}_Q + \frac{1}{3}\hat{\mu}_B + \hat{\mu}_C\right).$$

• Partial pressures:

$$P_q^C = 9(\chi_{13}^{BC} - \chi_{22}^{BC})/2,$$

$$P_B^C = (3\chi_{22}^{BC} - \chi_{13}^{BC})/2,$$

$$P_M^C = \chi_4^C + 3\chi_{22}^{BC} - 4\chi_{13}^{BC}.$$



- Partial pressures of charmed mesons, charmed baryons and charm quarks.
- Dashed lines correspond to QM-HRG model.

• The 2+1+1 flavor trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = -R_{\beta}(\beta) \left[\Delta(S_g) + \right]$$

 $+R_{\beta}(\beta)R_{m_s}(\beta)\left[2m_l\Delta(\bar{\psi}_l\psi_l)+m_s\Delta(\bar{\psi}_s\psi_s)\right]$

• The 2+1+1 flavor trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = -R_{\beta}(\beta) \left[\Delta(S_g) + R_u(\beta) \Delta\left(\frac{dS_g}{du_0}\right) \right]$$

$$+R_{\beta}(\beta)R_{m_{s}}(\beta)\left[2m_{l}\Delta(\bar{\psi}_{l}\psi_{l})+m_{s}\Delta(\bar{\psi}_{s}\psi_{s})\right]$$
$$+R_{\beta}(\beta)R_{m_{c}}(\beta)\left[m_{c}\Delta(\bar{\psi}_{c}\psi_{c})+R_{\varepsilon_{N}}(\beta)\Delta\left(\bar{\psi}_{c}\left[\frac{dM_{c}}{d\varepsilon_{N}}\right]\psi_{c}\right)\right]$$

٠

• The 2+1+1 flavor trace anomaly

$$\frac{\Theta^{\mu\mu}}{T^4} = -R_{\beta}(\beta) \left[\Delta(S_g) + R_u(\beta) \Delta\left(\frac{dS_g}{du_0}\right) \right]$$

$$+R_{\beta}(\beta)R_{m_{s}}(\beta)\left[2m_{l}\Delta(\bar{\psi}_{l}\psi_{l})+m_{s}\Delta(\bar{\psi}_{s}\psi_{s})\right]$$
$$+R_{\beta}(\beta)R_{m_{c}}(\beta)\left[m_{c}\Delta(\bar{\psi}_{c}\psi_{c})+R_{\varepsilon_{N}}(\beta)\Delta\left(\bar{\psi}_{c}\left[\frac{dM_{c}}{d\varepsilon_{N}}\right]\psi_{c}\right)\right]$$

• Additional beta-functions:

$$R_u(\beta) = \beta \frac{\mathrm{d}u_0(\beta)}{\mathrm{d}\beta}, \qquad R_e(\beta) = \frac{\mathrm{d}e_N(\beta)}{\mathrm{d}\beta}.$$

•

- Our strategy:
 - compute the pressure at fixed N_{τ} and take the continuum limit,

- Our strategy:
 - compute the pressure at fixed N_{τ} and take the continuum limit,
 - (previously: continuum limit in the trace anomaly, then continuum pressure),

- Our strategy:
 - compute the pressure at fixed N_{τ} and take the continuum limit,
 - (previously: continuum limit in the trace anomaly, then continuum pressure),
 - use the $m_{\pi} = 300$ MeV line of constant physics,

- Our strategy:
 - compute the pressure at fixed N_{τ} and take the continuum limit,
 - (previously: continuum limit in the trace anomaly, then continuum pressure),
 - use the $m_{\pi} = 300$ MeV line of constant physics,
 - connect with the 2+1 equation of state at the physical mass around $T \approx 250$ MeV.

