

Doubly charmed tetraquark T_{cc}^{+} and **left-hand cut from lattice QCD**

Oct. 18, 2024 **Yan Lyu** iTHEMS, RIKEN

YITP long-term and Nishinomiya-Yukawa memorial workshop

Hadrons and Hadron Interactions in QCD 2024 (HHIQCD 2024)

-- Experiments, Effective theories, and Lattice --

14th Oct. - 15th Nov., 2024 Yukawa Institute for Theoretical Physics, Kyoto University, Japan

\triangleright Introduction

- \triangleright LQCD study on T_{cc}^+
- \triangleright Left-hand cut of the scattering amplitude
- \triangleright Summary and Outlook

Doubly heavy exotics

- Intriguing aspects on $QQ\overline{q}q'$
	- Open flavor, once observed its minimal quark content contains four quarks
	- Likely to be bound in the limit of $m_Q \to \infty$ ($QQ \sim \overline{Q}$) $bc\overline{q}\overline{q}'$ (\vee) $cc\overline{q}\overline{q}'$ (?) $ss\overline{q}\overline{q}'$ (\times) A. Manohar and M. Wise, Nucl. Phys. B 339, 17 (1993)
- A long history of theoretical prediction on $cc\bar{u}\bar{d}$ (IJ^P = 01⁺)

First doubly charmed tetraquark T_{cc}^+

 ≥ 2022 , LHCb discovered T_{cc}^{+} in the $D^{0}D^{0}\pi^{+}$ spectrum LHCb Coll., Nature Phys. 18, 751 (2022); Nature Comm. 13, 3351 (2022)

 T_{cc}^+ from first-principle lattice QCD

\triangleright Limited to heavy quark masses ($m_\pi \geq 280$ MeV)

 A huge gap between experimental and lattice results due to unphysical pion mass used in the studies

Left-hand cut

 \triangleright The left-hand cut invalidates the analysis

- Standard Lüscher quantization condition fails
- Effective-range expansion fails
- \triangleright Modified finite-volume formula
	- A. Raposo and M. Hansen, JHEP 08, 075 (2024)

 \triangleright New effective-range expansion \rightarrow M.-L. Du's talk

M.-L. Du, F.-K. Guo, and B. Wu, arXiv: 2408.09375

The purpose of this talk

- \triangleright Bridge the gap between lattice and experimental data
	- What does T_{cc}^+ look like if m_{π}^{lat} down to just a few MeV above m_{π}^{phy} ?
	- How far/close are we from explaining/confirming the experimental results?
- \triangleright Revisit the left-hand cut
	- What is the origin?
	- Another remedy

[1] YL, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, and J. Meng, PRL 131, 161901 (2023)

[2] YL, S. Aoki, T. Doi, T. Hatsuda, W. Yamada *et al*, In preparation

\triangleright Introduction

- \triangleright LQCD study on T_{cc}^+
- \triangleright Left-hand cut of the scattering amplitude
- \triangleright Summary and Outlook

(2+1) flavor lattice QCD at m_{π} =146 MeV 4017.1 3876.5 3875.1 3869.5 3869.3 $D^{*+}D^{*0}$ $D^{*0}D^+$ D^* + D^0 $D^+D^0\pi^0$ $D^{0}D^{0}\pi^{+}$ D^*D^* $DD\pi(L = 8.1$ fm)- $DD\pi(L \to \infty)$ D^*D 4036.2 3974.3 3902.8 3896.3 **Nature Lattice** $\pi^{0}(134.98)$ $\pi^{+}(139.57)$ $D^0(1864.84)$ $D^+(1869.66)$ $D^{*0}(2006.85)$ $D^{*+}(2010.26)$ $\pi(146.4)$ $D(1878.2)$ $D^*(2018.1)$ $\frac{8.1 \text{ fm}}{146 \text{ MeV}}$ 146 MeV

