Analysis of bound and resonant states of doubly heavy tetraquarks as hadronic molecules M Sakai, Y Yamaguchi, Phys. Rev. D **109**, 054016, on progress

Manato Sakai

in collaboration with Yasuhiro Yamaguchi

Nagoya University

October 17, 2024

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

2 Analysis of Doubly heavy tetraquark

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

2 Analysis of Doubly heavy tetraquark

Hadron and Exotic hadron

- Hadron: Composite particle of quarks and gluons Type of hadrons
 - meson $\sim q\bar{q}$ (e.g. $\pi, \rho, \omega, \sigma$)
 - **baryon** $\sim qqq$ (e.g. proton, neutron)

(1)

Hadron and Exotic hadron

- Hadron: Composite particle of quarks and gluons Type of hadrons
 - meson $\sim q\bar{q}$ (e.g. $\pi, \rho, \omega, \sigma$)
 - **baryon** $\sim qqq$ (e.g. proton, neutron)
- Exotic hadron

Hadrons which cannot be explained by the $q\bar{q}$, qqq pictures.

Image: A matrix and a matrix

Hadron and Exotic hadron

- Hadron: Composite particle of quarks and gluons Type of hadrons
 - meson $\sim q\bar{q}$ (e.g. $\pi, \rho, \omega, \sigma$)
 - **baryon** $\sim qqq$ (e.g. proton, neutron)

• Exotic hadron

Hadrons which cannot be explained by the $q\bar{q}$, qqq pictures. Many exotic hadrons are reported by the some experiments.

 $\blacktriangleright~X,Y,Z$ N. Brambilla Eur.Phys.J.C 71 (2011)1534 X(3872)

reported in 2003, $c\bar{c}q\bar{q}$ tetraquark

Belle Collaboration S.K. Choi et al Phys.Rev.Lett $\boldsymbol{91}$ (2003) 262001

- ▶ $P_c(4312), P_c(4440), P_c(4457)$ R. Aaji, et al. PRL112(2019)222001 reported in 2019, $c\bar{c}qqq$ pentaquarks
- ► $T_{cc}(cc\bar{u}\bar{d})^+$ LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351 reported in 2022, $cc\bar{u}\bar{d}$ tetraquark We analyze T_{cc} in our work.

1/17

イロト 不得 トイヨト イヨト 二日

(2022) 3351

() < </p>

• $cc\bar{u}\bar{d}$ tetraquark

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

() < </p>

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351 • $cc\bar{u}\bar{d}$ tetraquark • $J^P = 1^+$ • I = 0

() < </p>

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

• $cc\bar{u}\bar{d}$ tetraquark

•
$$J^P = 1^+$$

- *I* = 0
- Mass differences from the $D^{*+}D^0$ threshold
 - ► Breit-Wigner fitting $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - ▶ pole $\delta m_{\rm pole} = -360 \pm 40 \, {\rm keV}/c^2$

2/17

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

• $cc\bar{u}\bar{d}$ tetraquark

•
$$J^P = 1^+$$

•
$$I = 0$$

- Mass differences from the $D^{\ast +}D^0$ threshold
 - Breit-Wigner fitting $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - ▶ pole $\delta m_{\rm pole} = -360 \pm 40 \, {\rm keV}/c^2$

$$T_{cc} \downarrow^{DD^* \text{ threshold}}_{(\text{small !!})}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351 • $cc\bar{u}\bar{d}$ tetraquark

•
$$J^P = 1^+$$

•
$$I = 0$$

- Mass differences from the $D^{*+}D^0$ threshold
 - Breit-Wigner fitting $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - ▶ pole $\delta m_{\rm pole} = -360 \pm 40 \, \mathrm{keV}/c^2$

$$T_{cc} \downarrow^{DD^* \text{ threshold}}_{-273 \, \text{keV}}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• T_{cc} lies below the $D^{*+}D^0$ threshold.

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

• $cc\bar{u}\bar{d}$ tetraquark

•
$$I = 0, J^P = 1^+$$

- Mass differences from the $D^{*+}D^0$ threshold
 - Breit-Wigner fitting $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - pole

 $\delta m_{\rm pole} = -360 \pm 40 \,\mathrm{keV}/c^2$

• T_{cc} lies slightly below the $D^{*+}D^0$ threshold. $\Rightarrow T_{cc}$ is considered as DD^* bound state (hadronic molecule).

Theoretical research of T_{cc}

- Non relativestic quark model
 - J.I.Ballot and J.M.Richard, Phys.Lett. B 123, 449 (1983)
 - S.Zouzou et al, Z. Phys. C 30,457 (1986)
 - Q. Meng et al, Phys. Lett. B 814, 136095 (2019)
- Hadronic molecule
 - S.Ohkoda et al, Phys. Rev. D 86, 034019 (2012)
 Bound and resonant states of T_{cc} and T_{bb}.
 Interaction:

One pion exchange potential, One boson (π, ρ, ω) exchange potential.

