

Doubly charmed tetraquark T_{cc}^+ and left-hand cut from lattice QCD

Yan Lyu iTHEMS, RIKEN Oct. 18, 2024

YITP long-term and Nishinomiya-Yukawa memorial workshop

Hadrons and Hadron Interactions in QCD 2024 (HHIQCD 2024)

-- Experiments, Effective theories, and Lattice --

14th Oct. - 15th Nov., 2024 Yukawa Institute for Theoretical Physics, Kyoto University, Japan

Introduction

- > LQCD study on T_{cc}^+
- Left-hand cut of the scattering amplitude
- Summary and Outlook

Doubly heavy exotics

- > Intriguing aspects on $QQ\overline{q}\overline{q'}$
 - Open flavor, once observed its minimal quark content contains four quarks
 - Likely to be bound in the limit of $m_Q \rightarrow \infty (QQ \sim \overline{Q})$ A. Manohar and M. Wise, Nucl. Phys. B 339, 17 (1993)

 $bb\overline{q}\overline{q'}(\sqrt{)}$ $cc\overline{q}\overline{q'}(?)$ $ss\overline{q}\overline{q'}(\times)$

> A long history of theoretical prediction on $cc\overline{u}\overline{d}$ $(IJ^P = 01^+)$

First doubly charmed tetraquark T_{cc}^+

> 2022, LHCb discovered T_{cc}^+ in the $D^0 D^0 \pi^+$ spectrum LHCb Coll., Nature Phys. 18, 751 (2022); Nature Comm. 13, 3351 (2022)

 T_{cc}^+ from first-principle lattice QCD

> Limited to heavy quark masses ($m_{\pi} \ge 280 \text{ MeV}$)

• A huge gap between experimental and lattice results due to unphysical pion mass used in the studies

Left-hand cut

> The left-hand cut invalidates the analysis

M.-L. Du, A. Filin, V. Baru, X.-K. Dong, E. Epelbaum, F.-K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Phys. Rev. Lett. 131, 131903 (2023)

- Standard Lüscher quantization condition fails
- Effective-range expansion fails
- Modified finite-volume formula
 - A. Raposo and M. Hansen, JHEP 08, 075 (2024)

> New effective-range expansion \rightarrow M.-L. Du's talk

M.-L. Du, F.-K. Guo, and B. Wu, arXiv: 2408.09375

The purpose of this talk

- > Bridge the gap between lattice and experimental data
 - What does T_{cc}^+ look like if m_{π}^{lat} down to just a few MeV above m_{π}^{phy} ?
 - How far/close are we from explaining/confirming the experimental results?
- Revisit the left-hand cut
 - What is the origin?
 - Another remedy

[1] YL, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, and J. Meng, PRL 131, 161901 (2023)

[2] YL, S. Aoki, T. Doi, T. Hatsuda, W. Yamada et al, In preparation

Introduction

- > LQCD study on T_{cc}^+
- Left-hand cut of the scattering amplitude
- Summary and Outlook

(2+1) flavor lattice QCD at $m_{\pi} = 146 \text{ MeV}$

• The lowest energy level of $DD\pi$ (D^*D^*) is around 78 (140) MeV above on the lattice

D^*D interaction from HAL QCD method

> D^*D potential in the $(I, J^P) = (0, 1^+)$ channel $(t \simeq 1.9 \text{ fm})$

- Short range: antidiquark-diquark $\left[\bar{u}\bar{d}\right]_{3_c,I=J=0} \begin{bmatrix} cc \\ \overline{3}_{c,J=1} \end{bmatrix}$ M. Karliner and H. Lipkin, arXiv: 0307243
- M. Karliner and H. Lipkin, arXiv: 0307243
 R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91 232003 (2003)
 Long range: attraction from pion-exchange interaction

Long-range potential

One-pion exchange
S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D 86, 034019 (2012)
Ning Li, Zhi-Feng Sun, Xiang Liu, and Shi-Lin Zhu, Phys. Rev. D 88, 114008 (2013)

$$V(r) = -\alpha \frac{e^{-\mu r}}{r}, \quad \mu = m_{\pi} \text{ or } \sqrt{m_{\pi}^2 - (m_{D^*} - m_D)^2}$$

- Fail to describe long-range potential (why?)
- Two-pion exchange

An explanation based on covariant chiral EFT

• Box diagram $B_{2,2}$ play a dominate role due to 4 propagators are almost on-shell

• TPE is much strong than OPE around $p \simeq 0$

Fit

> Fit A: purely phenomenological fit ($\chi^2/dof = 1.01$)

$$V_{\rm fit}(r) = \sum_{i=1,\cdots,4} a_i e^{-(r/b_i)^2}$$

> Fit B: TPE-motivated fit (χ^2 /dof = 0.96)

$$V_{\rm fit}(r;m_{\pi}) = \sum_{i=1,2} a_i e^{-(r/b_i)^2} + a_3 (1 - e^{-(r/b_3)^2})^2 \frac{e^{-2m_{\pi}r}}{r^2}$$

