$\chi_{cJ}(2P)$ with hadronic molecules

Kotaro Miyake¹ Collaborator: Yasuhiro Yamaguchi¹²

¹Department of Physics, Nagoya University ²KMI, Nagoya University

October 17, 2024

Kotaro Miyake (Nagoya Univ.)

Hadron

- Composite particles of quarks and gluons.
- QCD cannot be solved by perturbation theory except in the high energy regime.
- Effective theory is important.
- Normally $q\bar{q}$ or qqq.

Exotic Hadron

- Difficult to explain by $q\bar{q}$ or qqq.
- More complex structure than normal hadrons.
- Various states are considered, such as hadronic molecular states and compact states.
- In recent years, new exotic hadrons have been reported almost every year.

Hadronic molecular state	Compact state
q q q	

- One of the best known exotic hadrons.
- Reported by the Belle experiment in 2003, and later reported in various experiments.

(CDF(2004), D0(2004), BaBar(2005), LHCb(2012), CMS(2013), BESIII(2014), ATLAS,(2017))

•
$$J^{PC}=1^{++},\,car{c}qar{q}(q=u,d)$$
?

- Hadronic molecular state? Compact state?
- Very close to the threshold of $D^0 \bar{D}^{*0}$. $m_{X(3872)} - m_{D^0 \bar{D}^{*0}} = -0.05 \,\text{MeV}$

(Particle Data Group, Phys. Rev. D 110(2024)030001)

Is X(3872) a hadronic molecular state?

• Close to $\chi_{c1}(2P)$ quark model mass prediction 3953 MeV.

(S. Godfrey and N. Isgur, Phys. Rev. D 32(1985)189)

- $\chi_{c1}(2P)$ is a $c\bar{c}$ meson with $J^{PC} = 1^{++}$ same as X(3872).
- Some experimental data suggest that X(3872) has a different structure than hadronic molecules.
- Can X(3872) be explained by "hadronic molecules + $\chi_{c1}(2P)$ "?

Esposito et al, Phys. Rev. D **92**(2015)034028 Olsen et al, Rev. Mod. Phys. **90**(2018)015003

What is the situation for $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$?

- In the 0⁺⁺ case, two particles are reported.
- In the 2⁺⁺ case, quark model predictions and experimental data are inconsistent.

Particle Data Group, Phys. Rev. D **110**(2024)030001 S. Godfrey and N. Isgur, Phys. Rev. D **32**(1985)189

• Can we explain not only X(3872) but also 0^{++} and 2^{++} experimental data in a consistent way?

Kotaro Miyake (Nagoya Univ.)

Schrödinger equation

• Consider the superposition state of hadronic molecules $(D^{(*)}\overline{D}^{(*)})$ and charmonium core $(\chi_{cJ}(2P))$.

$J^{PC}=1^{++}$ case

$$\begin{aligned} \mathcal{H}\Psi &= E\Psi & (1) \\ \mathcal{H} &= \begin{pmatrix} H_0 + V_{\text{OBE}} & \mathcal{U}^{\dagger} \\ \mathcal{U} & m_{\chi_{c1}} - (m_{D^0} + m_{D^{*0}}) \end{pmatrix} & (2) \\ V_{\text{OBE}} &= V_{\pi}(\Lambda_{\pi}, \boldsymbol{r}) + V_{\eta}(\Lambda_{\eta}, \boldsymbol{r}) & \Psi = \begin{pmatrix} c_1 | [D^0 \bar{D}^{*0}](S) \rangle \\ c_2 | [D^+ D^{*-1}](S) \rangle \\ c_3 | [D^0 \bar{D}^{*0}](D) \rangle \\ c_4 | [D^+ D^{*-1}](D) \rangle \\ c_5 | D^{*0} \bar{D}^{*0}(D) \rangle \\ c_5 | D^{*0} \bar{D}^{*0}(D) \rangle \\ c_6 | D^{*+} D^{*-1}(D) \rangle \\ c_7 | \chi_{c1}(2P) \rangle \end{pmatrix} \end{aligned}$$
(5)

One boson exchange

$$\mathcal{L} = g \operatorname{Tr} \left[H_b^{(Q)} \gamma^{\mu} \gamma^5 A_{ba\mu} \bar{H}_a^{(Q)} \right] + \beta \operatorname{Tr} \left[H_b^{(Q)} v_{\mu} (V_{ba}^{\mu} - \rho_{ba}^{\mu}) \bar{H}_a^{(Q)} \right] + \lambda \operatorname{Tr} \left[H_b^{(Q)} \sigma_{\mu\nu} F_{ba}^{\mu\nu} \bar{H}_a^{(Q)} \right] + c.c.$$

