

Machine learning on exotic hadrons

Qian Wang South China Normal University

YITP long-term and Nishinomiya-Yukawa memorial workshop

Hadrons and Hadron Interactions in QCD 2024 (HHIQCD 2024)

-- Experiments, Effective theories, and Lattice --

14th Oct. - 15th Nov., 2024 Yukawa Institute for Theoretical Physics, Kyoto University, Japan

<u>Outline</u>

- Motivation
- One-channel case, X(3872) and T_{cc}^+
- Multi-channel case, P_c
- Summary and outlook

Standard approach to analyze experimental data

Hidden layer Input layer Hidden layer Training Output layer ≥6 5 Resample data 1 **(** ? % Resample data 2 Resample data 3 Resample data 4 Resample data 5 4 Source data 3 2 1 0 3.82 3.84 3.86 3.88 3.90 3.92 *E(GeV)* ? % \overline{q} ? % ? %

Hidden layer Input layer Hidden layer Training Output layer <u>کے</u>6 5 Resample data 1 **(** ? % Resample data 2 Resample data 3 Resample data 4 Resample data 5 4 Source data 3 2 1 0 3.82 3.84 3.86 3.88 3.90 3.92 *E(GeV)* ? % \overline{q} ? % ? %

The first step: One-channel line shape in HM picture

Why one-channel case?

- The most simple case
- A given structure has one foremost channel
- In the isospin limit, sometimes the requirement can be satisfied

Liu, Zhang, Hu, QW, PRD105(2022)076013

Generate samples

Effective range expansion

$$T_{NR}(E) = -\frac{2\pi}{\mu} \frac{1}{1/a + (r/2)k^2 - ik}$$

The structure is driven by

Dong, Guo, Zou, PRL126(2021)152001

PDF(E; a, r, threshold,
$$\sigma$$
) = $\int |T_{NR}(E)|^2 G(E' - E) dE'$

if the elastic channels domain in the production vertex.

Gaussian function

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Liu, Zhang, Hu, **QW**, PRD105(2022)076013

Generate samples

Choose parameter region

 $a \in [4.93, 14.80] \text{ fm},$ $r \in [0.49, 0.99] \cup [-9.87, -0.49] \text{ fm},$ $m_1 + m_2 \in [2.8, 3.9] \text{ GeV},$ $\sigma \in [0.5, 10] \text{ MeV}.$

- Allow for bound state, virtual state and resonances
- Cover charmonium(-like) region
- Resolution is set to cover usual experimental values
- Generate 150000 samples (100 data points)
- 45000 samples for testing

Matuschek, Baru, Guo, Hanhart, EPJA57(2021)101

Training

- ResNet: stable, avoid degradation
- PyTorch: an open source machine learning framework
- Relu: activation function, nonlinearly
- Dropout: drop neurons, avoid overfitting

- A multi-layer-perception based ResNet is implemented with PyTorch.
- The parameters a and r are regressed simultaneously.
- The parameters threshold and σ are regressed individually.

Training

- MSELoss function: Euclidean
 distance between the predicted
 values and the label values.
- MSELoss functions converge rapidly.
- MSELoss function converge after 200 training.
- 1000 training epochs can give a good result.

15

Training

The correlation of the predicted and label values (almost to 1)

Liu, Zhang, Hu, QW, PRD105(2022)076013

Evaluation

- The difference between the predicted values and the label values.
- The left distribution is obtained by testing 45000 samples.
- The means measure the deviation of the predicted values from the label ones.
- The root-of-mean-square (RMS) measures the intrinsic uncertainties.
- Compare to the 10074/45000 fitting results.

Evaluation

Liu, Zhang, Hu, QW, PRD105(2022)076013

Table I. The biases and errors information of models

$methods \rightarrow$	Deep	learning	Fitting			
parameters↓	bias uncertainty		bias	uncertainty		
a (fm)	-0.010	1.040	-1.67	2.740		
r (fm)	-0.033	0.268	-0.038	0.244		
threshold (MeV)	0.75	0.52	-0.16	0.31		
$\sigma (MeV)$	-0.0001	0.06	-0.0098	0.10		

The biases can be neglected.