Scattering properties

- Scattering phase shift
 - ERE expansion

$$S(k) = \frac{k \cot \delta_0 + ik}{k \cot \delta_0 - ik}$$
$$k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2$$

Scattering parameters and pole singularities

m_{π} (MeV)	146.4	
$1/a_0 ~({\rm fm}^{-1})$	$0.05(5)(^{+2}_{-2})$	$\bigwedge k$ plane
$r_{\rm eff}$ (fm)	$1.12(3)(\overset{+3}{_{-8}})$	>
$\kappa = i\kappa_{\text{pole}} \kappa_{\text{pole}} (\text{MeV})$	$-8(8)(^{+3}_{-5})$	virtual
$E_{\rm pole}~({\rm keV})$	$-59(^{+53}_{-99})(^{+2}_{-67})$	Ι

T_{cc}⁺ appears as a near-threshold virtual state at $m_{\pi} = 146.4$ MeV

The pole position is above the possible left-hand cut singularity

Comparison

► 1/a₀

Ikeda *et al.*[HALQCD Coll.], Phys. Lett. B 729, 85 (2014) Chen et al., Phys. Lett. B 833, 137391 (2022) Padmanath and Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)

1/ a_0 from current study with $m_{\pi} = 146$ MeV is extremely close to LHCb data

As m_{π} decreases, LQCD results approach to the LHCb data

Extrapolate to physical point based on TPE

Extrapolation

• Extrapolate TPE interaction to physical point

$$V_{\rm fit}(r; m_{\pi} = 146 \rightarrow 135 \text{ MeV})$$

- Adopt physical values for $m_{D^{*+}}$ and m_{D^0}
- Do NOT consider isospin breaking nor opening of $DD\pi$ channel
- Scattering parameters and pole singularities

m_{π} (MeV)	146.4	135.0	A , 1
$1/a_0 ~({\rm fm}^{-1})$	$0.05(5)(^{+2}_{-2})$	-0.03(4)	bound k plane
$r_{\rm eff}$ (fm)	$1.12(3)(^{+3}_{-8})$	1.12(3)	
$k = i\kappa_{\text{pole}}\kappa_{\text{pole}}$ (MeV)	$-8(8)(^{+3}_{-5})$	+5(8)	wintral
E_{pole} (keV)	$-59(^{+53}_{-99})(^{+2}_{-67})$	$-45(^{+41}_{-78})$	virtual

• $m_{\pi} = 146 \rightarrow 135$ MeV, T_{cc}^+ evolves from a near-threshold

virtual state into a loosely bound state

Construction of $D^0 D^0 \pi^+$ spetrum

Production amplitude of D*+D⁰ from a source function P

$$U(M,p) = P + \int \frac{d^{3}q}{(2\pi)^{3}} T(M,p,q) G(M,q) P$$

PHYSICAL REVIEW D 105, 014024 (2022)

Coupled-channel approach to T_{cc}^+ including three-body effects

Meng-Lin Duo,^{1,*} Vadim Baruo,^{2,3,†} Xiang-Kun Dongo,^{4,5,‡} Arseniy Filino,² Feng-Kun Guoo,^{4,5,§} Christoph Hanharto,^{6,||} Alexev Nefedievo.^{7,8,¶} Juan Nieveso.^{1,**} and Oian Wango,^{10,11,††}

- For simplicity, consider a pointlike source (constant in *p*-space, $P = \mathcal{N}$)
- Only *S*-wave production at low energies

- Adopt experimental values for m_{D^{*+},D^0,π^+} and $\Gamma_{D^{*+}}$ in the kinematics to keep the same phase space with the experiment
- > Three-body mass spectrum for $D^0 D^0 \pi^+$

$$\mathcal{M}(U \to D^0 D^0 \pi^+) = U(M, p) G(M, p) q_\pi + U(M, \bar{p}) G(M, \bar{p}) \bar{q}_\pi$$
$$\frac{d Br}{dM} = \mathcal{N}' \int_0^{p_{\max}} p dp \int_{\bar{p}_{\min}}^{\bar{p}_{\max}} \bar{p} d\bar{p} |\mathcal{M}(U \to D^0 D^0 \pi^+)|^2$$

 A known energy resolution function needs to considered for comparison w/ exp. data LHCb Coll., Nature Comm. 13, 3351 (2022) > Results at different m_{π}

- A peak around $D^{*+}D^0$ threshold
- $m_{\pi} = 146 \text{ MeV} \rightarrow 135 \text{ MeV}$, peak position shifts to the left, better description to LHCb data