The lowest energy level of $DD\pi (D^*D^*)$ is around 78 (140) MeV above on the lattice

D^*D interaction from HAL QCD method

► D^*D potential in the $(I, J^P) = (0, 1^+)$ channel ($t \approx 1.9$ fm)

- Short range: antidiquark-diquark $\left[\bar{u}\bar{d}\right]_{3c,l=J=0} [cc]_{\overline{3}_c,l=1}$ M. Karliner and H. Lipkin, arXiv: 0307243
- Long range: attraction from pion-exchange interaction R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91 232003 (2003)

Long-range potential

 One-pion exchange S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D 86, 034019 (2012) Ning Li, Zhi-Feng Sun, Xiang Liu, and Shi-Lin Zhu, Phys. Rev. D 88, 114008 (2013)

$$
V(r) = -\alpha \frac{e^{-\mu r}}{r}, \quad \mu = m_{\pi} \text{ or } \sqrt{m_{\pi}^2 - (m_{D^*} - m_D)^2}
$$

- Fail to describe long-range potential (why?)
- Two-pion exchange

An explanation based on covariant chiral EFT

Box diagram $B_{2,2}$ play a dominate role due to 4 propagators are almost on-shell

TPE is much strong than OPE around $p \approx 0$

Fit

Fit A: purely phenomenological fit $(\chi^2/dof = 1.01)$

$$
V_{\text{fit}}(r) = \sum_{i=1,\cdots,4} a_i e^{-(r/b_i)^2}
$$

Fit B: TPE-motivated fit $(\chi^2/\text{dof} = 0.96)$

$$
V_{\text{fit}}(r; m_{\pi}) = \sum_{i=1,2} a_i e^{-(r/b_i)^2} + a_3 (1 - e^{-(r/b_3)^2})^2 \frac{e^{-2m_{\pi}r}}{r^2}
$$

Scattering properties

- \triangleright Scattering phase shift
	- ERE expansion

$$
S(k) = \frac{k \cot \delta_0 + ik}{k \cot \delta_0 - ik}
$$

$$
k \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_{\text{eff}} k^2
$$

 \triangleright Scattering parameters and pole singularities

 \bullet T_{cc}^{+} appears as a near-threshold virtual state at $m_{\pi} = 146.4 \text{ MeV}$

The pole position is above the possible left-hand cut singularity

Comparison

 $\geq 1/a_0$

Ikeda *et al.*[HALQCD Coll.], Phys. Lett. B 729, 85 (2014) Chen et al., Phys. Lett. B 833, 137391 (2022) Padmanath and Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)

 $1/a_0$ from current study with $m_\pi = 146$ MeV is extremely close to LHCb data

As m_{π} decreases, LQCD results approach to the LHCb data

Extrapolate to physical point based on TPE

Extrapolation

Extrapolate TPE interaction to physical point

$$
V_{\text{fit}}(r; m_{\pi} = 146 \rightarrow 135 \text{ MeV})
$$

- Adopt physical values for $m_{D^{*+}}$ and m_{D^0}
- Do NOT consider isospin breaking nor opening of $DD\pi$ channel
- Scattering parameters and pole singularities

• $m_{\pi} = 146 \rightarrow 135$ MeV, T_{cc}^{+} evolves from a near-threshold

virtual state into a loosely bound state

Construction of $D^0 D^0 \pi^+$ spetrum

Production amplitude of $D^{*+}D^0$ from a source function P

$$
U(M,p) = P + \int \frac{d^3q}{(2\pi)^3} T(M,p,q)G(M,q)P
$$

PHYSICAL REVIEW D 105, 014024 (2022)

Coupled-channel approach to T_{cc}^+ including three-body effects

Meng-Lin Du \bigcirc , ^{1,*} Vadim Baru \bigcirc , 2,3,† Xiang-Kun Dong \bigcirc , 4,5,* Arseniy Filin \bigcirc ,* Peng-Kun Guo \bigcirc ,4,5,* Christoph Hanhart \bigcirc ,^{6,||} Alexev Nefediev \bigcirc ,78,* Juan Nieves \bigcirc ,*** and Oian Wang \bigcirc ,9,10,1