Apply to the *X*(3872) تل ≥_6 Resample data 1 Resample data 2 X(3872) 5 Resample data 3 Resample data 4 Resample data 5 4 Source data 3 2 1 0 3.88 3.82 3.86 3.90 3.92 3.84 E(GeV)

Liu, Zhang, Hu, **QW**, PRD105(2022)076013

- $D\bar{D}^* + c \cdot c \cdot c$ channel
- a, r and threshold are consistent with those from fitting within 1σ
- The errors are obtained in

bootstrap (10000 data sets)

X(3872) parameters	Deep Learning	Fit
parameter a (fm)	8.76 ± 1.75	9.95 ± 0.34
parameter r (fm)	0.56 ± 0.55	0.32 ± 0.08
parameter threshold (MeV)	3871.30 ± 0.52	3871.20 ± 0.01
parameter σ (MeV)	1.20 ± 0.15	1.70 ± 0.16

Apply to *X*(3872)

- The distributions of the predicted parameters
- Gaussian-like distribution
- Red lines: fit with Gaussian function
- The mean and RMS are the center value and error of the parameter

- *DD** channel
- a, r and threshold are consistent with those from fitting within 1σ
- The errors are obtained in

bootstrap (10000 data sets)

T_{cc}^+ parameters	Deep Learning	Fit
parameter a (fm)	8.23 ± 1.04	13.74 ± 4.77
parameter r (fm)	-2.79 ± 0.27	-2.15 ± 0.21
parameter threshold (MeV)	3874.83 ± 0.51	3874.53 ± 0.13
parameter σ (MeV)	1.10 ± 0.06	0.11 ± 0.12

Liu, Zhang, Hu, **QW**, PRD105(2022)076013

The history of pentaquarksBing-Song Zou, Sci.Bull.66(2021)1258

 $\Lambda(1405)$ predicted by Dalitz and Tuan in 1959

Dalitz and Tuan, PRL2(1959)425

- An excited state of a three-quark (*uds*) system
- $\bar{K}N$ hadronic molecule with $udsq\bar{q}$

A similar situation for $N^{\star}(1535)$

- An excited state of a three-quark (*uds*) system
- $\bar{K}\Sigma \bar{K}\Lambda$ dynamical generated state with $qqqs\bar{s}$ Kaiser, Siegel, Weise, NPA594(1995)325

Pentaquark in hidden charm sector

Liu, Zou, PRL96(2006)042002

Wu, Molina, Oset, Zou, PRL105(2010)232001

(I,S)	$z_R \; ({ m MeV})$		g_a		(I,S)	$z_R \; ({ m MeV})$		g_a	
(1/2, 0)		$\bar{D}\Sigma_c$	$ar{D}\Lambda_c^+$		(1/2, 0)		$ar{D}^*\Sigma_c$	$ar{D}^*\Lambda_c^+$	
	4269	2.85	0			4418	2.75	0	
(0, -1)		$ar{D}_s \Lambda_c^+$	$\bar{D}\Xi_c$	$\bar{D}\Xi_c'$	(0, -1)		$ar{D}_s^*\Lambda_c^+$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi_c'$
	4213	1.37	3.25	0		4370	1.23	3.14	0
	4403	0	0	2.64		4550	0	0	2.53

Multi-channel case

The observation of hidden charm pentaquarks

$$J(\Sigma_c) = \frac{1}{2} \qquad J(\bar{D}^*) = 1$$
$$J(P_c(4440)) = ? \qquad J(P_c(4457)) = ?$$

 $P_c(4380): 4380 \pm 8 \pm 29 \text{ MeV}$ $P_c(4450)^+$: 4449.8 ± 1.7 ± 2.5 MeV $\Lambda_{b} \to J/\psi p K^{-}$ LHCb data otal fit background 2019 $\oint P_c(4457)^{+}$ $P_{c}(4440)^{+}$ $P_{c}(4312)^{+}$ 200 4250 4300 4350 4400 4450 4500 4550 4600 4200 $m_{J/\psi p}$ [MeV]

Wang, Huang, Zhang, Zou, PRC84(2011)015203, Wu, Lee, Zou, PRC85(2012)044002

The $\Sigma_c^{(*)} \overline{D}^{(*)}$ molecular picture Du, Baru, Guo, Hanhart, Meißner, Oller, **QW**, PRL124(2020)072001