β	Λ	am_l	am_s	am_c	a, fm	ΠΠ
5.400	$16^3 \times 40$	0.0182	0.091	1.339	0.220	20K
5.469	\times	0.01856	0.0928	1.263	0.206	19K
5.541	$24^3 \times 32$	0.01718	0.859	1.157	0.192	18K
5.600	\times	0.0157	0.0785	1.08	0.181	69K
5.663	\times	0.01506	0.0753	0.996	0.170	28K
5.732	32^4	0.01394	0.0697	0.913	0.159	52K
5.800	$16^3 \times 48$	0.013	0.065	0.838	0.151	99K
5.800	32^4	0.013	0.065	0.838	0.151	53K
5.855	32^4	0.01216	0.0608	0.782	0.140	54K
5.925	32^4	0.01122	0.0561	0.716	0.130	55K
6.000	$24^3 \times 64$	0.0102	0.0509	0.635	0.121	111K
6.060	32^4	0.00962	0.0481	0.603	0.113	52K
6.122	32^4	0.00896	0.0448	0.558	0.106	38K
6.180	32^4	0.0084	0.042	0.518	0.100	38K
6.238	32^4	0.00784	0.0392	0.482	0.095	40K
6.300	$32^3 \times 96$	0.0074	0.037	0.44	0.089	16K
6.358	32^4	0.00682	0.0341	0.416	0.084	52K
6.445	32^4	0.00616	0.0308	0.374	0.077	95K
6.530	$36^3 \times 48$	0.0056	0.028	0.338	0.070	11K
6.632	48^4	0.00498	0.0249	0.300	0.063	3K
6.720	$48^3 \times 144$	0.0048	0.024	0.286	0.058	6K
6.875	\times	0.0038	0.019	0.228	0.050	3K
7.000	$64^3 \times 192$	0.00316	0.0158	0.188	0.045	6K
7.140	\times	0.0029	0.0145	0.172	0.039	4K
7.285	$64^3 \times 96$	0.00248	0.0124	0.148	0.034	4K

2+1+1 EoS: T = 0 statistics

Alexei Bazavov (MSU)

Nov 5, 2024

2+1+1 EoS: T = 0 statistics

β	V	am_l	am_s	am_c	a, fm	TU
5.400	$16^3 \times 40$	0.0182	0.091	1.339	0.220	20K
5.469	$24^3 \times 32$	0.01856	0.0928	1.263	0.206	19K
5.541	$24^3 \times 32$	0.01718	0.859	1.157	0.192	18K
5.600	$16^{3} \times 48$	0.0157	0.0785	1.08	0.181	69K
5.663	$24^3 \times 32$	0.01506	0.0753	0.996	0.170	28K
5.732	32^4	0.01394	0.0697	0.913	0.159	$52\mathrm{K}$
5.800	$16^{3} \times 48$	0.013	0.065	0.838	0.151	99K
5.800	32^4	0.013	0.065	0.838	0.151	53K
5.855	32^4	0.01216	0.0608	0.782	0.140	$54\mathrm{K}$
5.925	32^4	0.01122	0.0561	0.716	0.130	$55\mathrm{K}$
6.000	$24^3 \times 64$	0.0102	0.0509	0.635	0.121	111K
6.060	32^4	0.00962	0.0481	0.603	0.113	52K

2+1+1 EoS: T = 0 statistics

β	V	am_l	am_s	am_c	a, fm	TU
6.122	32^4	0.00896	0.0448	0.558	0.106	38K
6.180	32^{4}	0.0084	0.042	0.518	0.100	38K
6.238	32^{4}	0.00784	0.0392	0.482	0.095	40K
6.300	$32^3 \times 96$	0.0074	0.037	0.44	0.089	16K
6.358	32^{4}	0.00682	0.0341	0.416	0.084	52K
6.445	32^{4}	0.00616	0.0308	0.374	0.077	95K
6.530	$36^3 \times 48$	0.0056	0.028	0.338	0.070	11K
6.632	48^{4}	0.00498	0.0249	0.300	0.063	3K
6.720	$48^3 \times 144$	0.0048	0.024	0.286	0.058	6K
6.875	$48^3 \times 64$	0.0038	0.019	0.228	0.050	3K
7.000	$64^3 \times 192$	0.00316	0.0158	0.188	0.045	6K
7.140	$64^3 \times 72$	0.0029	0.0145	0.172	0.039	$4\mathrm{K}$
7.285	$64^3 \times 96$	0.00248	0.0124	0.148	0.034	4K

