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Neutron stars: why do we study now?

- Recent advances in astrophysics 

- Recent advances in QCD
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Now is the most exciting period because of…

Holy grail of neutron stars: equation of state (EoS)



Yuki Fujimoto (RIKEN / UC Berkeley)

Recent advances in QCD
- Higher-order computations of perturbative QCD (pQCD) EoS 

- Nuclear EoS from chiral effective field theory ( EFT) 

- Lattice simulations of QCD at finite isospin density 

- Lattice simulations of two-color QCD at finite baryon density 

- Hadron-hadron interaction from the lattice QCD 

- Hamiltonian lattice simulations of QCD in (1+1)-dimensions

χ
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Freedman,McLerran(1977); Baluni(1978); Kurkela,Romatschke,Vuorinen (2009); 
Gorda,Säppi,Paatelainen,Seppänen,Österman,Schicho,Navarrete (2018-)

Tews,Krüger,Hebeler,Schwenk(2013);Drischler,Furnstahl,Melendez,Philips(2020); 
Keller,Hebeler,Schwenk(2022); … many others

Kogut,Sinclair (2002); NPLQCD collaboration (2007-); 
Brandt,Chelnokov,Cuteri,Endrodi,… (2014-);

HAL QCD collaboration (2006-)

e.g. Iida,Itou,Murakami,Suenaga (2024)

Hayata,Hidaka,Nishimura (2023)
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- Higher-order computations of perturbative QCD (pQCD) EoS 

- Nuclear EoS from chiral effective field theory ( EFT) 

- Lattice simulations of QCD at finite isospin density 

- Lattice simulations of two-color QCD at finite baryon density 

- Hadron-hadron interaction from the lattice QCD 

- Hamiltonian lattice simulations of QCD in (1+1)-dimensions

χ

Freedman,McLerran(1977); Baluni(1978); Kurkela,Romatschke,Vuorinen (2009); 
Gorda,Säppi,Paatelainen,Seppänen,Österman,Schicho,Navarrete (2018-)
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QCD at finite isospin density

- No sign problem → EoS can be measured on the lattice! 

- Isospin chemical potential (conjugate to isospin density ): 

            … Fermi surface of  &  

- Phase structure:

I3
μu = μI

2 , μd = − μI

2 u d̄
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Alford,Kapustin,Wilczek (1999); Kogut,Sinclair (2002-); 
Beane,Detmold,Savage et al. (2007-); 

Endrodi et al. (2014-)…

mπ
μI

Son,Stephanov (2000) ⟨d̄γ5u⟩ = 0

⟨π+⟩ ≠ 0 ⟨d̄γ5u⟩ ≠ 0
BEC BCS Cooper pairing

Phase structure is totally different 
from QCD at finite baryon density
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QCD at finite isospin density
Recent impact: 
  EoS is calculated up to  by lattice QCD in the continuum limitμI ∼ 3 GeV
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Abbott et al. (NPLQCD) (2023, 24)
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Yuki Fujimoto (RIKEN / UC Berkeley)

What can we learn about NSs from the lattice data?
- Ground states of finite-  QCD and finite-  QCD are totally different 

  → Naive comparison of EoS is meaningless 

- There are (at least) two ways to utilize the finite-  lattice data:

μB μI

μI
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1. QCD inequality 
robust way of comparing the pressure of finite-  QCD and finite-  QCD 

2. Comparison in the perturbative regime 
finite-  QCD and finite-  QCD have the common weak-coupling expansion

μB μI

μB μI
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QCD inequality and bounds on the EoS
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Abbott et al. (NPLQCD) (2023, 24)

Bounds on the symmetric nuclear matter EoS:

Cohen (2003); 
Fujimoto,Reddy, PRD 109 (2023)

cf. Moore,Gorda (2023)

QCD inequality: 
P(μB) ≤ Plattice(μI = 2

Nc
μB)

