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1. Introduction
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YITP and Yukawa theory 
• Yukawa Institute for theoretical 

physics, Kyoto University (1952 -) 

• Yukawa theory (1935) 
introduce a new particle (meson) to 
explain the nuclear force 

• Discovery of the neutron (1932) 
by James Chadwick 

• You can see his note in the salon in 
front of this lecture hall 

Yukawa interaction

proton neutron
pion (meson)

(1935) 

(1949) 



Proton, neutron and pion are composed of quarks
• Yukawa interaction is now described by further microscopic theory 

Quantum ChromoDynamics (QCD)
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Proton, neutron and pion are composed of quarks
• Yukawa interaction is now described by further microscopic theory 

Quantum ChromoDynamics (QCD)

5

proton neutron
pion (meson)

Yukawa interaction

Microscopical picture described by quarks

gluon
quark

N-N potential obtained  
phenomenologically 

N-N potential obtained  
from QCD 

using Lattice simulation
(Lecture by T.Doi  
on Friday)



Contents (part 1 and part 2)
1. Introduction 

2. Lattice gauge theory 
confinement and cont. lim. - analytical results - 

3. Introduction to numerical calculation 

4. Configuration generation 

5. Hadron mass spectrum 

6. Advanced topics for mass spectrum 

7. Summary
6



2. Lattice gauge theory
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QCD (quantum chromo dynamics)
• QCD Lagrangian 

,        

  

 

• Gauge theory is given by this eq. form 
cf.) Quantum electro-magnetic dynamics 
(QED)  

• Parameters of this theory 
 : (bare) coupling  
 : (bare) mass for each quark 

ℒ = −
1
4

Fa
μνFa

μν + ψ̄(iγμDμ + m)ψ

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μ Ac
ν

Dμ = ∂μ − igAa
μTa

g

m

May, 2023 @ U. of Minnesota

 : gluon, a=1...8 

 : quark

Aa
μ

ψ

 : photon, a=1 

 : electron

Aa
μ

ψ



Regularization of quantum field theories
• Quantum filed theory has infinite degrees of freedom (dof) at each 

point in spacetime 

• But physical quantity is finite. 
Systematic method is needed to eliminate infinities from the 
calculations 
=> renormalization / regularization     

• perturbative renormalization, large-N expansion,εexpansion.. 

• Lattice regularization... Discretizing spacetime makes dof finite 
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K. Wilson, “Confinement of quarks”, Phys.Rev. D10 (1974)



Lattice regularization method
• Discretizing spacetime :  

lattice spacing  (UV cutoff) and finite volume   (IR cutoff) 
 

• Calculate  on the lattice expressed by finite 
variables 
Exactly speaking, the result  is  
the one for lattice model. 

• The continuum limit  (w/ fixed reference scale) and  
thermodynamic limit  will be taken to be back to continuum theory

a L = Nsa

⟨𝒪⟩

⟨𝒪⟩

a → 0

L → ∞
10

©︎KEK

 : # of lattice site (for each space-time direction)Ns



Setup of lattice gauge theory
• Put the quarks on site and gluons on link 

the direction  of  correspond to the direction of the link  

• Note : Do not put  itself on the link 

 

• link variable: ;  SU(N) representation matrix

μ Aa
μ

Aa
μ

Uμ = eiagAa
μTa

Ta
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Link variable and gauge invariance
• gauge transformation：  local transformation 

,  

• QCD is invariance under this transformation 
at each space-time point independently 

• Physical observable is gauge invariant 

• Keeping the gauge invariance must be important 

Ω(x) ∈ SU(3)

ψ′￼(x) = Ω(x)ψ(x), ψ̄′￼ = ψ̄Ω(x)† Aμ(x)′￼ =
1
ig

Ω(x)∂μΩ(x)† + Ω(x)Aμ(x)Ω(x)†
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x y



Link variable and gauge invariance
• gauge transformation：  local transformation 

,  

• Operators and its gauge invariance 
 : gauge invariance ⭕ 

 :  gauge invariance ❌ 

 : gauge invariance ⭕ 

• Introducing the link variable, , makes it easier to see gauge 

invariance

Ω(x) ∈ SU(3)