- Lattice QCD
 - Y. Ikeda et al, Phys. Lett. B 729, 85 (2014)
 - M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)
 - Y. Lyu et al, Phys. Rev. Lett. 131, 161901

The studies of T_{cc} are summarized in [1] [1] Hua-Xing Chen *et al*, Rept. Prog. Phys. **86**, 026201 (2023)

3/17

Hadronic molecule in our study

イロト イヨト イヨト

Hadronic molecule in our study

(1)

Structure

Bound and resonant states of DD^* (= Hadronic molecules) \leftrightarrow Deuteron (= Bound state of a proton and a neutron)

Hadronic molecule in our study

Structure

Bound and resonant states of DD^* (= Hadronic molecules) \leftrightarrow Deuteron (= Bound state of a proton and a neutron)

Interaction

One boson exchange potetinal (OBEP) π , ρ , ω , σ respecting the chiral symmetry and heavy quark spin symmetry (HQS)

4/17

< ロ > < 同 > < 回 > < 回 > < 回 > <

Heavy quark spin symmetry (HQS)
 → The masses of heavy hadrons with the different angular momentum are degenerate

(日)

- Heavy quark spin symmetry (HQS)
 → The masses of heavy hadrons with the different angular momentum are degenerate
- Mass difference between pseudoscalar and vector mesons

The mass differences between heavy mesons are smaller than those of light mesons.

- Heavy quark spin symmetry (HQS)
 → The masses of heavy hadrons with the different angular momentum are degenerate
- HQS doublet

HQS doublet

• (D, D^*) and (B, B^*) are considered as the HQS doublet

- Heavy quark spin symmetry (HQS)
 → The masses of heavy hadrons with the different angular momentum are degenerate
- Coupled channel

▶ PP, PP^* and P^*P^* are coupled by the OBEP ($P^{(*)} = D^{(*)}, B^{(*)}$).

OBEP of $D^{(\ast)}D^{(\ast)}$

• Potentials

$$D^{(*)} D^{(*)} \pi : V^{\pi}(r) = \frac{1}{3} \left(\frac{g_{\pi}}{2f_{\pi}}\right)^2 [\vec{\mathcal{O}}_1 \cdot \vec{\mathcal{O}}_2 C(r; m_{\pi}) + S_{12}(r) T(r; m_{\pi})] \vec{\tau}_1 \cdot \vec{\tau}_2$$

$$| \frac{\pi \rho \omega \sigma}{r} |_{vector} : V^v(r) = \left(\frac{\beta g_V}{2m_v}\right)^2 C(r; m_v) \vec{\tau}_1 \cdot \vec{\tau}_2$$

$$+ \frac{1}{3} (\lambda g_V)^2 [2\vec{\mathcal{O}}_1 \cdot \vec{\mathcal{O}}_2 C(r; m_v) - S_{12}(r) T(r; m_v)] \vec{\tau}_1 \cdot \vec{\tau}_2$$

$$D^{(*)} D^{(*)} \sigma : V^{\sigma}(r) = -\left(\frac{g_{\sigma}}{m_{\sigma}}\right)^2 C(r; m_{\sigma})$$

• Form factor

$$F(\vec{q};m) = \frac{\Lambda^2 - m^2}{\Lambda^2 + \vec{q}^{\ 2}}$$

3

6/17

イロト イヨト イヨト イヨト

OBEP of $D^{(*)}D^{(*)}$

• Potentials

$$D^{(*)} D^{(*)} \pi : V^{\pi}(r) = \frac{1}{3} \left(\frac{g_{\pi}}{2f_{\pi}}\right)^{2} [\vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2}C(r;m_{\pi}) + S_{12}(r)T(r;m_{\pi})]\vec{\tau}_{1} \cdot \vec{\tau}_{2}$$

$$|\frac{\pi \rho \omega \sigma}{r}| \qquad \text{vector} : V^{v}(r) = \left(\frac{\beta g_{V}}{2m_{v}}\right)^{2} C(r;m_{v})\vec{\tau}_{1} \cdot \vec{\tau}_{2}$$

$$+ \frac{1}{3} (\lambda g_{V})^{2} [2\vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2}C(r;m_{v}) - S_{12}(r)T(r;m_{v})]\vec{\tau}_{1} \cdot \vec{\tau}_{2}$$

$$D^{(*)} D^{(*)} \sigma : V^{\sigma}(r) = -\left(\frac{g_{\sigma}}{m_{\sigma}}\right)^{2} C(r;m_{\sigma})$$

Form factor

$$F(\vec{q};m) = \frac{\Lambda^2 - m^2}{\Lambda^2 + \vec{q}^{\;2}}$$

Parameter

$$g_{\pi} = 0.59 \ (D^* \to D\pi \text{ decay}), \ \beta = 0.9 \ \text{(Lattice QCD)},$$

 $\lambda = 0.56 \ \text{GeV}^{-1} \ \text{(B decay)}, \ g_{\sigma} = g_{\sigma NN}/3 = 3.4, \ \Lambda: \ \text{Free parameter}$

S. Ahmed et al., CLEO Collaboration, Phys. Rev. Lett. 87, 251801 (2001) Ming-Zhu Liu et al., Phys. Rev. D 99 094018 (2019), C. Isola, Phys. Rev. D 68, 114001(2003)

э

6/17

OBEP of $D^{(\ast)}D^{(\ast)}$

• Possible channels of $T_{cc}(0(1^+))$

 $\begin{pmatrix} |[DD^*]_-({}^3S_1, {}^3D_1)\rangle \\ |D^*D^*({}^3S_1, {}^3D_1)\rangle \end{pmatrix}$

- Heavy quark spin symmetry $\rightarrow DD^* - D^*D^*$ mixing
- ► S D mixing (Tensor force)

(二)、(四)、(三)、(三)、

OBEP of $D^{(*)}D^{(*)}$

• Possible channels of $T_{cc}(0(1^+))$

 $\begin{pmatrix} |[DD^*]_{-}({}^3S_1, {}^3D_1)\rangle \\ |D^*D^*({}^3S_1, {}^3D_1)\rangle \end{pmatrix}$