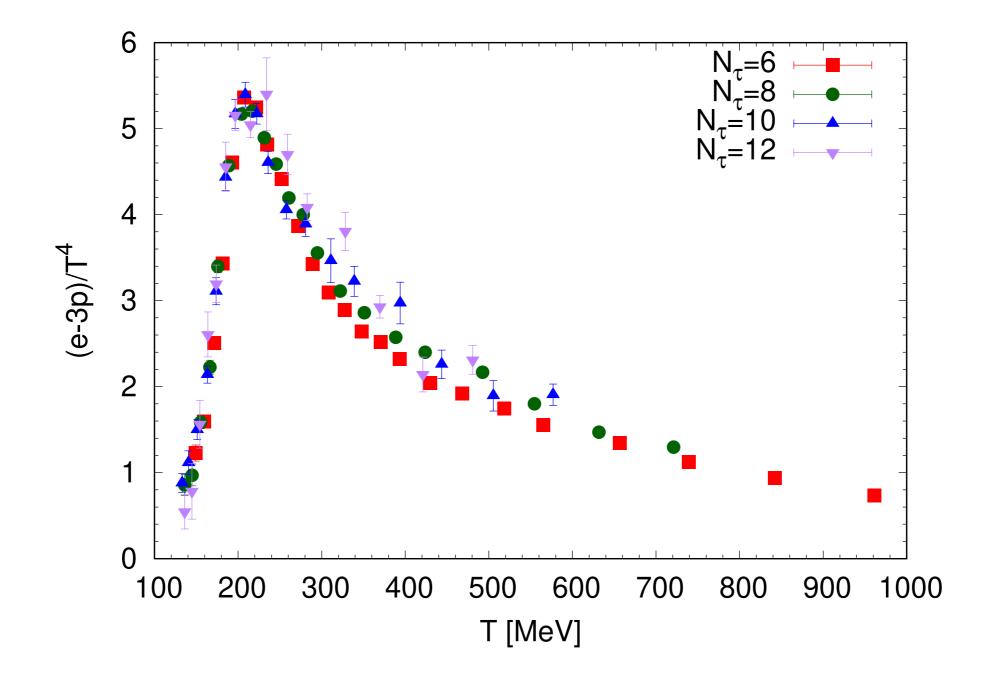
2+1+1 EoS: T > 0 statistics

β	$N_{\tau} = 6$		$N_{\tau} = 8$		$N_{\tau} = 10$		$N_{\tau} = 12$	
	T	TU	T	TU	T	TU	T	TU
5.400	149	50K						
5.469	160	50K						
5.541	171	50K						
5.600	182	50K	136	114K				
5.663	193	50K	145	74K				
5.732	207	50K	155	86K				
5.800	218	50K	163	81K	131	143K		
5.855	235	50K	176	$105 \mathrm{K}$	140	$98\mathrm{K}$		
5.925	253	50K	190	$105 \mathrm{K}$	152	$125\mathrm{K}$		
6.000	272	50K	204	$105 \mathrm{K}$	163	$95\mathrm{K}$	136	$95\mathrm{K}$
6.060	291	50K	218	$99 \mathrm{K}$	175	42K	145	21K
6.122	310	50K	233	101K	186	42K	155	21K