ψ′￼(x) = Ω(x)ψ(x), ψ̄′￼ = ψ̄Ω(x)† Aμ(x)′￼ =
1
ig

Ω(x)∂μΩ(x)† + Ω(x)Aμ(x)Ω(x)†

ψ̄(x)ψ(x)

ψ̄(x)ψ(y), x ≠ y

ψ̄(x) ei ∫x
y Aμdxμ ψ(y)

Uμ = eiagAa
μTa
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Link variable and gauge invariance
• gauge transformation：  local transformation  

for link variable：  

• Gauge invariant ops. 
(1)All closed loop of links are gauge invariant 
    (ex) Plaquette:   

(2) quark-antiquark connected by link products between them 

• Note: The Elitzur's theorem 
only gauge-inv. operators can have non-vanishing expectation values 
Lattice calc. respects to the invariance, then it is hold naturally

Ω(x) ∈ SU(3)

U′￼μ(x) = Ω(x)Uμ(x)Ω(x + ̂μ)†

tr[Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)]
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Numerical advantage of introducing link variables
• Gauge field takes value of  

Link variable is a compact reps.:   

• Numerically, it's important.  
If we use , keeping the calculation accuracy is hard

−∞ ≤ Aa
μ ≤ ∞

∥Uμ = eiagAa
μTa∥ ≤ 1

−∞ ≤ Aa
μ ≤ ∞
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confinement and cont. lim. 
- analytical results-



Outline of discussions 
• Introduce a lattice model 

• The lattice model in cont. lim. converges to Yang-Mills theory (QCD) 

• In , the lattice model shows the confinement of probe quarks 

• In , we can analyze it using lattice perturbation 

• Using non-pertubative analysis (=numerical simulation), we can see that the 
lattice model connects  and  correctly 

• So, we can calc. physical quantity of QCD from the nonperturbative 
simulation of the lattice model

g → ∞

g → 0

g → ∞ g → 0
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Yang-Mills theory and lattice models
• (Euclidean) Yang-Mills action in the continuum limit :  

• A lattice action：  

• (calc.) Expand the link variable, , in small . 

Here,  denotes lattice spacing (mass-dim. = -1),  is dimension-less 

  

2nd and 3rd terms = 0 because of ,  becomes zero in    

only  remains in the continuum limit 

• Cf.)  term can vanish by adding some higher mass dim. term 
Improved action (Symanzik action/ Iwasaki gauge action....) 
Any lattice action is fine if it goes to the Yang-Mills action in the continuum limit

SYM = −
1
4 ∫ d4xFa

μνFa
μν(x)

SG =
1
g2 ∑

n
∑
μ≠ν

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν]

Un,μ = eiagAa
μ(n+ ̂μ/2)Ta

a

a agAa
μ

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν] = tr [1 + ia2gFμν + ( * )a3 +
a4g2

2
F2

μν + O(a5)]
trTa = 0 O(a5) a → 0

tr[F2
μν]

O(a5)
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(plaquette gauge action)
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Wilson loop : probe quark anti-quark potential
•  in  

• The path describes... 
at ,  and  are pair-created 
(immediately separate distance ) 
at , the pair-annihilation occurs 

•  corresponds to probe  and  
potential w/ distance 

⟨W(C)⟩ ≈ e−TV(r) T → ∞

τ = 0 q q̄

r

τ = T

V(r) q q̄

r

T

r

Wilson loop on the lattice 

W(C) = tr[∏
i∈C

Ui]

probe quark probe anti-quark

τ = 0

τ = T
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Lattice results of potential for probe quarks
G.Bali, Phys.Rept.343:1 (2000)

V(r) ∼
α
r

V(r) ∼ σr

T

r

Wilson loop on the lattice 

W(C) = tr[∏
i∈C

Ui]

probe quark probe anti-quark



Integration rules of link variables (SU(N) group)
• Now, we want to calculate  analytically in some coupling limits. 