- Heavy quark spin symmetry $\rightarrow DD^* - D^*D^*$ mixing
- S D mixing (Tensor force)

(日)

OBEP of $D^{(\ast)}D^{(\ast)}$

• Possible channels of $T_{cc}(0(1^+))$

 $\begin{pmatrix} |[DD^*]_-({}^3S_1, {}^3D_1)\rangle \\ |D^*D^*({}^3S_1, {}^3D_1)\rangle \end{pmatrix}$

- Heavy quark spin symmetry
 - $\rightarrow DD^* D^*D^*$ mixing
- S D mixing (Tensor force)

(二)、(四)、(三)、(三)、

OBEP of $D^{(*)}D^{(*)}$

 $\binom{|[DD^*]_{-}({}^{3}S_{1}, {}^{3}D_{1})\rangle}{|D^*D^*({}^{3}S_{1}, {}^{3}D_{1})\rangle}$

- Possible channels of $T_{cc}(0(1^+))$
 - Heavy quark spin symmetry $\rightarrow DD^* - D^*D^*$ mixing
 - S D mixing (Tensor force)
- One pion exchange potential matrix of $T_{cc}(0(1^+))$

$$V_{\pi,0(1^+)}^{\text{HM}} = \begin{pmatrix} -C_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & -C_{\pi} - T_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} - T_{\pi} \\ 2C_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & 2C_{\pi} - T_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} - T_{\pi} \end{pmatrix}$$
$$C_{\pi} = \frac{1}{3} \left(\frac{g_{\pi}}{2f_{\pi}}\right)^2 C(r; m_{\pi})\vec{\tau_1} \cdot \vec{\tau_2}, \quad T_{\pi} = \frac{1}{3} \left(\frac{g_{\pi}}{2f_{\pi}}\right)^2 T(r; m_{\pi})\vec{\tau_1} \cdot \vec{\tau_2}.$$

(日)

2 Analysis of Doubly heavy tetraquark

() Analysis of T_{cc}

3

• Analysis of T_{cc}

- ▶ $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold. → Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP
 - (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)

(I)

• Analysis of T_{cc}

• $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.

 \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)

Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff A is determined to reproduce the experimental data of T
 - (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - ► Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound T_{cc}(0(1⁺))).
- **2** Analysis of T_{bb} (Undiscovered)

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).
- **2** Analysis of T_{bb} (Undiscovered)
 - Analysis of the bound state of $T_{bb}(0(1^+))$

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).
- **2** Analysis of T_{bb} (Undiscovered)
 - Analysis of the bound state of $T_{bb}(0(1^+))$
 - \blacktriangleright Analsysis of bound and resonant states of T_{bb} with other quantum numbers

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).
- **2** Analysis of T_{bb} (Undiscovered)
 - Analysis of the bound state of $T_{bb}(0(1^+))$
 - \blacktriangleright Analsysis of bound and resonant states of T_{bb} with other quantum numbers
- 3 T_{QQ} in the heavy quark limit $(m_Q \to \infty)$

7/17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).
- **2** Analysis of T_{bb} (Undiscovered)
 - Analysis of the bound state of $T_{bb}(0(1^+))$
 - \blacktriangleright Analsysis of bound and resonant states of T_{bb} with other quantum numbers
- **③** T_{QQ} in the heavy quark limit $(m_Q \rightarrow \infty)$
 - Introduction of the light cloud basis

7/17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Research Process

- Analysis of T_{cc}
 - $T_{cc}(0(1^+))$ lies slightly below the DD^* threshold.
 - \rightarrow Analysis of $T_{cc}(0(1^+))$ as a DD^* molecule coupled by the OBEP (The cutoff Λ is determined to reproduce the experimental data of T_{cc} .)
 - Analysis of bound and resonant states of T_{cc} with other quantum numbers (Undiscovered except for the bound $T_{cc}(0(1^+))$).
- **2** Analysis of T_{bb} (Undiscovered)
 - Analysis of the bound state of $T_{bb}(0(1^+))$
 - \blacktriangleright Analsysis of bound and resonant states of T_{bb} with other quantum numbers
- **③** T_{QQ} in the heavy quark limit $(m_Q \rightarrow \infty)$
 - Introduction of the light cloud basis
 - HQS multiplet structures of obtained T_{cc} and T_{bb}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical calculation

• Solving the coupled channel Schrödinger equation:

 $H\left|\psi\right\rangle = E\left|\psi\right\rangle$

(I)

Numerical calculation

• Solving the coupled channel Schrödinger equation:

$$H\left|\psi\right\rangle = E\left|\psi\right\rangle$$

Gaussian expansion method E. Hiyama et al, Prog.Part.Nucl.Phys., 51 (2003) 223-307, E. Hiyama et al, Front.Phys.(Beijing) 13 (2018) 6, 132106

Expand the wavefunction using the Gaussian:

$$\psi = \sum_{n=1}^{n_{\max}} c_n N_{nl} \mathbf{e}^{-\mathbf{r^2}/\mathbf{r_n^2}} Y_{nl}(\psi,\varphi)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical calculation

• Solving the coupled channel Schrödinger equation:

$$H\left|\psi\right\rangle = E\left|\psi\right\rangle$$

Gaussian expansion method E. Hiyama *et al*, Prog.Part.Nucl.Phys., 51 (2003) 223-307, E. Hiyama *et al*, Front.Phys.(Beijing) 13 (2018) 6, 132106