Pro: Robust approach, 
no systematic errors 
apart from lattice uncertainties 

Con: Not as constraining as 
heavy-ion phenomenology

Heavy-ion: 
Oliinychenko et al.(2022)
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1. QCD inequality 
robust way of comparing the pressure of finite-  QCD and finite-  QCD 

2. Comparison in the perturbative regime 
finite-  QCD and finite-  QCD have the common weak-coupling expansion

μB μI

μB μI

Main topic for the rest of the talk
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Notation

- : QCD at finite  and zero  

- : QCD at finite  and zero  

- : quark chemical potential 
    (  )

QCDI μI μB

QCDB μB μI

μ
μB = Ncμ, μI = 2μ
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Yuki Fujimoto (RIKEN / UC Berkeley)

Role of pQCD in constraining the NS EoS
- pQCD input is useful in NS EoS 

- Consider pressure  normalized by 

the ideal quark gas value:  

- Without pQCD constraint,  is 

too small at high  

- The pQCD constraint requires 
 to be large at high  

→ favors soft EoS in the NS core

P

Pid =
NcNf μ4

12π2

P/Pid
μB

P/Pid μB
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Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

w/ pQCD

w/o pQCD

pQCD 

See also: Annala,Gorda,Hirvonen,Komoltsev,Kurkela,Nättilä,Vuorinen (2023); 
Komoltsev,Somasundaram,Gorda,Kurkela,Margueron,Tews (2023)
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Role of pQCD in constraining the NS EoS

- Trace anomaly: 
related to the changes in  

      

-  monotonically increases 

as a function of  by pQCD effect  

→ Positive  favored

P/Pid

ε − 3P ∝ d(P/Pid)
d ln μ

P/Pid(μB)
μB

ε − 3P
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Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

pQCD 

See also: Annala,Gorda,Hirvonen,Komoltsev,Kurkela,Nättilä,Vuorinen (2023); 
Komoltsev,Somasundaram,Gorda,Kurkela,Margueron,Tews (2023)

w/ pQCD

w/o pQCD
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Weak-coupling results in high-density QCD
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Weak-coupling formula is universal for  and  up to  
→ Lattice QCD  can be used as a benchmark

QCDB QCDI 𝒪(α2
s )

I

QCD EoS in weak-coupling  expansion:αs

PQCD(μ) = 3μ4

4π2 [1 − 𝒪(αs)] + 3μ2Δ2

2π2 [1 + 𝒪(α1/2
s )], ln (

Δgap

μ ) = − b−1 ( αs

π )
−1/2

− b0

Freedman,McLerran (1977); Baluni (1978); Kurkela et al. (2009-)

Applicability at low ?μ
- Usually, it is used down to  for the input of neutron starsμ ∼ 0.9 GeV

Kurkela,Fraga,Vuorinen (2014)

Son (1998), Pisarski,Rischke (1998)  
Brown,Liu,Ren (1999); Wang,Rischke (2001) 

Review: Alford,Rajagopal,Schafer,Schmitt (2008); 
Fujimoto (2023)
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Weak-coupling results vs lattice QCD  dataI
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Empirical evidence for the dense-QCD weak-coupling results 
to be applicable down to μ ∼ 0.8 GeV

At least the magnitude is correct

Lattice QCD Data

Weak-coupling results

Lattice data: Abbott et al. (2023, 24); 
Fujimoto (2023, 24)

Uncertainty in 
weak-coupling results: 
varying the 
renormalization scale 

 by a factor 2 around 
its typical scale 
Λ̄

Λ̄ = 2μ
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“Uncertainty” in pQCD

- : renormalization scale 
… only ambiguity in pQCD from perturbative series truncation 

- Canonical choice:  (typical hard interaction scale) 

- “Uncertainty” quantified by varying by factor 2 
            i.e.  with  
                   … ad hoc procedure, purely based on historical practice