• To do that, we need a integration rules of SU(N) group variables: 

normalization: ,   

    (propagator)  Only if  can take non-vanishing value 

                                                             (not take a sum of indices) 

 (vertex contraction) 

 (combination of contraction)

⟨W(r × T)⟩ = ∫ dUW(r × T)e−SG

∫ dU1 = 1 ∫ dUUab = 0

∫ dUUabU†
kl =

1
N

δalδbk Uμ(n)U†
μ(n)

∫ dUUa1b1
Ua2b2

⋯UaNbN
=

1
N!

ϵa1a2⋯aN
ϵb1b2⋯bN

∫ dUUabUcdU†
ijU

†
kl =

1
N2 − 1

[δajδajδajδaj + ⋯]
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Strong coupling expansion 
• Let us consider , where 

 

and plaquette gauge action:  

• In large , the action is expanded as 

 

• At site n, only if  combination exists, the integral 

has non-zero value.   

If  comes from the plaquette action at site n:  

⟨W(r × T )⟩ = ∫ dUW(r × T )e−SG

W(r × T ) = tr[∏
i

Un,1Un+1̂,1⋯Un+r1̂,1Un+r1̂,4Un+r1̂+4̂,4⋯U†
n,4] = trUn,1ŴUn,4†

SG =
1
g2 ∑

n
∑
μ≠ν

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν]

g

e−SG = ∏
n,μ≠ν

[1 −
1
g2

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν + ⋯]]

∫ dUn,1dUn,4Un,1U†
n,1Un,4U†

n,4

U†
n,1Un,4

1
g2

tr[Un,4Un+4̂,1U
†
n+1̂,4

U†
n,1]

T

r
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Strong coupling expansion 
• The result of  integral gives 

 

• Iteratively, we perform all U integral and get 

 

 
Namely, the potential  shows a linear fn. of r 

• In large , the confinement occurs and its string tension is 

 

∫ dUn,1dUn,4

1
g2N

trUn+4̂,1U
†
n+1̂,4

Ŵ

⟨W(r × T)⟩ = ( 1
g2N )

rT−1

⟨W(1 × 1)⟩ = N ( 1
g2N )

rT

= Ne−rT log(g2N)

V(r) = r log(g2N)

g

σ =
1
a2

log(g2N)

T

r
( 1

g2N )
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Strong coupling expansion for the plaquette
• Plaquette (energy density) is 1x1 Wilson loop 

,  

• Here, we drop the normalization of trace (1/3 
for SU(3)) and the leading term of 1 

 

• In the strong coupling regime, 

⟨W(r × T)⟩ = N ( 1
g2N ) =

β
6

β ≡ 2N/g2

SG =
1
g2 ∑

n
∑
μ≠ν

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν] =
1
g2 ∑

□

tr(1 −
1
3

ℜTrU□)

⟨P⟩ = 1 −
β
18

+ ⋯

T

r
( 1

g2N ) ( 1
g2N )

( 1
g2N ) ( 1

g2N )
( 1

g2N ) ( 1
g2N )



Weak coupling expansion 

• The partition fn.  

  

 is plaquette op. 

• In small ,  is dominated 

• The perturbation theory around this saddle point gives  

cf.) M.Creutz's textbook, (open access) chapter 11

Z = ∫ [dU]e−SG

SG =
1
g2 ∑

n
∑
μ≠ν

tr[Un,μUn+ ̂μ,νU†
n+ ̂ν,μU†

n,ν] =
1
g2 ∑

□

tr(1 −
1
3

ℜTrU□)

U□

g U□ ≈ 1

⟨P⟩ =
2
β

+ ⋯
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https://www.cambridge.org/core/books/quarks-gluons-and-lattices/2D0B198BB10DB7ACF56252909590DD6C
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Is lattice theory valid in all coupling regime?
• The results obtained by some 

expansion are not valid for all 
coupling regime 

• Middle coupling regime is difficult 
to analysis 

• Lattice numerical results connect 
both coupling regimes smoothly 

• Looks valid for all coupling regimeM.Creutz, Textbook
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String tension (of the lattice theory)
• Again the Lattice numerical result connect 

both coupling regimes smoothly 

• In strong coupling, it corresponds to the 
confinement area law 

• In weak coupling, the perturbative theory is 
valid 

• After calculate  in strong coupling regime, 
then taking a weak coupling limit looks 
possible!! 
(From lattice model calculation, we can obtain 

 of QCD in the continuum spacetime)

⟨𝒪⟩

⟨𝒪⟩

Monte Carlo, SU(2) gauge,  lattice 
M.Creutz, PRD21 (1980) 2308

104

a2σ



 More about the continuum limit
• In non-abelian gauge theory, the beta fn. of coupling const. 