2+1+1 EoS: T > 0 statistics

β	$N_{\tau} = 6$		$N_{\tau} = 8$		$N_{\tau} = 10$		$N_{\tau} = 12$	
	T	TU	T	TU	T	TU	T	TU
6.180	329	$50\mathrm{K}$	247	99K	197	40K	165	32K
6.238	346	$50\mathrm{K}$	260	96K	208	$47\mathrm{K}$	173	27K
6.300	369	$50\mathrm{K}$	277	98K	222	99K	184	28K
6.358	391	$50\mathrm{K}$	294	96K	235	$24\mathrm{K}$	196	81K
6.445	427	$50\mathrm{K}$	320	96K	256	$35\mathrm{K}$	214	75K
6.530	470	$50\mathrm{K}$	352	99K	282	$59\mathrm{K}$	235	10K
6.632	522	$50\mathrm{K}$	391	96K	313	9K	261	59K
6.720	567	$50\mathrm{K}$	425	100K	340	10K	284	68K
6.875	658	$50\mathrm{K}$	493	108K	395	9K	329	70K
7.000	731	$40\mathrm{K}$	548	110K	438	$20\mathrm{K}$	366	56K
7.140	843	$40 \mathrm{K}$	632	$101 \mathrm{K}$	506	19K	422	61K
7.285	967	40K	725	101K	580	17K	483	101K

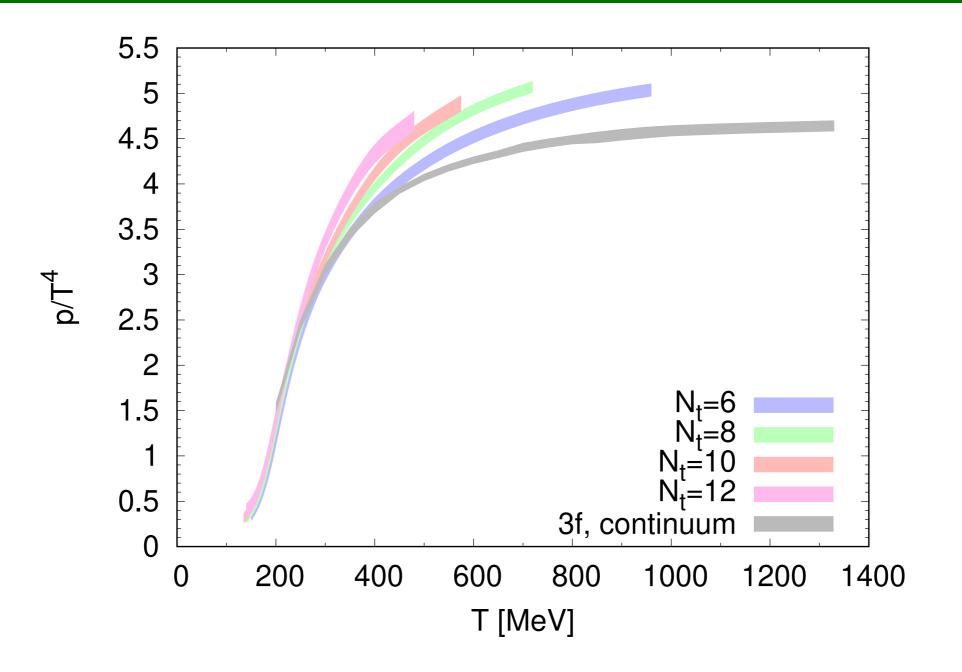
2+1+1 flavor QCD trace anomaly



• The trace anomaly in 2+1+1 flavor QCD at different cutoffs $N_{\tau} = 6, 8, 10$ and 12.

Nov 5, 2024

2+1+1 flavor QCD pressure



- The pressure in 2+1+1 flavor QCD at different cutoffs $N_{\tau} = 6, 8, 10$ and 12.
- The errors are purely statistical.

Conclusion

- Ongoing calculation of the 2+1+1 flavor QCD equations of state.
- The strategy is to compute the pressure with $m_{\pi} = 300$ MeV, take the continuum limit and stitch together with the 2+1 flavor equation of state at the physical pion mass at an appropriate temperature.
- The statistical errors for the finest lattices $N_{\tau} = 12$ are predominantly from zero-temperature subtraction.
- Systematic errors, in particular, scale setting need to be addressed in the final analysis.