- For simplicity, consider a pointlike source (constant in p-space, $P = \mathcal{N}$)
- Only S -wave production at low energies

- Adopt experimental values for m_{D^{*+},D^0,π^+} and $\Gamma_{D^{*+}}$ in the kinematics to keep the same phase space with the experiment
- Three-body mass spectrum for $D^0D^0\pi^+$

$$
\mathcal{M}(U \to D^0 D^0 \pi^+) = U(M, p)G(M, p)q_{\pi} + U(M, \bar{p})G(M, \bar{p})\bar{q}_{\pi}
$$

$$
\frac{d\text{Br}}{dM} = \mathcal{N}' \int_0^{p_{\text{max}}} p dp \int_{\bar{p}_{\text{min}}}^{\bar{p}_{\text{max}}} \bar{p} d\bar{p} |\mathcal{M}(U \to D^0 D^0 \pi^+)|^2
$$

 A known energy resolution function needs to considered for comparison w/ exp. data LHCb Coll., Nature Comm. 13, 3351 (2022) \triangleright Results at different m_{π}

- A peak around $D^{*+}D^0$ threshold
- m_{π} =146 MeV \rightarrow 135 MeV, peak position shifts to the left, better description to LHCb data

\triangleright Introduction

- \triangleright LQCD study on T_{cc}^+
- \triangleright Left-hand cut of the scattering amplitude
- \triangleright Summary and Discussion

Left-hand cut from momentum space

One-pion exchange between D and D^*

$$
\left(\begin{matrix}\n\mathbf{V}(\mathbf{p}',\mathbf{p}) = \frac{g^2}{(E_{D^*} - E_D)^2 - (\mathbf{p}' - \mathbf{p})^2 - m_{\pi}^2} \\
-\frac{-g^2}{(\mathbf{p}' - \mathbf{p})^2 + \mu^2},\n\end{matrix}\right) \xrightarrow{\begin{matrix}\n(E_D, \vec{p}) \\
\vdots \\
\vdots \\
\vdots \\
(E_{D^*}, \overline{-\vec{p})}\n\end{matrix}} \xrightarrow{\begin{matrix}\n(E_D, \vec{p}') \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
(E_D, \overline{-\vec{p}'}\n\end{matrix}} \xrightarrow{\begin{matrix}\n(E_D^*, \vec{p}') \\
(E_D^*, \vec{p}')\n\end{matrix}} \xrightarrow{\begin{matrix}\n(E_D^*, \vec{p}') \\
(E_D
$$

- The effective mass is defined as $\mu^2 = m_{\pi}^2 (E_{D^*} E_D)^2 \simeq m_{\pi}^2 (m_{D^*} m_D)^2$
- A pole appears when $(p'-p)^2 = -\mu^2$
- Partial-wave projection

$$
V_s(p) = \frac{1}{2} \int_0^{\pi} d\theta \frac{-g^2}{(p'-p)^2 + \mu^2} P_0(\cos \theta)
$$

= $\frac{g^2}{4p^2} \int_{-1}^1 dx \frac{1}{x - (1 + \mu^2/2p^2)} = -\frac{g^2}{4p^2} \log \left(1 + \frac{4p^2}{\mu^2}\right)$

A branch cut appears along $p^2 < -\mu^2/4$ in $V_s(p)$

The scattering matrix inherits the cut from the potential

$$
T(p', p; E) = V(p', p) + \int \frac{d^3q}{(2\pi)^3} V(p', q) G(E, q) T(q, p; E)
$$