 

• At UV cutoff ( ),  : (lattice) bare coupling constant 

At an IR scale  (Lambda scale),  

 =>  

• continuum limit ( ) corresponds to the weak coupling limit ( )  

• If there is no phase transition from  to , then the confinement occurs even in the continuum theory  

• Otherwise (there is phase transition), the lattice model cannot connect to the continuum theory. We cannot say 
anything about the continuum theory

β(g) = μ
dg
dμ

= − b0g3 − b1g5 + ⋯

μ = 1/a g = g0

μ = Λ g = ∞

∫
Λ

1/a

dμ
μ

= −
1

2b0 ∫
∞

g2
0

dg2

g4(1 + b1

b0
g2)

Λa = (b0g2
0)−b1/(2b2

0)e−1/(2b0g2
0)

a → 0 g2
0 → 0

g2
0 = 0 g2

0 = ∞

28

(asymptotic free)
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4d U(1), 5d SU(2) cases Michael Creutz (1979)

4d SU(2) 4d SO(2) ~ U(1) theory 
(QED)

plaquette in 4d SU(2) smoothly connects between weak and strong coupling region 
But, there is1st order phase transition 4d SO(2)~U(1), which has a Landau pole. 
The ill-defined theory as a quantum field theory (nonperturbative sense),  
we cannot take a continuum limit at least from the plaquette gauge action. 
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4d U(1), 5d SU(2) cases Michael Creutz (1979)

4d SU(2) 5d SU(2)

4d SO(2)

The 1st order phase transition emerges in 5d 
SU(2) as like 4d U(1) theory.

It suggests the critical dim. of non-abelian gauge theory is 4？



From Yang-Mills to QCD w/ dynamical fermion
• QCD Lagrangian:  

We want to know  

• Difficult to deal with the fermion dof. (Grassmann number) on computers 

• In the partition fn. :  

Perform the Gaussian integral of  and  

 written only by gauge fields!

ℒ = −
1
4

Fa
μνFa

μν + ψ̄(iγμDμ + m)ψ

⟨𝒪⟩ =
1
Z ∫ Dϕ𝒪e−S[ϕ]

Z = ∫ 𝒟Aμ𝒟ψ̄𝒟ψ exp[−SG(Aμ) + ∫ d4xψ̄(iγμDμ(Aμ) + m)ψ(x)]

ψ ψ̄

Z = ∫ 𝒟Aμ det[iγμDμ(Aμ) + m] exp[−SG(Aμ)]
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Short summary, so far
• Lattice regularization is gauge invariant one. 

It is only known the gauge invariant and nonperturbative formula. 

• Quark confinement can be shown using the strong coupling expansion 
analytically 

• In weak coupling regime, the lattice action converges to QCD action 

• Lattice numerical results correctly reproduce both weak and strong 
coupling expansions, and smoothly connect them 

• From lattice model calculation, we can obtain  of actual QCD⟨𝒪⟩
32



3. Introduction to numerical 
calculation



 Lattice QCD and supercomputer usage
• Interesting dynamics of QCD 

confinement 
chiral symmetry breaking 
hadron spectrum 
instanton effect 
hadron scattering/potential 
thermodynamic quantities 

• 40% of supercomputer 
resources are used! 
(In Fugaku case, around 25%) 

34

Slide of Lena Funcke @ Lattice2022

Lattice QCD



Supercomputer Fugaku @ RIKEN in Kobe
• first place in four global supercomputer 

 rankings for 2 years 
「TOP500」「HPCG」「HPL-AI」「Graph500」 

• performance：400 PFlops 
 times floating-point operations per second 

Total memory： 
4.85PiB(ペビバイト, 1PiB= B)

4 × 1017

250
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Fugaku = 富岳 = Mt. Fuji

In this lecture, I sometimes assume a recent work 
on HAL QCD collaboration (arXiv:2406.16665), 

which has been done by Fugaku. 

https://arxiv.org/abs/2406.16665


Calculation strategy of Lattice QCD
• We want to calculate the value:  

• Main message here: 
Not perform an actual integration!! 
Estimate the value of ! 