Expand the wavefunction using the Gaussian:

$$\psi = \sum_{n=1}^{n_{\max}} c_n N_{nl} \mathbf{e}^{-\mathbf{r}^2/\mathbf{r}_n^2} Y_{nl}(\psi,\varphi)$$

Complex scaling method

R. Suzuki et al, AIP Conf.Proc. 768 (2005) 1, 455, Prog.Theor.Phys. 113 (2005) 1273 T. Myo et al, Prog.Part.Nucl.Phys. 79 (2014) 1-56, T. Myo et al, Prog.Theor.Exp.Phys., 2020, 12A101 Rotate \vec{r} on the complex plane: $\vec{r} \rightarrow \vec{r} e^{i\theta}$

The Hamiltonian is non hermitian \rightarrow Complex energy eigenvalue $e^{i(\kappa_r - i\gamma_r)re^{i\theta}} \propto e^{(-\kappa_r \sin\theta + \gamma_r \cos\theta)r} \rightarrow 0$ for $\theta > \operatorname{Arctan}(\gamma_r/\kappa_r)$

 \rightarrow Bound state: $E_B = -B$

Resonance: $E_{\rm reso} = E_r - i\frac{\Gamma}{2}$

$T_{cc}(cc\bar{q}\bar{q}) \leftrightarrow D^{(*)}D^{(*)}$ molecule

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- Analysis of T_{cc} with $(0(1^+))$
- Analysis of T_{cc} with other quantum numbers

• Analysis of $T_{cc}(0(1^+))$

3

- Analysis of $T_{cc}(0(1^+))$
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} are reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$

(日)

- Analysis of $T_{cc}(0(1^+))$
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} are reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$

B.E.	$0.273{ m MeV}$
$[DD^*]_{-}({}^3S_1)$	99.2%
$[DD^*]_{-}({}^3D_1)$	0.467%
$D^*D^*(^3S_1)$	0.229%
$D^*D^*({}^3D_1)$	0.0854%
$\sqrt{\langle r^2 \rangle}$	$6.43\mathrm{fm}$

∃ >

- Analysis of $T_{cc}(0(1^+))$
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} are reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$

- $[DD^*]_{(3S_1)}$ is dominant.
- ▶ r.m.s $\sqrt{\langle r^2 \rangle} = 6.43 \, \text{fm}$

B.E.	$0.273{ m MeV}$
$[{ m DD}^*]({}^3{ m S}_1)$	99.2 %
$[DD^*]_{-}({}^3D_1)$	0.467%
$D^*D^*(^3S_1)$	0.229%
$D^*D^*({}^3D_1)$	0.0854%
$\sqrt{\langle r^2 \rangle}$	$6.43\mathrm{fm}$

- Analysis of $T_{cc}(0(1^+))$
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} are reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$

- $[DD^*]_{(3S_1)}$ is dominant.
- ▶ r.m.s $\sqrt{\langle r^2 \rangle} = 6.43 \, \text{fm}$

B.E.	$0.273{ m MeV}$
$[{ m DD}^*]({}^3{ m S}_1)$	99.2 %
$[DD^*]_{-}({}^3D_1)$	0.467%
$D^*D^*(^3S_1)$	0.229%
$D^*D^*({}^3D_1)$	0.0854%
$\sqrt{\langle r^2 \rangle}$	$6.43\mathrm{fm}$

• $T_{cc}(0(1^+))$ Binding energy = 0.273 MeV Mixing ratio: $DD^*({}^3S_1) = 99.2 \%$, $DD^*({}^3D_1) = 0.467 \%$, $D^*D^*({}^3S_1) = 0.229 \%$, $D^*D^*({}^3D_1) = 0.0854 \%$

Potential expectation value

	$DD^{*}(^{3}S_{1})$	$DD^*(^3D_1)$	$D^*D^*(^3S_1)$	$D^*D^*(^3D_1)$
$DD^{*}(^{3}S_{1})$	$-4.7(\sigma)$	$-0.55(\pi)$	$-0.31(\rho)$	$-0.34(\pi)$
$DD^*(^3D_1)$	$-0.55(\pi)$	-0.0048	-0.061	0.01
$D^*D^*({}^3S_1)$	$-0.31(\rho)$	-0.061	-0.11	-0.042
$D^*D^*(^3D_1)$	$-0.34(\pi)$	0.01	-0.042	-0.0051

- $T_{cc}(0(1^+))$ Binding energy = 0.273 MeV Mixing ratio: $DD^*({}^{3}S_1) = 99.2 \%$, $DD^*({}^{3}D_1) = 0.467 \%$, $D^*D^*({}^{3}S_1) = 0.229 \%$, $D^*D^*({}^{3}D_1) = 0.0854 \%$
- Potential expectation value

	$DD^{*}(^{3}S_{1})$	$DD^{*}(^{3}D_{1})$	$D^*D^*(^3S_1)$	$D^*D^*({}^3D_1)$
$DD^*(^3S_1)$	$-4.7(\sigma)$	$-0.55(\pi)$	$-0.31(\rho)$	$-0.34(\pi)$
$DD^*(^3D_1)$	$-0.55(\pi)$	-0.0048	-0.061	0.01
$D^*D^*({}^3S_1)$	$-0.31(\rho)$	-0.061	-0.11	-0.042
$D^*D^*(^3D_1)$	$-0.34(\pi)$	0.01	-0.042	-0.0051