Regular solution and S matrix

 \triangleright S-wave Schrödinger equation

$$
\left[\frac{d^2}{dr^2} - U(r) + k^2\right]\varphi(k,r) = 0
$$

The regular solution is obtained w/ b.c. $\varphi(k, r = 0) = 0$, $\frac{d}{dr}\varphi(k, r = 0) = 1$

 \triangleright The integral equation for the regular solution $\varphi(k, r)$

$$
\varphi(k,r) = k^{-1} \sin kr + k^{-1} \int_0^r dr' \sin k(r - r') U(r') \varphi(k,r')
$$

$$
= \frac{1}{2ik} [\mathcal{F}(-k,r)e^{ikr} - \mathcal{F}(k,r)e^{-ikr}]
$$

• where
$$
\mathcal{F}(k,r) = 1 + \int_0^r dr' e^{ikr'} U(r') \varphi(k,r')
$$

 \triangleright The scattering matrix is defined from the asymptotic behavior of $\varphi(k, r)$

$$
\varphi(k,r) \xrightarrow{r \to \infty} a e^{ikr} - b e^{-ikr}
$$

$$
S(k) \equiv \frac{a}{b} = \frac{\mathcal{F}(-k, r = \infty)}{\mathcal{F}(k, r = \infty)}
$$

Left-hand cut from coordinate space

One-pion exchange leads to a Yukawa potential in coordinate space

$$
V(r) = \int \frac{d^3q}{(2\pi)^3} \frac{-g^2}{q^2 + \mu^2} = -\frac{g^2}{4\pi} \frac{e^{-\mu r}}{r}
$$

Asymptotic behavior of $\mathcal{F}(k, r)$ w/ Yukawa potential

$$
\lim_{r \to \infty} \mathcal{F}(k, r) = 1 + \lim_{r \to \infty} \int_0^r dr' e^{ikr'} U(r') \varphi(k, r')
$$

$$
\propto \int_0^\infty dr' e^{(ik + |\text{Im}k|)r'} \frac{e^{-\mu r}}{r}
$$

- The integration is divergent when Im $k \le -\mu/2$ due to *integration to infinity*
- It can be further shown $\mathcal{F}(k, \infty)$ has a branch cut starting from $-i\mu/2$ to $-\infty$
- \triangleright Left-hand cut for scattering matrix

$$
S(k) = \frac{\mathcal{F}(-k,\infty)}{\mathcal{F}(k,\infty)}
$$

A branch cut $k^2 \le -\mu^2/4$, which is *dictated by the infinitely long-range potential*

Scattering matrix from cutoff potential

 \triangleright Given that the left-hand cut comes from the infinitely long-range potential, what if the Yukawa potential is truncated at arbitrarily large R

$$
V_{\text{cut}}(r) = \begin{cases} V(r), & r < R \\ 0, & r > R \end{cases}
$$

Then, left-hand cut singularity disappears

$$
\boxed{\varphi(k,r) \xrightarrow{r \to \infty} \frac{1}{2ik} [\mathcal{F}(-k,R)e^{ikr} - \mathcal{F}(k,R)e^{-ikr}], \quad S(k) = \frac{\mathcal{F}(-k,R)}{\mathcal{F}(k,R)}
$$

 \triangleright In momentum space, it means the following modified pion propagator

$$
\mathcal{V}_{\text{cut}}(\boldsymbol{q}) = \iint_0^R V(\boldsymbol{r}) e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} r^2 d\boldsymbol{r} d\Omega = -\frac{g^2}{\boldsymbol{q}^2 + \mu^2} \mathcal{G}(q; R)
$$

$$
\mathcal{G}(q; R) = 1 - e^{-\mu R} \left[\cos(qR) + \sin(qR)\frac{\mu}{q} \right]
$$

 $\mathcal{G}(q; R)$ has zeros at $q^2 = -\mu^2$, such that V_{cut} *does not have poles*, and therefore partial-wave projection does not lead to the branch cut

Cutoff potential

 $V_{\text{cut},s} - V_s$ can be arbitrarily small as R increases for $p^2 > -\mu^2/4$