 $m_0 \rightarrow \infty$ the strong interaction independent of the spin of heavy quark

Heavy Quark Spin Symmetry $J = s_l + \frac{1}{2}$ $J = s_l - \frac{1}{2}$ $J = s_l + \frac{1}{2}$ $J = s_l - \frac{1}{2}$ $m_{\Sigma_c^*} - m_{\Sigma_c} = 64 \text{ MeV}$ $m_{D^*} - m_D = 142 \text{ MeV}$ $s_l = \frac{1}{2}^{-1}$ doublet $s_l = 1^+$ doublet Two LECs to LO Spin rearrangement $\left(\begin{bmatrix} \bar{Q}q_{J_{l_1}} \end{bmatrix}_{j_1} \begin{bmatrix} Q(qq)_{J_{l_2}} \end{bmatrix}_{j_2} \right)_J \sim \sum_{III} \mathscr{C}_{j_l_1 j_{l_2} HL}^{j_1 j_2 J} \left((\bar{Q}Q)_H (qqq)_L \right)_J \right) \quad C_{\frac{1}{2}} \equiv \langle H \otimes \frac{1}{2} | \hat{H} | H \otimes \frac{1}{2} \rangle$ $C_{\frac{3}{2}} \equiv \langle H \otimes \frac{3}{2} | \hat{H} | H \otimes \frac{3}{2} \rangle$ $ar{D}^{(st)} = \Sigma^{(st)}_{a}$

Du, Baru, Guo, Hanhart, Meißner, Oller, QW, PRL124(2020)072001

Multi-channel case

The $\Sigma_c^{(*)} \overline{D}^{(*)}$ molecular picture

Liu et.al., PRL122(2019)242001

Scenario	Molecule	J^P	B (MeV)	M (MeV)
A	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
A	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 – 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
A	$ar{D}^*\Sigma_c$	$\frac{\bar{3}}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	3.2 - 3.5	4523.3 – 4523.6
B	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
B	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{\bar{3}}{2}^{-}$	Input	4440.3
B	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
B	$ar{D}^*\Sigma_c^*$	$\frac{\overline{3}}{2}$	10.1 - 10.2	4516.5 - 4516.6
B	$ar{D}^*\Sigma_c^*$	$\frac{1}{5}$ - 2	25.7 - 26.5	4500.2 - 4501.0

• Two parameters determined by

 $P_c(4440), P_c(4457)$

• Two solutions

Solution A (χ^2 /d.o.f. = 1.01) Solution B (χ^2 /d.o.f. = 1.03)

- Two parameters g_S , g_D for $J/\psi p$, $\eta_c p$
- Predict pole positions accurately
- $\chi_A^2 < \chi_B^2$
- The effect of each data point is different

Du, Baru, Guo, Hanhart, Meißner, Oller, QW, PRL124(2020)072001

<u>Multi-channel case</u>

The $\Sigma_c^{(*)} \overline{D}^{(*)}$ molecular picture

Liu et.al., PRL122(2019)242001

Scenario	Molecule	J^P	B (MeV)	M (MeV)
A	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
A	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 – 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
A	$ar{D}^*\Sigma_c$	$\frac{\bar{3}}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	3.2 - 3.5	4523.3 – 4523.6
B	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
B	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{\bar{3}}{2}^{-}$	Input	4440.3
B	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
B	$ar{D}^*\Sigma_c^*$	$\frac{\overline{3}}{2}$	10.1 - 10.2	4516.5 - 4516.6
B	$ar{D}^*\Sigma_c^*$	$\frac{1}{5}$ - 2	25.7 - 26.5	4500.2 - 4501.0

• Two parameters determined by

 $P_c(4440), P_c(4457)$

• Two solutions

Solution A (χ^2 /d.o.f. = 1.01) Solution B (χ^2 /d.o.f. = 1.03)

- Two parameters g_S , g_D for $J/\psi p$, $\eta_c p$
- Predict pole positions accurately
- $\chi_A^2 < \chi_B^2$
- The effect of each data point is different

Multi-channel case

Hidden charm pentaquarks in machine learning

- Focus on the region below 4.375 GeV
- Two channel case: $J/\psi p$, $\Sigma_c \bar{D}$
- Do not respect HQSS
- Parametrization

$$I(s) = \rho(s)[|P(s)T(s)|^2 + B(s)]$$
$$T(s) = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - 9k_2) - m_{12}^2}$$