Introduction

- > LQCD study on T_{cc}^+
- Left-hand cut of the scattering amplitude
- Summary and Discussion

Left-hand cut from momentum space

> One-pion exchange between D and D^*

$$V(\mathbf{p}', \mathbf{p}) = \frac{g^2}{(E_{D^*} - E_D)^2 - (\mathbf{p}' - \mathbf{p})^2 - m_{\pi}^2} = \frac{-g^2}{(\mathbf{p}' - \mathbf{p})^2 + \mu^2}, \qquad (E_{D^*}, \vec{p}) = (E_{D^*}, \vec{p}, \vec{p})$$

- The effective mass is defined as $\mu^2 = m_\pi^2 (E_{D^*} E_D)^2 \simeq m_\pi^2 (m_{D^*} m_D)^2$
- A pole appears when $(\mathbf{p}' \mathbf{p})^2 = -\mu^2$
- Partial-wave projection

$$\begin{aligned} V_s(p) &= \frac{1}{2} \int_0^\pi d\theta \frac{-g^2}{(p'-p)^2 + \mu^2} P_0(\cos\theta) \\ &= \frac{g^2}{4p^2} \int_{-1}^1 dx \frac{1}{x - (1 + \mu^2/2p^2)} = -\frac{g^2}{4p^2} \log\left(1 + \frac{4p^2}{\mu^2}\right) \end{aligned}$$

- A branch cut appears along $p^2 < -\mu^2/4$ in $V_s(p)$
- The scattering matrix inherits the cut from the potential

$$T(p', p; E) = V(p', p) + \int \frac{d^3q}{(2\pi)^3} V(p', q) G(E, q) T(q, p; E)$$

Regular solution and S matrix

> S-wave Schrödinger equation

$$\left[\frac{d^2}{dr^2} - U(r) + k^2\right]\varphi(k,r) = 0$$

• The regular solution is obtained w/ b.c. $\varphi(k, r = 0) = 0$, $\frac{d}{dr}\varphi(k, r = 0) = 1$

> The integral equation for the regular solution $\varphi(k, r)$

$$\varphi(k,r) = k^{-1} \sin kr + k^{-1} \int_0^r dr' \sin k(r-r') U(r') \varphi(k,r')$$
$$= \frac{1}{2ik} [\mathcal{F}(-k,r)e^{ikr} - \mathcal{F}(k,r)e^{-ikr}]$$

• where
$$\mathcal{F}(k,r) = 1 + \int_0^r dr' e^{ikr'} U(r')\varphi(k,r')$$

> The scattering matrix is defined from the asymptotic behavior of $\varphi(k, r)$

$$\varphi(k,r) \xrightarrow{r \to \infty} ae^{ikr} - be^{-ikr}$$
$$S(k) \equiv \frac{a}{b} = \frac{\mathcal{F}(-k,r=\infty)}{\mathcal{F}(k,r=\infty)}$$

Left-hand cut from coordinate space

One-pion exchange leads to a Yukawa potential in coordinate space

$$V(\mathbf{r}) = \int \frac{d^3q}{(2\pi)^3} \frac{-g^2}{\mathbf{q}^2 + \mu^2} = -\frac{g^2}{4\pi} \frac{e^{-\mu r}}{r}$$

Asymptotic behavior of $\mathcal{F}(k,r)$ w/ Yukawa potential

$$\lim_{r \to \infty} \mathcal{F}(k,r) = 1 + \lim_{r \to \infty} \int_0^r dr' e^{ikr'} U(r')\varphi(k,r')$$
$$\propto \int_0^\infty dr' e^{(ik+|\mathrm{Im}k|)r'} \frac{e^{-\mu r}}{r}$$

- The integration is divergent when $\text{Im}k \leq -\mu/2$ due to *integration to infinity*
- It can be further shown $\mathcal{F}(k,\infty)$ has a branch cut starting from $-i\mu/2$ to $-\infty$
- Left-hand cut for scattering matrix

$$S(k) = \frac{\mathcal{F}(-k,\infty)}{\mathcal{F}(k,\infty)}$$

• A branch cut $k^2 \leq -\mu^2/4$, which is *dictated by the infinitely long-range potential*

Scattering matrix from cutoff potential

Solution \triangleright Given that the left-hand cut comes from the infinitely long-range potential, what if the Yukawa potential is truncated at arbitrarily large *R*

$$V_{\rm cut}(r) = \begin{cases} V(r), & r < R \\ 0, & r > R \end{cases}$$

• Then, left-hand cut singularity disappears

$$\varphi(k,r) \xrightarrow{r \to \infty} \frac{1}{2ik} [\mathcal{F}(-k,R)e^{ikr} - \mathcal{F}(k,R)e^{-ikr}], \quad S(k) = \frac{\mathcal{F}(-k,R)}{\mathcal{F}(k,R)}$$