• For instance, the work on HAL QCD paper, we perform the 
calculation corresponding to "  dof of integral" @ Fugaku 
supercomputer

⟨𝒪⟩ =
1
Z ∫ Dϕ𝒪e−S[ϕ]

⟨𝒪⟩

6 × 109



Calculation strategy of Lattice QCD
• We want to calculate the value:  

• Step1：Generate configuration samples 

• Step2：Measure the value of observable for each conf. 

⟨𝒪⟩ =
1
Z ∫ Dϕ𝒪e−S[ϕ]

37

�O� = lim
N��

1
N

N�

i

Oi
𝒪1 𝒪2 𝒪3 𝒪N



Calculation strategy of Lattice QCD
• We want to calculate the value:  

• Step1：Generate configuration samples 
High calculation cost. On HAL QCD paper, we need 1.5 years in total. We store the 
ensembles. In some cases, the ensembles are shared globally. 

• Step2：Measure the value of observable for each conf. 
Cost depends on quantities. In nuclear force calculations, it needs much more time than 
Step1

⟨𝒪⟩ =
1
Z ∫ Dϕ𝒪e−S[ϕ]

38

�O� = lim
N��

1
N

N�

i

Oi
𝒪1 𝒪2 𝒪3 𝒪N



4. Configuration generation



Methodology of configuration generation 
4-1. What is Monte Carlo method 

4-2. Importance sampling method     

 
4-3. Algorithms and open codes 
   

40



4-1. What is Monte Carlo 
method



How to calculate integral
• See a library of integral formulas for typical fns.  

and apply them as needed 

• Numerical integration approximated by rectangular 

• Monte Carlo method 
(A method that humans cannot do)

42



Monte Carlo method of integration
• Consider the area of quarter circle w/ radius 1 

 

 (1) Generate two uniform random numbers   
       w/ interval [0:1]  

 (2) Put a dot at ( )=(1st #, 2nd #) 

 (3) Repeat N-times, and count the data point ( )  

      satisfying  

 (4) Area of quarter circle : 

S = ∫
1

0
1 − x2dx =

π
4

xi, yi

s(N)

x2
i + y2

i ≤ 1

S = lim
N→∞

s(N)/N

43

Wikipedia

4s(N)/N

N

π



Monte Carlo method of integration
• Estimate the integral 

 

• (1) Generate random number ( ) 
(2) Using , calculate f( ) 

(3) take an average  f( ) 

(4) the expectation value is given by 

      , so take !

∫ f(x)dx

Xi

Xi Xi

1
N ∑

i

Xi

⟨ f⟩ =
1
N ∑

i

f(Xi) + 𝒪 ( 1

N ) N → ∞

44

Wikipedia

N

π

4s(N)/N



Advantages of the Monte Carlo method
• Faster algorithm even for the d.o.f. increases 

multiple integral 

 

Using a set (N) of uniform random numbers w/ [0:1] for integral variables  

( , , ), we can estimate of I as 

 

Error from the true value is independent of dimensionality ( ). It scales as  

• If you can generate uniform random numbers at fast, simply calculate the average value 
of the function f using the random numbers!

I = ∫
1

0
dx1 ∫

1

0
dx2⋯∫

1

0
dxn f(x1, ⋯, xn)

x1, ⋯, xn

Xi,j i = 1,⋯, n j = 1,⋯, N

I = lim
N→∞

1
N ∑

j

f(X1.j, ⋯, Xn,j)

n 𝒪(1/ N)

45

Numerical integration (区分求積法)  
suffer from "The curse of dimensionality"  

(exp. increasing of complexity)



4-2. Importance sampling 
method    



Configuration generation
• Now, we know that the Monte Carlo method  

must be useful. 
But using uniform number is not effective for 
physical system. We improve it. 