 $V_{\text{cut},s}$ is real even for $p^2 < -\mu^2/4$, no left-hand cut

 $g = 0.57$

 $R\rightarrow\infty$

- \triangleright The regular solution has the following asymptotic behavior
	- Fore real k, $\varphi(k,r)$ oscillates at long range \sim sin($kr + \delta$)
	- For imaginary k, $\varphi(k,r)$ at long range exponentially increases, $\sim -\frac{f(k)}{2ik}e^{\left|\text{Im}k\right|}r$
	- At binding k_b , $\varphi(k_b, r)$ at long range exponentially decreases, ~ Const × $e^{-|k_b|r}$
- \triangleright $\mathcal{F}(k, R)$ as $R \to \infty$,

$$
\mathcal{F}(k, R) = 1 + \int_0^R dr' e^{ikr'} U(r') \varphi(k, r')
$$

= $\mathcal{F}(k, \tilde{R}) + \int_{\tilde{R}}^R dr' e^{ikr'} U(r') \varphi(k, r')$

$$
\simeq \mathcal{F}(k, \tilde{R}) - \frac{f(k)}{2ik} \int_{\tilde{R}}^R dr' e^{(ik + |\text{Im}k|)r'} \frac{e^{-\mu r'}}{r'}
$$

- $\mathcal{F}(k, R)$ is convergent (divergent) as $R \to \infty$ if Im $k > -m/2$ (< $-m/2$)
- At binding k_b , even if Im $k_b > m/2$, $\mathcal{F}(-k_b, R)$ is always convergent
- For scattering matrix, as $R \to \infty$,
	- $S(k)$ is convergent (divergent), if $k^2 > -\mu^2/4$ (< $-\mu^2/4$)
	- For the bound state, the pole position from $S(k)$ is convergent

Case study

 \triangleright D^{*}-D scattering with the following interaction

$$
V = V_{\text{org}} + V_{\text{OPE}}
$$

- The long-range part of the interaction is $\sim \frac{g^2}{4\pi}$ $e^{-\mu r}$ $\frac{1}{r}$ with $\mu \approx 43$ MeV
- The interaction strength is tuned to have a bound state (on the left-hand cut)

Scattering phase shifts from the cutoff potential

- The difference on phase shifts of cutoff potential and original potential can be *arbitrarily small*
- The scattering phase shifts from cutoff potential is aways *real, no left-hand cut*

The bound state pole from the cutoff potential

- The difference on bound state pole position of cutoff potential and original potential can be *arbitrarily small*
- $k \cot \delta = ik \frac{S(k)+1}{S(k)-1}$ The S matrix tends to be divergent as $R \to \infty$

\triangleright Introduction

- \triangleright LQCD study on T_{cc}^+
- \triangleright Left-hand cut of the scattering amplitude
- \triangleright Summary and Discussion

 \triangleright Lattice study on T_{cc}^+ with almost physical quark masses

- \bullet T_{cc}^{+} appears a near-threshold virtual state
- \bullet T_{cc}^+ evolves into a loosely bound state as $m_{\pi} = 146 \rightarrow 135 \text{ MeV}$
- $1/a₀$ is extremely close to the experimental data
- LHCb $D^0 D^0 \pi^+$ spectrum can be explained semiquantitatively

\triangleright Left-hand cut singularity

- originated from the infinitely long-range interaction
- disappears once the long-range potential is truncated
- effects on physical observables from cutoff potential can be arbitrarily small

 \triangleright From the study of the cutoff potential, it may indicate

- in order to get correct physical observables, lattice box should be large enough to include important interactions
- as long as lattice box is large enough, one can obtain correct phase shift and bound state pole even without considering left-hand cut
- \triangleright In practice, it is also important to explicitly obtain/check the long-range behavior of the interaction which leads to left-hand cut singularity

Thanks for your attention!