Λ̄

Λ̄ = 2μ

X ∈ [0.5, 2] X ≡ Λ̄/(2μ)
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Fraga,Pisarski,Schaffner-Bielich(2001); 
Kurkela,Romatschke,Vuorinen (2009)

αs ≃ 1

β0 ln ( Λ̄
ΛMS )

cf. Gorda,Komoltsev,Kurkela,Mazeliauskas (2022)
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Prescription for  determinationΛ̄
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Conventional choice for  Λ̄
X = Λ̄/2μ ∈ [0.5, 2]

LatticeQCD

Fujimoto, 2408.12514
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Prescription for  determinationΛ̄
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New prescription: 
Matching  to lattice QCD  Λ̄ I

X ∈ [1.2, 2]

LatticeQCD

Fujimoto, 2408.12514

Conventional choice for  Λ̄
X = Λ̄/2μ ∈ [0.5, 2]
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Effect on : NS EoSQCDB
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New choice

Conventional choice

Fujimoto, 2408.12514
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Effect on : NS EoSQCDB
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New choice

Conventional choice

Difference already around 
neutron-star density

Stiff EoS is excluded

Fujimoto, 2408.12514

With new choice, 
Bayes factor for 

 is 
20.3 (strong evidence)

ε − 3P ≥ 0



Yuki Fujimoto (RIKEN / UC Berkeley)

Color superconductivity in weak coupling

- A negligibly small contribution to bulk thermodynamics in weak coupling: 

                PQCD(μ) = 3μ4

4π2 [1 − 𝒪(αs)] + 3μ2Δ2

2π2 [1 + 𝒪(αs)]
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 at ΔCFL ∼ 1 MeV μ = 0.8 GeV
cf.  from astrophysical bound 

Kurkela,Rajagopal,Steinhorst (2024)
Δ ≲ 200 MeV

Fujimoto, 2408.12514
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Color superconductivity in weak coupling

-  is comparable to 
the stress induced 
by strange quark mass  
→ CFL may not be 
    the ground state 
    even at  

- NB: CFL and color superconductor may still be realized in NSs due to the 
nonperturbative enhancement from instantons

ΔCFL

∼ m2
s /4μ

μB = 2.4 GeV

23

Fujimoto, 2408.12514

Alford,Rajagopal,Wilczek (1997); 
Rapp,Schafer,Shuryak,Velkovsky (1997)
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 at ΔCFL ∼ 1 MeV μ = 0.8 GeV
Unpaired CFL
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μB

Effect on the QCD phase diagram
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T

CFL?
weak-coupling regime

0.93 GeV

neutron stars

Common understanding:
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μB

Effect on the QCD phase diagram
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4–7 GeV

T

CFL?
weak-coupling regime

2.4 GeV

0.93 GeV

non-CFL 
or unpaired

neutron stars

Based on weak-coupling calculation:
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Weak-coupling EoS in two-color QCD
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Fujimoto, 2408.12514

Completely different 
behavior in 

weak-coupling regime

Wanted: 
 in two-color QCDΛMS
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Summary
- QCD at finite isospin density: useful nonperturbative piece of information 

- QCD inequality: robust bounds on the symmetric nuclear matter EoS 

- Weak-coupling results: Matches with lattice data at finite isospin density 
- Empirical evidence for the validity down to . 
- Color-superconducting gap is negligible in the weak coupling limit. 
- CFL phase may be unstable against unpairing induced by the stress from  
   strange quark mass 
- Two-color QCD shows qualitatively different behavior in weak coupling

μ ∼ 0.8 GeV

27
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Bonus materials
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Yuki Fujimoto (RIKEN / UC Berkeley)

QCD at finite isospin density (QCD )I
- Isospin chemical potential (conjugate to ): 

                           

- Partition function at finite isospin and zero baryon density: 

  