• Our target:  for QCD observables and QCD action 

• Simple ex.) Path integral of propagation x to x' in quantum mechanics 

⟨𝒪⟩ =
1
Z ∫ Dϕ𝒪e−S[ϕ]

⟨x′￼(t) |x(0)⟩ = ∫ dx1dx2⋯dxN⟨x′￼|e−iHΔt |xN⟩⋯⟨x2 |e−iHΔt |x1⟩⟨x1 |e−iHΔt |x⟩

47

x1x1 x1

t1



Monte Carlo methods in quantum theory
• To obtain 

 

we take a sum of all path contributions 

• Easier paths and less-frequented paths 
depending on the potential  

• Monte Carlo method using uniform random 
numbers is not effective, then change 
to importance sampling method 
(effectively collect easier paths )

⟨x′￼(t) |x(0)⟩ = ∫ dx1dx2⋯dxN⟨x′￼|e−iHΔt |xN⟩⋯⟨x1 |e−iHΔt |x⟩

48

x1x1 x1

t1



• Hamiltonian (density) to Lagrangian density 
 

Euclideanization (  : imaginary-time) 

 -> , 

The time evolution is written by  and then  

• In ex. for quantum mechanics, 
 =>  

 is the action for the path q

H(x, p) → L(x, ·x)

it = τ

S = ∫ dtd ⃗xL(x, ·x) SE = ∫ dτd ⃗xL(x, ·x)

eiHΔt → eiLΔt eiS → e−SE

⟨x′￼(t) |x(0)⟩ = ∫ dx1dx2⋯dxN⟨x′￼|e−iHΔt |xN⟩⋯⟨x2 |e−iHΔt |x1⟩⟨x1 |e−iHΔt |x⟩ ⟨x′￼(t)x(0)⟩ = ∫ dx1⋯dxNx′￼(t)x(0)e−Sq(x′￼,x)

Sq(x′￼, x)
49

Importance sampling method

x1x1 x1

t1



• Generate integral variable  w/ the Boltzmann weight   
from random numbers instead of uniform random numbers. 
For small ,  takes large value.  

=> Gives a significant contribution to the integral 
=> Such configuration  are frequently generated 

• For QCD,  : Euclidean QCD action and generate gluon 

configuration  from random numbers

xn e−Sq(x′￼,x)

Sq(x′￼, x) e−Sq(x′￼,x)

x

Sq(x′￼, x) → SE[ϕ]

ϕ

50

Importance sampling method

・・・



4-3. Algorithms



How to generate configuration numerically?
• Pseudo-Heat bath method... obtain SU(2) matrix from random numbers 

SU(3) matrix is constructed by combination of SU(2) matrices  
Most efficient for Yang-Mills theory  
(consider quarks are heavy and decoupled, so-called quenched QCD) 

• Hybrid Monte Carlo (HMC) algorithm  
                                              for QCD w/ even-number quarks (Nf=2 QCD) 
…Molecular dynamics methods and the Metropolis Test 
Solve (discrete) time evolution step for gluons and quarks, but energy is not 
conserved in finite increments. Metropolis to the correct probability distribution. 

• Rational Hybrid Monte Carlo for odd-number of quark system (Nf=2+1 QCD) 
…Dealing with quark action  using a rational approximation.(det DD†)Nf /2
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Open code for QCD simulation
• MILC code (C++): USQCD 

• Bridge++ (C++) : Japanese people (leader: H.Matsufuru in KEK) 
 General purpose code 
 (HMC for several fermion, measurements, SU(2) gauge theory) 

• Lattice tool kit (fortran)：A. Nakamura 
For improved Wilson fermion, MPI, simple 

• LatticeQCD.jl (Julia)：A. Tomiya 

• Highly tuned fortran actually used in supercomputers such as Fugaku
53

https://github.com/milc-qcd/milc_qcd
https://bridge.kek.jp/Lattice-code/index_j.html
https://nio-mon.riise.hiroshima-u.ac.jp/LTK/
https://github.com/akio-tomiya/LatticeQCD.jl