Important component

•
$$\sigma$$
 exchange $(DD^* - DD^*)$

- $T_{cc}(0(1^+))$ Binding energy = 0.273 MeV Mixing ratio: $DD^*({}^3S_1) = 99.2 \%$, $DD^*({}^3D_1) = 0.467 \%$, $D^*D^*({}^3S_1) = 0.229 \%$, $D^*D^*({}^3D_1) = 0.0854 \%$
- Potential expectation value

	$DD^{*}(^{3}S_{1})$	$DD^{*}(^{3}D_{1})$	$D^*D^*(^3S_1)$	$D^*D^*({}^3D_1)$
$DD^{*}(^{3}S_{1})$	$-4.7(\sigma)$	$-0.55(\pi)$	$-0.31(\rho)$	$-0.34(\pi)$
$DD^*(^3D_1)$	$-0.55(\pi)$	-0.0048	-0.061	0.01
$D^*D^*({}^3S_1)$	$-0.31(\rho)$	-0.061	-0.11	-0.042
$D^*D^*(^3D_1)$	$-0.34(\pi)$	0.01	-0.042	-0.0051

Important component

•
$$\sigma$$
 exchange $(DD^* - DD^*)$

• Tensor force of π exchange

Image: A matrix and a matrix

A 3 >

• T_{cc} with other quantum numbers The same parameters for T_{cc} with $0(1^+)$ are used.

イロト イヨト イヨト

- T_{cc} with other quantum numbers The same parameters for T_{cc} with $0(1^+)$ are used.
- ▶ Bound state (Quantum number: $I = 0, 1, J \le 2, P = +, -$) T_{cc} was not found except for T_{cc} with $0(1^+)$ (input).

(二)、(四)、(三)、(三)、

- T_{cc} with other quantum numbers The same parameters for T_{cc} with $0(1^+)$ are used.
- ▶ Bound state (Quantum number: $I = 0, 1, J \le 2, P = +, -$) T_{cc} was not found except for T_{cc} with $0(1^+)$ (input).
- Resonant state (Quantum number: $I = 0, 1, J \le 2, P = +, -$) T_{cc} are not found.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- T_{cc} with other quantum numbers The same parameters for T_{cc} with $0(1^+)$ are used.
- ▶ Bound state (Quantum number: $I = 0, 1, J \le 2, P = +, -$) T_{cc} was not found except for T_{cc} with $0(1^+)$ (input).
- Resonant state (Quantum number: $I = 0, 1, J \le 2, P = +, -$) T_{cc} are not found.

This result is consistent with the fact that only T_{cc} with $\mathbf{0}(1^+)$ has been reported.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$T_{bb}(bb\bar{q}\bar{q}) \leftrightarrow B^{(*)}B^{(*)}$ molecule

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- Analysis of T_{bb} with $0(1^+)$
- Analysis of T_{bb} with other quantum numbers

• T_{bb} : **bb** $\bar{q}\bar{q}$

3

・ロト ・四ト ・ヨト ・ヨト

• T_{bb} : **bb** $\bar{q}\bar{q}$

 $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more bound than $T_{cc}\texttt{?}$

• T_{bb} : **bb** $\bar{q}\bar{q}$

 $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more bound than $T_{cc}?$

• Analysis of $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Interaction: OBEP, The same parameters for T_{cc} are used.)

• T_{bb} : **bb** $\bar{q}\bar{q}$

 $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more bound than T_{cc} ?

• Analysis of $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Interaction: OBEP, The same parameters for T_{cc} are used.)

B.E.	$46.0{\rm MeV}$
$[\mathbf{BB^*}]({}^{3}\mathbf{S_1})$	70.7 %
$[BB^*]_{-}({}^3D_1)$	4.71%
$\mathbf{B}^*\mathbf{B}^*(^{3}\mathbf{S_1})$	21.6 %
$B^*B^*({}^3D_1)$	3.00%
$\sqrt{\langle r^2 angle}$	$0.620{\rm fm}$

• T_{bb} : **bb** $\bar{q}\bar{q}$

 $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more bound than $T_{cc}?$

• Analysis of $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Interaction: OBEP, The same parameters for T_{cc} are used.)

▶ [BB*]_(³S₁) and B*B*(³S₁) are important. (D*Dß* channel is not important in the case of T_{cc}.)

10 / 17

- 4 回 ト 4 三 ト 4 三 ト

• T_{bb} : **bb** $\bar{q}\bar{q}$

 $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more bound than $T_{cc}?$

• Analysis of $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Interaction: OBEP, The same parameters for T_{cc} are used.)

Manato Sakai (NU Hlab)

10 / 17

• $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$

- $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$
- Potential expectation value:

	$BB^{*}(^{3}S_{1})$	$BB^*(^3D_1)$	$B^*B^*({}^3S_1)$	$B^*B^*(^3D_1)$
$BB^{*}(^{3}S_{1})$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$BB^*(^3D_1)$	$-7.3(\pi)$	-0.67	-4.1	0.33
$B^*B^*({}^3S_1)$	$-11(\rho)$	-4.1	$-14 (\sigma)$	-3.5
$B^*B^*(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

10/17

- $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$
- Potential expectation value:

	$BB^{*}(^{3}S_{1})$	$BB^{*}(^{3}D_{1})$	$B^*B^*({}^3S_1)$	$B^*B^*(^3D_1)$
$BB^{*}({}^{3}S_{1})$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$BB^*(^3D_1)$	$-7.3(\pi)$	-0.67	-4.1	0.33
$B^*B^*({}^3S_1)$	$-11(\rho)$	-4.1	$-14 (\sigma)$	-3.5
$B^*B^*(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