I3
μu = μI /2, μd = − μI /2

ZI(μI) = ∫ [dA] det 𝒟( μI

2 ) det 𝒟(− μI

2 )e−SG

= ∫ [dA] det 𝒟( μI

2 )
2

e−SG

29

Positive real value 
→ NO sign problem

QCD at finite isospin density can be simulated on lattice

Alford,Kapustin,Wilczek (1999); 
Kogut,Sinclair (2002), Beane,Detmold,Savage (2008-); Brandt,Endrodi… (2014-)…

det 𝒟(−μ)
= [det 𝒟(μ)]*
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QCD inequality for pressure : P ∝ log Z
PB(μB) ≤ PI(μI = 2

Nc
μB)

QCD inequality

30

Pressure of dense  matter 
(what we want to know)

QCDB
Pressure of dense  matter 

(what we already know 
from lattice QCD)

QCDI

Cohen (2003); Fujimoto,Reddy (2023); 
see also: Moore,Gorda (2023)

Inequality among observables from path integrals Weingarten (1983); Witten (1983)

Inequality considered here:



Yuki Fujimoto (RIKEN / UC Berkeley)

QCD inequality: derivation
- Dirac operator:  ,  property:  

- QCD :  

- QCD :  

- From the relation : 

                   

𝒟(μ) ≡ γμDμ + m − μγ0 det 𝒟(−μ) = [det 𝒟(μ)]*

I ZI(μI) = ∫ [dA] det 𝒟( μI

2 ) det 𝒟(− μI

2 )e−SG = ∫ [dA] det 𝒟( μI

2 )
2

e−SG

B ZB(μB) = ∫ [dA] det 𝒟( μB

Nc
) det 𝒟( μB

Nc
) e−SG = ∫ [dA] Re [det 𝒟( μB

Nc
)]

2
e−SG

Re z2 ≤ |z2 | = |z |2

ZB(μB) ≤ ∫ [dA] det 𝒟( μB

Nc
)

2
e−SG = ZI(μI = 2

Nc
μB)

31

charge conjugation symmetry μB → − μB

Note: this is isospin symmetric because there is no isospin imbalance

Cohen (2003); Fujimoto,Reddy (2023); 
see also: Moore,Gorda (2023)

u quark d quark
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Direct use of QCD inequality
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PB(μB) ≤ PI(μI = 2
Nc

μB)

Constant sound speed EoS: P(ε) ∝ v2
s ε

Soft EoS (smaller  at a given ) 
is excluded

P ε

v2
s = 0.1

v2
s = 0.3

v2
s = 1.0

Excluded by LQCD Lattice data: upper bound

Lattice data: Abbott et al. (2023);  Fujimoto,Reddy (2023)
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Bounds on nB(μB)
① Stability: 

   

② Causality : 

   

③ QCD inequality on the integral: 

  

d2P
dμ2

B
≥ 0 ⇒ dnB

dμB
≥ 0

v2
s ≤ 1

v2
s = nB

μB

dμB

dnB
≤ 1 ⇒ dnB

dμB
≥ nB

μB

∫
μB

μsat

dμ′ nB(μ′ ) ≤ PI(μI = 2
Nc

μB)
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Properties  must satisfy:nB(μB)Komoltsev,Kurkela (2021);  Fujimoto,Reddy (2023)

Lower bound of the integral must be specified 
fix it to the empirical saturation property
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Bounds on P(ε)
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Isenthalpic line:  h = μBnB = ε + P = const

P

εO

Pmin

Pmax
Pmin

Pmax P = − ε + h
h

nB = h/μB

by changing value of  , the trajectories of  ( ) 
gives the lower (upper) bound for 

h Pmin Pmax
P(ε)

Komoltsev,Kurkela (2021); Fujimoto,Reddy (2023)
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Robust bounds on P(ε)
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Fujimoto,Reddy (2023)

From the relation :ε = − P + μBnB

Soft EoS at large  
is excluded

ε

Heavy-ion: 
Oliinychenko et al.(2022)