- $P_c(4312)$ is a virtual state
- SHAP analysis indicates the role of each bin

Mean SHAP values

Multi-channel case

Hidden charm pentaquarks in machine learning

• Nuclear physics

Niu et.al., PLB778(2018)48, Niu et.al., PRC99(2019)064307, Ma et.al., CPC44(2020)014104, Bedaque et al., EPJA3(2021)025003, Sombillo, et al., PRD104(2021)036001, PRD102(2020)016024, PRD104(2021)036001,.....

• High energy nuclear physics

Balidi et.al., PRD93(2016)094034,

Boehnlein et.al., RMP94(2022)031003.....

• Experimental data analysis

Guest et.al., Annu. Rev. Nucl. Part. Sci68(2018)161.....

• Theoretical physics

Carleo et.al., Science 355(2017) 602.....

JPAC, PRD105(2022)L091501

Mean SHAP values

LHCb, PRL122(2019)222001

The $\Sigma_c^{(*)} \overline{D}^{(*)}$ molecular picture

- $P_c(4312)$ bound state or virtual state?
- Spin assignment of $P_c(4440)$ and $P_c(4457)$?
- The pole situations for all the P_c states?
- Whether NN approach obtains more than the normal fitting approach?

LO HQEFT, Du, Baru, Guo, Hanhart, Meißner, Oller, **QW**, PRL124(2020)072001

LHCb, PRL122(2019)222001

The $\Sigma_c^{(*)} \overline{D}^{(*)}$ molecular picture

- $P_c(4312)$ bound state or virtual state?
- Spin assignment of $P_c(4440)$ and $P_c(4457)$?
- The pole situations for all the *P*_c states?
- Whether NN approach obtains more than

the normal fitting approach?

LO HQEFT, Du, Baru, Guo, Hanhart, Meißner, Oller, **QW**, PRL124(2020)072001

The decay amplitude for $\Lambda_b \rightarrow J/\psi p K^-$ process

$$U_i^J(E,k) = -\sum_{\alpha} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \mathcal{V}_{i\alpha}^J(k) G_{\alpha}(E,q) U_{\alpha}^J(E,q) \quad \alpha, \beta, \dots \text{ for } \Sigma_c^{(*)} \bar{D}^{(*)} \text{ channels}$$

The decay amplitude for $\Lambda_b \to \Sigma_c^{(*)} \overline{D}^{(*)} K^-$ process i, j, \dots for $J/\psi p, \eta_c p$ channels

$$U_{\alpha}^{J}(E,p) = P_{\alpha}^{J} - \sum_{\beta} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} V_{\alpha\beta}^{J}(E,p,q) G_{\beta}(E,q) U_{\beta}^{J}(E,q)$$

Zhang, Liu, Hu, **QW**, Meißner, Sci.Bull.68(2023)981-989

The Probability Distribution Function Zhang, Liu, Hu, QW, Meißner, Sci.Bull.68(2023)981-989 $PDF(E; \mathscr{P}) = \alpha \sum_{J} \int |U^{J}|^{2} p \cdot s \cdot (E)G(E' - E)dE' + (1 - \alpha)Chebyshev_{6}(E)$

• U^J the production amplitude of $\Lambda_b \to J/\psi p K^-$ process with $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$

- p.s.(*E*) the phase space
- G(E' E) Gaussian function representing experimental resolution
- Chebyshev₆(E) the 6th order Chebyshev polynomial for background contribution
- 1α the background fraction with $\alpha \in (0, 1]$
- Parameter regions

$$g_{S} \in [0,10] \text{ GeV}^{-2} \qquad g_{D} \in [0.5,1.5] \times g_{S} \qquad C_{3/2} \in [0.5,1.5] \times C_{1/2} \qquad \mathcal{F}_{1}^{\frac{5}{2}} \in [600,900]$$
$$C_{1/2} \in [-20,0] \text{ GeV}^{-2} \qquad \mathcal{F}_{1}^{\frac{1}{2}} \in [0,300] \qquad \mathcal{F}_{2}^{\frac{1}{2}} \in [700,1000] \qquad \mathcal{F}_{3}^{\frac{1}{2}} \in [-3600, -3300]$$
$$\mathcal{F}_{1}^{\frac{3}{2}} \in [-3900, -3600], \qquad \mathcal{F}_{2}^{\frac{3}{2}} \in [-1900, -1600], \qquad \mathcal{F}_{3}^{\frac{3}{2}} \in [-4800, -4500],$$