Important components

• σ exchange force $(BB^*({}^{3}S) - BB^*({}^{3}S), B^*B^*({}^{3}S) - B^*B^*({}^{3}S))$

- $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$
- Potential expectation value:

	$BB^{*}(^{3}S_{1})$	$BB^*(^3D_1)$	$B^*B^*({}^3S_1)$	$B^*B^*(^3D_1)$
$BB^{*}({}^{3}S_{1})$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$BB^*(^3D_1)$	$-7.3(\pi)$	-0.67	-4.1	0.33
$B^*B^*({}^3S_1)$	$-11(\rho)$	-4.1	$-14 (\sigma)$	-3.5
$B^*B^*(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

- Important components
- σ exchange force $(BB^*({}^3S) BB^*({}^3S), B^*B^*({}^3S) B^*B^*({}^3S))$
- Tensor force of π

- $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$
- Potential expectation value:

	$BB^{*}(^{3}S_{1})$	$BB^{*}(^{3}D_{1})$	$B^*B^*({}^3S_1)$	$B^*B^*(^3D_1)$
$BB^{*}({}^{3}S_{1})$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$BB^*(^3D_1)$	$-7.3(\pi)$	-0.67	-4.1	0.33
$B^*B^*({}^3S_1)$	$-11(\rho)$	-4.1	$-14 (\sigma)$	-3.5
$B^*B^*(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

- Important components
- σ exchange force $(BB^*({}^3S) BB^*({}^3S), B^*B^*({}^3S) B^*B^*({}^3S))$
- **Tensor force of** π
- Center force of ρ ($BB^*(^3S) B^*B^*(^3S)$)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $T_{bb} \leftrightarrow B^{(*)}B^{(*)}$ molecule (Undiscovered) Binding energy 46.0 MeV Mixing ratio: $BB^{*}(^{3}S_{1}) = 70.7 \%$, $BB^{*}(^{3}D_{1}) = 4.71 \%$, $B^{*}B^{*}(^{3}S_{1}) = 21.6 \%$, $B^{*}B^{*}(^{3}D_{1}) = 3.00 \%$
- Potential expectation value:

	$BB^{*}(^{3}S_{1})$	$BB^*(^3D_1)$	$B^*B^*({}^3S_1)$	$B^*B^*(^3D_1)$
$BB^{*}({}^{3}S_{1})$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$BB^*(^3D_1)$	$-7.3(\pi)$	-0.67	-4.1	0.33
$B^*B^*({}^3S_1)$	$-11(\rho)$	-4.1	$-14 (\sigma)$	-3.5
$B^*B^*(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

Important components

• σ exchange force $(BB^*({}^3S) - BB^*({}^3S), B^*B^*({}^3S) - B^*B^*({}^3S))$

- **Tensor force of** π
- Center force of ρ ($BB^*({}^3S) B^*B^*({}^3S)$)
- Comparison with T_{cc} : σ exchange $(B^*B^* B^*B^*)$, Center force of ρ

Manato Sakai (NU Hlab)

Bound and Resonant states of T_{bb}

Bound state:

$I(J^P)$	Lowest threshold	$-E_B$ [MeV]
$0(0^{-})$	BB^*	-24.4
$0(1^+)$	BB^*	-46.0
$0(1^{-})$	BB	-
$0(2^{+})$	BB^*	-
$0(2^{-})$	BB^*	-6.11
$1(0^{+})$	BB	-7.23
$1(0^{-})$	BB^*	-
$1(1^{+})$	BB^*	-2.46
$1(1^{-})$	BB^*	-
$1(2^{+})$	BB	-
$1(2^{-})$	BB^*	-

• Many bound states were found. (Only bound state of T_{cc} with $0(1^+)$ was found).

Manato Sakai (NU Hlab)

11/17

Bound and Resonant states of T_{bb}

$I(J^P)$	Lowest threshold	$-E_B \ [{\sf MeV}] \ E_r - i rac{\Gamma}{2} \ [{\sf MeV}]$
$0(0^{-})$	BB^*	-24.4
$0(1^{+})$	BB^*	-46.0 $35.9 - i \frac{8.02}{2}$
$0(1^{-})$	BB	$1.52 - i \frac{1.13}{2}$
$0(2^{-})$	BB^*	$-6.11 \\ 33.3 - i \frac{8.74}{2}$
$1(0^{+})$	BB	$-7.23 \\ 76.4 - i \frac{4.99}{2}$
$1(1^{+})$	BB^*	-2.46
$1(2^{+})$	BB	$89.2 - i \frac{3.09}{2}$

- We can find resonant states of T_{bb} with $0(1^+), 0(1^-), 0(2^-), 1(0^+), 1(2^+).$
- Feshbach resonance (Bound state of $B^{(*)}B^*$)

Manato Sakai (NU Hlab)

ан а

11 / 17

T_{QQ} in the heavy quark limit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Introduction of the light cloud basis
- HQS multiplet structures of obtained T_{cc} and T_{bb}

HQS multiplet structure

• Heavy quark spin symmetry (HQS)

э

イロト 不得 トイヨト イヨト

HQS multiplet structure

- Heavy quark spin symmetry (HQS)
 - ▶ $J = L \otimes S \rightarrow S_Q \otimes j_\ell$ (S_Q : heavy quark spin, j_ℓ : light cloud)

HQS multiplet structure

• Heavy quark spin symmetry (HQS)

• $J = L \otimes S \rightarrow S_Q \otimes j_\ell$ (S_Q : heavy quark spin, j_ℓ : light cloud)

 \because Transition between (S_Q, j_ℓ) and (S_Q', j_ℓ') stats is 0 in the heavy quark limit.