In momentum space, it means the following modified pion propagator

$$\begin{aligned} V_{\text{cut}}(\boldsymbol{q}) &= \iint_{0}^{R} V(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} r^{2} dr d\Omega = -\frac{g^{2}}{\boldsymbol{q}^{2} + \mu^{2}} \mathcal{G}(\boldsymbol{q};R) \\ \mathcal{G}(\boldsymbol{q};R) &= 1 - e^{-\mu R} \left[\cos(\boldsymbol{q}R) + \sin(\boldsymbol{q}R) \frac{\mu}{\boldsymbol{q}} \right] \end{aligned}$$

• G(q; R) has zeros at $q^2 = -\mu^2$, such that V_{cut} *does not have poles*, and therefore partial-wave projection does not lead to the branch cut

Cutoff potential

• $V_{\text{cut},s} - V_s$ can be arbitrarily small as *R* increases for $p^2 > -\mu^2/4$

• $V_{\text{cut},s}$ is real even for $p^2 < -\mu^2/4$, no left-hand cut

g = 0.57

 $R \to \infty$

- > The regular solution has the following asymptotic behavior
 - Fore real k, $\varphi(k,r)$ oscillates at long range $\sim \sin(kr + \delta)$
 - For imaginary k, $\varphi(k,r)$ at long range exponentially increases, $\sim -\frac{f(k)}{2ik}e^{|\text{Im}k|r|}$
 - At binding k_b , $\varphi(k_b, r)$ at long range exponentially decreases, ~ Const × $e^{-|k_b|r}$
- $\succ \mathcal{F}(k,R)$ as $R \to \infty$,

$$\begin{aligned} \mathcal{F}(k,R) &= 1 + \int_0^R dr' e^{ikr'} U(r') \varphi(k,r') \\ &= \mathcal{F}(k,\tilde{R}) + \int_{\tilde{R}}^R dr' e^{ikr'} U(r') \varphi(k,r') \\ &\simeq \mathcal{F}(k,\tilde{R}) - \frac{f(k)}{2ik} \int_{\tilde{R}}^R dr' e^{(ik+|\mathrm{Im}k|)r'} \frac{e^{-\mu r'}}{r'} \end{aligned}$$

- $\mathcal{F}(k, R)$ is convergent (divergent) as $R \to \infty$ if Imk > -m/2 (< -m/2)
- At binding k_b , even if $\text{Im}k_b > m/2$, $\mathcal{F}(-k_b, R)$ is always convergent
- ▶ For scattering matrix, as $R \to \infty$,
 - S(k) is convergent (divergent), if $k^2 > -\mu^2/4$ (< $-\mu^2/4$)
 - For the bound state, the pole position from S(k) is convergent

$$S(k) = \frac{\mathcal{F}(-k, R)}{\mathcal{F}(k, R)}$$

Case study

 \succ *D*^{*}-*D* scattering with the following interaction

$$V = V_{\rm org} + V_{\rm OPE}$$

- The long-range part of the interaction is $\sim \frac{g^2}{4\pi} \frac{e^{-\mu r}}{r}$ with $\mu \simeq 43$ MeV
- The interaction strength is tuned to have a bound state (on the left-hand cut)

Scattering phase shifts from the cutoff potential

- The difference on phase shifts of cutoff potential and original potential can be *arbitrarily small*
- The scattering phase shifts from cutoff potential is aways *real, no left-hand cut*

The bound state pole from the cutoff potential

- The difference on bound state pole position of cutoff potential and original potential can be *arbitrarily small*
- The *S* matrix tends to be divergent as $R \to \infty$ $k \cot \delta = ik \frac{S(k) + 1}{S(k) 1}$

Introduction

- > LQCD study on T_{cc}^+
- Left-hand cut of the scattering amplitude
- Summary and Discussion

 \succ Lattice study on T_{cc}^+ with almost physical quark masses

- T_{cc}^+ appears a near-threshold virtual state
- T_{cc}^+ evolves into a loosely bound state as $m_{\pi} = 146 \rightarrow 135 \text{ MeV}$
- $1/a_0$ is extremely close to the experimental data
- LHCb $D^0 D^0 \pi^+$ spectrum can be explained semiquantitatively

Left-hand cut singularity

- originated from the infinitely long-range interaction
- disappears once the long-range potential is truncated
- effects on physical observables from cutoff potential can be arbitrarily small

> From the study of the cutoff potential, it may indicate

- in order to get correct physical observables, lattice box should be large enough to include important interactions
- as long as lattice box is large enough, one can obtain correct phase shift and bound state pole even without considering left-hand cut
- In practice, it is also important to explicitly obtain/check the long-range behavior of the interaction which leads to left-hand cut singularity

Thanks for your attention!