Multi-channel case

The Probability Distribution Function Zhang, Liu, Hu, QW, Meißner, Sci.Bull.68(2023)981-989 $PDF(E; \mathscr{P}) = \alpha \sum_{J} \int |U^{J}|^{2} p \cdot s \cdot (E)G(E' - E)dE' + (1 - \alpha)Chebyshev_{6}(E)$

- The samples are produced by ROOT and GSL
- Various background samples denoted as S^{90} , i.e. $1 \alpha = 90\%$
- $1 \alpha = (96.0 \pm 0.8)\%$ from a ResNet-based NN

States and labels

• "+" and "-" for phy. and unphy. sheets • $\frac{1}{2}$ dyn. Channels: $\Sigma_c \bar{D}$, $\Sigma_c \bar{D}^*$, $\Sigma_c^* \bar{D}^*$ • $\frac{3}{2}^{-}$ dyn. Channels: $\Sigma_c^* \overline{D}$, $\Sigma_c \overline{D}^*$, $\Sigma_c^* \overline{D}^*$ • $\frac{5}{2}$ dyn. Channel: $\Sigma_c^* \bar{D}^*$ LHCb, PRL122(2019)222001 Bound state for $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ channels Solution B 0000

• Mass label 1 and 0 for $J_{P_c(4440)} = \frac{1}{2}$, $J_{P_c(4457)} = \frac{3}{2}$ and $J_{P_c(4440)} = \frac{3}{2}$, $J_{P_c(4457)} = \frac{1}{2}$

i.e. solution A and B in PRL122(2019)242001, PRL124(2020)072001, JHEP08(2021)157

Predicted probability

Training an	ld verif	ication	Output(%) Label	0000	1000	1001	1002	100X	others		
240184 sampl	es		predict	prediction of NN trained with $\{S^{90}\}$ samples.							
-			NN 1	0.69	89.13	1.42	8.75	99.30	0.01		
Mass Relation Label	State Label	Number of Samples	NN 2	0.03	5.83	38.47	55.30	99.60	0.37		
0	000	46951	NN 3	0.03	5.39	15.79	78.41	99.59	0.11		
1	000	4283	NN 4	0.01	1.9	27.01	70.95	99.86	0.13		
1	001	1260	NN 5	2.40	94.45	0.15	2.99	97.59	0.01		
1	100	4360	5 NNs Average	0.63(1.03)	39.34	16.57	43.28	99.19(0.91)	0.13(0.15)		
0	100		10 NNs Average	0.36(0.74)	21.16	20.69	57.62	99.47(0.68)	0.12(0.13)		
0	110	7520	predict	ion of NN t	rained	with -	$\{S^{92}\}$ s	samples.			
1	111	360	NN 1	0.00	0.15	5.37	94.47	99.99	0.00		
0	200	9590	NN 2	0.00	0.07	4.11	95.81	99.99	0.00		
1	200	280	NN 3	0.00	0.78	13.57	85.61	99.96	0.03		
1	210	3980	NN 4	0.00	0.81	19.02	80.16	99.99	0.00		
1	211	2690	NN 5	0.14	15.13	16.91	67.80	99.84	0.00		
1	220	50240	5 NNs Average	0.03(0.06)	3.39	11.80	84.77	99.95(0.06)	0.01(0.01)		
1	221	50512	10 NNs Average	0.01(0.04)	1.78	9.50	88.70	99.97(0.04)	0.00(0.01)		
1	221	50098	10 NNs Average	0.01(0.04)	1.78	9.50	88.70	99.97(0.04)	0.00(0.01)		