(二)、(四)、(三)、(三)、
• Heavy quark spin symmetry (HQS)

- ▶ $J = L \otimes S \rightarrow S_Q \otimes j_\ell$ (S_Q : heavy quark spin, j_ℓ : light cloud) \therefore Transition between (S_Q, j_ℓ) and (S'_Q, j'_ℓ) stats is 0 in the heavy quark limit.
- HQS multiplet (e.g. Baryons $\Lambda_c(cqq), \Sigma_c(cqq), \Sigma_c^*(cqq)$)

$$S_Q = \frac{1}{2}, \ j_{\ell} = 0 \ (\text{HQS singlet})$$

$$S_Q = \frac{1}{2}$$

$$Q_{j_{\ell}} = 0$$

$$S_Q = \frac{1}{2}, \ j_{\ell} = 1 \ (\text{HQS doublet})$$

$$S_Q = \frac{1}{2}, \ j_{\ell} = 1 \ (\text{HQS doublet})$$

$$S_Q = \frac{1}{2}$$

$$Q_{j_{\ell}} = 1$$

$$(\frac{1}{2})_{S_Q} \otimes (1)_{j_{\ell}} = \frac{1}{2} \oplus \frac{3}{2}$$

• Heavy quark spin symmetry (HQS)

▶ $J = L \otimes S \rightarrow S_Q \otimes j_\ell$ (S_Q : heavy quark spin, j_ℓ : light cloud)

HQS multiplet

Light cloud basis in the heavy quark limit

э

・ロト ・四ト ・ヨト

Light cloud basis in the heavy quark limit

• Hadronic molecule basis $(L \otimes S) \rightarrow \text{Light cloud basis } (S_{QQ} \otimes j_{\ell})$

13/17

Light cloud basis in the heavy quark limit

• Hadronic molecule basis $(L \otimes S) \rightarrow \text{Light cloud basis} (S_{QQ} \otimes j_{\ell})$

Spin structures (S_{QQ}, jℓ) can be found. → HQS multiplet structures of T_{cc}, T_{bb} can be examined.

• Channel and One pion exchange potential matrix (Hadronic molecule: $J = S_{QQ} \otimes j_{\ell}$)

$$\left| \left[L \left[[Q\bar{q}]_{S_{P_1}} \left[Q\bar{q}]_{S_{P_2}} \right]_S \right]_J \right\rangle$$

$$0(1^{+}): \begin{pmatrix} |[PP^{*}]_{-}(^{3}S_{1})\rangle \\ |[PP^{*}]_{-}(^{3}D_{1})\rangle \\ |P^{*}P^{*}(^{3}S_{1})\rangle \\ |P^{*}P^{*}(^{3}D_{1})\rangle \end{pmatrix}, \begin{pmatrix} -C_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & -C_{\pi} & -T_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} & -T_{\pi} \\ 2C_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & 2C_{\pi} & -T_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} & -T_{\pi} \end{pmatrix} \\ 0(2^{+}): \begin{pmatrix} |[PP^{*}]_{-}(^{3}D_{2})\rangle \\ |P^{*}P^{*}(^{3}D_{2})\rangle \end{pmatrix}, \begin{pmatrix} -C_{\pi} + T_{\pi} & 2C_{\pi} + T_{\pi} \\ 2C_{\pi} + T_{\pi} & -C_{\pi} + T_{\pi} \end{pmatrix}$$

14 / 17

(二)、(四)、(三)、(三)、

• Channel and One pion exchange potential matrix
(Light cloud basis:
$$J = S_{QQ} \otimes j_{\ell}$$
)

$$\left| \begin{bmatrix} [QQ]_{S_{QQ}} [L [\bar{q}\bar{q}]_{S_{q}}]_{j_{\ell}} \end{bmatrix}_{J} \right\rangle = U_{I(J^{P})}^{-1} \left| \begin{bmatrix} L [[Q\bar{q}]_{S_{P_{1}}} [Q\bar{q}]_{S_{P_{2}}}]_{S} \end{bmatrix}_{J} \right\rangle$$

$$0(1^{+}): \left(\left| \begin{bmatrix} [QQ]_{1} [S [\bar{q}\bar{q}]_{0}]_{0} \end{bmatrix}_{1} \right\rangle \\ \begin{bmatrix} [QQ]_{0} [S [\bar{q}\bar{q}]_{1}]_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{1} \\ \end{bmatrix} \right), \left(\begin{array}{c|c} -3C_{\pi} & 0 & 0 & 0 \\ \hline 0 & C_{\pi} & 2\sqrt{2}T_{\pi} & 0 \\ \hline 0 & 2\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} & 0 \\ \hline 0 & 0 & 0 & -3C_{\pi} \end{array} \right)$$

$$0(2^{+}): \left(\left| \begin{bmatrix} [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{2} \\ [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{2} \right\rangle \right), \left(\begin{array}{c|c} C_{\pi} + 2T_{\pi} & 0 \\ \hline 0 & -3C_{\pi} \end{array} \right)$$

3

イロト イヨト イヨト イヨト

• Channel and One pion exchange potential matrix
(Light cloud basis:
$$J = S_{QQ} \otimes j_{\ell}$$
)

$$\left| \begin{bmatrix} [QQ]_{S_{QQ}} [L [\bar{q}\bar{q}]_{S_{q}}]_{j_{\ell}} \end{bmatrix}_{J} \right\rangle = U_{I(J^{P})}^{-1} \left| \begin{bmatrix} L [[Q\bar{q}]_{S_{P_{1}}} [Q\bar{q}]_{S_{P_{2}}}]_{S} \end{bmatrix}_{J} \right\rangle$$

$$0(1^{+}): \left(\left| \begin{bmatrix} [QQ]_{1} [S [\bar{q}\bar{q}]_{0}]_{0} \\ [QQ]_{0} [S [\bar{q}\bar{q}]_{1}]_{1} \\ [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{1} \\ [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{1} \right\rangle \right), \left(\begin{array}{c|c} -3C_{\pi} & 0 & 0 & 0 \\ 0 & C_{\pi} & 2\sqrt{2}T_{\pi} & 0 \\ 0 & 2\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} & 0 \\ 0 & 0 & 0 & -3C_{\pi} \end{array} \right)$$

$$0(2^{+}): \left(\left| \begin{bmatrix} [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{2} \\ [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{2} \right\rangle \right), \left(\begin{array}{c|c} C_{\pi} + 2T_{\pi} & 0 \\ 0 & -3C_{\pi} \end{array} \right)$$

Block diagonalized

3

・ロト ・四ト ・ヨト

• Channel and One pion exchange potential matrix
(Light cloud basis:
$$J = S_{QQ} \otimes j_{\ell}$$
)

$$\left| \begin{bmatrix} [QQ]_{S_{QQ}} [L [\bar{q}\bar{q}]_{S_{q}}]_{j_{\ell}} \end{bmatrix}_{J} \right\rangle = U_{I(J^{P})}^{-1} \left| \begin{bmatrix} L [[Q\bar{q}]_{S_{P_{1}}} [Q\bar{q}]_{S_{P_{2}}}]_{S} \end{bmatrix}_{J} \right\rangle$$

$$0(1^{+}): \left(\left| \begin{bmatrix} [QQ]_{1} [S [\bar{q}\bar{q}]_{0}]_{0} \end{bmatrix}_{1} \right\rangle \\ \begin{bmatrix} [QQ]_{0} [S [\bar{q}\bar{q}]_{1}]_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{1} \end{bmatrix}_{1} \\ \begin{bmatrix} [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{1} \\ \end{bmatrix} \right), \left(\begin{array}{c} \frac{-3C_{\pi} \ 0 \ 0 \ 0 \\ 0 \ 2\sqrt{2}T_{\pi} \ C_{\pi} - 2T_{\pi} \ 0 \\ 0 \ 0 \ 0 \ 0 \ -3C_{\pi} \\ \end{bmatrix} \right)$$

$$0(2^{+}): \left(\left| \begin{bmatrix} [QQ]_{0} [D [\bar{q}\bar{q}]_{1}]_{2} \\ \begin{bmatrix} [QQ]_{1} [D [\bar{q}\bar{q}]_{0}]_{2} \end{bmatrix}_{2} \\ \end{bmatrix} \right), \left(\begin{array}{c} \frac{C_{\pi} + 2T_{\pi} \ 0 \\ 0 \ -3C_{\pi} \\ \end{bmatrix} \right)$$

Block diagonalized

▶ $0(1^+)$ and $0(2^+)$ have the same component $-3C_{\pi}$ (Spin structure: $(S_{QQ}, j_{\ell}) = (1, 2)$) \rightarrow HQS triplet structures: $(1)_{S_{QQ}} \otimes (2)_{j_{\ell}} = 1 \oplus 2 \oplus 3$

HQS multiplet structures of T_{cc} and T_{bb} with $0(1^+)$

- Bound states of T_{cc} , $T_{bb}(0(1^+))$ belong to the HQS singlet.
- Resonance of $T_{bb}(0(1^+))$ belong to the (other) HQS singlet. These states do not have partners.

 \rightarrow As for $T_{cc},$ this result is consistent with the fact that only T_{cc} with $0(1^+)$ have been reported.

HQS multiplet structures of T_{bb} with $0(J^-)$

- $\bullet\,$ The bound states of $T_{bb}(0(0^-,2^-))$ and resonance belong to the HQS triplet
- The resonance of $T_{bb}(0(2^-))$ belongs to the HQS triplet. We cannot obtain the partner of the resonance of T_{bb} with $0(2^-)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary

• Analysis of the bound and resonant states of T_{cc} , T_{bb} .

 \blacktriangleright T_{cc}

The only bound state of $T_{cc}(0(1^+))$ was found.

 \triangleright T_{bb}

The bound states of $T_{bb}(0(1^+, 0^-, 2^-))$, $T_{bb}(1(0^+, 1^+))$ were found. The resonances of $T_{bb}(0(1^+, 1^-, 2^-)), T_{bb}(1(1^+, 2^+))$ were found.

Analysis of HQS partners using the light cloud basis

▶ 0(1⁺) states

The bound and resonant states each belong to the different HQS singlet.

▶ 0(0⁻, 2⁻) states

The ground states of $T_{bb}(0(0^-, 1^-, 2^-))$ belong to the same HQS triplet.

The other state of $T_{bb}(0(2^{-}))$ belongs to the different HQS triplet.

17/17