• 5 and 10 NN models with an identical structure under different initialization

- The uncertainties decrease with the increasing number of NNs
- Top 3 probabilities, 1000,1001,1002 favor solution A
- Bound states in $J^P = \frac{1}{2}^-, \frac{3}{2}^-$ channels, Undetermined for $J^P = \frac{5}{2}^-$ channel
- The NNs successfully retrieve the state label with an accuracy (standard deviation) of 75.91(1.18) %, 73.14(1.05) %, 65.25(1.80) %, 54.35(2.32) % for the samples $\{S^{90}\}, \{S^{92}\}, \{S^{94}\}, \{S^{96}\}$ Zhang, Liu, Hu, **QW**, Meißner, Sci.Bull.68(2023)981-989

Multi-channel case

The accuracy of NNs

- "O" opens the label. "X" close the label.
- Accuracy decreases with the increasing background fraction
- The lower accuracy is also because of the $\frac{5}{2}^{-}$ channel

Zhang, Liu, Hu, QW, Meißner, Sci.Bull.68(2023)981-989

Why NN favors Solution A?

Generate 100 1xxx samples and 100 0xxx samples

Probabilities from NN

- The NN can make a good prediction
- The two solutions are well distinguished for both Samples Meißner, Sci.Bull.68(2023)981-989

Multi-channel case

Why NN favors Solution A?

Generate 100 1xxx samples and 100 0xxx samples

Reduced chisq from the normal fitting

• A 3% misidentification for 1xxx samples

Zhang, Liu, Hu, **QW**, Meißner, Sci.Bull.68(2023)981-989

The impact of each experimental data point in NN

- The Shapley Additive exPlanation (SHAP) is investigated.
- A positive (negative) SHAP value indicates that a given data point is pushing the NN classification in favor of (against) a given class.
- The data points around the thresholds in the mass spectrum have a greater impact.

Zhang, Liu, Hu, **QW**, Meißner, Sci.Bull.68(2023)981-989

The impact of each experimental data point in normal fitting

A analogous quantity

 $\Delta U_i \equiv |\frac{\mathscr{P}_i(\text{on}) - \mathscr{P}_i(\text{off})}{\mathscr{P}_i(\text{on})}| \text{ for the ith para.}$

- The bins near threshold do not show strong constraints on parameters due to the large correlation among the parameters
- Data at higher energy have large constraints on the production parameters

Zhang, Liu, Hu, QW, Meißner, Sci.Bull.68(2023)981-989

The impact of each experimental data point in normal fitting

Another analogous quantity $\Delta U_i^{J^P} \equiv$

- The data around the $\Sigma_c \overline{D}$, $\Sigma_c \overline{D}^*$ thresholds are more important
- The data around the $\Sigma_c^* \overline{D}^*$ threshold are not important, due to its small production rate

Date Date

Sample

800

600

400

200

The impact of each experimental data point in normal fitting

 $\frac{\text{Re}[\text{Pole}_i](\text{on}) - \text{Re}[\text{Pole}_i](\text{off})}{\text{Re}[\text{Pole}_i](\text{on})}$ Another analogous quantity $\Delta U_i^{J^P} \equiv$ for the ith pole Weight G Pole₁^{1/2} 1200^{tr} 1e-5 (a) Weight Sample I Pole₂^{1/2} (b) Sample Data Sample Data 800 $\Delta U_2^{\frac{1}{2}}$ $\Delta U_1^{\frac{1}{2}}$ 600 400 200 1 0 20 40 60 80 100 120 140 Number 0^+ 20 40 80 60 100 140 120 Number Weight A $\mathsf{Pole}_3^{1/2}$ (c) 1200^{tr} Sample Sample Sample Data The experimental data around the coupled-800 $\Delta U_3^{\frac{1}{2}}$ channels still have strong constraints on the 600 400 physics 200 20 40 60 80 100 120 140 Number

Zhang, Liu, Hu, **QW**, Meißner, Sci.Bull.68(2023)981-989

The impact of each experimental data point in normal fitting

• The sample corresponds to Solution A

Summary and outlook

- We provide more insights about how the NN-based approach predicts the nature of exotics from the mass spectrum.
- Regress parameters for one-channel case
- Our NN-based approach favors Solution A in LO HQEFT
- Poles in the $J = \frac{1}{2}, \frac{3}{2}$ channels behave as bound states
- In the NN-based approach, the role of each data bin on the underlying physics is well reflected by the SHAP value. For the normal fitting, such a direct relation does not exist.

Thank you very much for your attention!