$$H_a^{(Q)} = \frac{1 + \psi}{2} (P_a^{*\mu} \gamma_{\mu} - P_a \gamma^5), \quad \bar{H}_a^{(Q)} = (P_a^{*\mu\dagger} \gamma_{\mu} + P_a^{\dagger} \gamma^5) \frac{1 + \psi}{2}$$
(7)

$$A_{\mu} = \frac{i}{2} (\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger}) \simeq -\frac{\partial_{\mu} (\boldsymbol{\pi} \cdot \boldsymbol{\tau})}{2f_{\pi}}, \quad \frac{\boldsymbol{\pi} \cdot \boldsymbol{\tau}}{\sqrt{2}} = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \boldsymbol{\pi}^{+} & K^{+} \\ \boldsymbol{\pi}^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$
(8)
$$F^{\mu\nu} = \partial^{\mu} \rho^{\nu} - \partial^{\nu} \rho^{\mu} - i[\rho^{\mu}, \rho^{\nu}], \quad \rho^{\mu} = -\frac{g_{v}}{\sqrt{2}} \hat{\rho}^{\mu}, \quad \hat{\rho}^{\mu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$
(9)

October 17, 2024

Schrödinger equation

• Consider $\chi_{cJ}(2P)$ couples to the S wave of $D^{(*)}\bar{D}^{(*)}$.

(M. Takizawa and S. Takeuchi, PTEP 2013(2013)093D01)

$J^{PC}=1^{++}$ case

$$\mathcal{H} = \begin{pmatrix} H_0 + V_{\text{OBE}} & \mathcal{U}^{\dagger} \\ \mathcal{U} & m_{\chi_{c1}(2P)} - (m_{D^0} + m_{D^{*0}}) \end{pmatrix}$$
(10)
$$\mathcal{U} = \begin{pmatrix} U & U & 0 & 0 & 0 & 0 \end{pmatrix}$$
(11)
$$\langle \chi_{c1}(2P) | U | [D^0 \bar{D}^{*0}](S) \rangle = \int d^3x \, \langle \chi_{c1}(2P) | U | \boldsymbol{x} \rangle \langle \boldsymbol{x} | [D^0 \bar{D}^{*0}](S) \rangle$$
(12)
$$\equiv \int d^3x \, f_{\text{spin}} g_{c\bar{c}} \Lambda_q^{\frac{3}{2}} \frac{e^{-\Lambda_q r}}{r} Y_l^m(\theta, \phi) \langle \boldsymbol{x} | [D^0 \bar{D}^{*0}](S) \rangle$$

- *X*(3872) and *Z*(3930) have been reported in several experiments.
- X(3860) was not found in LHCb.
- X(3860) has large error.
- Consider only the bound state.

Particle Data Group, Phys. Rev. D **110**(2024)030001 S. Godfrey and N. Isgur, Phys. Rev. D **32**(1985)189

- Determine parameters to reproduce the mass of X(3872) and Z(3930).
- Check if the ground state of 0^{++} is consistent with X(3860).

$\Lambda_{ ext{meson}}\left(ext{MeV} ight)$	$220{\sf MeV}\cdot lpha+m_{ m meson}$		
lpha	0.7	1.0	1.3
$g_{car{c}}$	0.0448	0.0427	0.0409
$\Lambda_{m{q}}\left(MeV ight)$	2260	3089	4647

- α : size of the OBE cutoff. (H.-Y. Cheng et al, Phys. Rev. D 71(2005)014030)
- $g_{c\bar{c}}$: strength of the coupling with $\chi_{cJ}(2P)$. (M. Takizawa and S. Takeuchi, PTEP **2013**(2013)093D01)
- Λ_q : spread of $\chi_{cJ}(2P)$ and U. (M. Takizawa and S. Takeuchi, PTEP 2013(2013)093D01)
- Fix α and determine the other two parameters to reproduce the mass of X(3872) and Z(3930).
- Compute bound state of 0^{++} with three parameter sets.

Result : A bound state of 0++ was obtained.

α	Mass (MeV)
0.7	3866.07
1.0	3867.31
1.3	3868.62

- Ground state of 0⁺⁺ is consistent with *X*(3860).
- Error bars are values in each of the three parameter sets.
- The mass of 0⁺⁺ is almost the same for the three parameter sets.

Particle Data Group, Phys. Rev. D **110**(2024)030001 S. Godfrey and N. Isgur, Phys. Rev. D **32**(1985)189

Mixing ratio of $X(3860)(0^{++})$

	$D_s^+ D_s^-({}^1S_0)$	$D^{*0}ar{D}^{*0}(^1S_0)$	$D^{*+}D^{*-}(^{1}S_{0})$	$D^*ar{D}^*({}^5D_0)$	$\chi_{c0}(2P)$
Mass (MeV)	3937	4014	4021	4017	3916
$\alpha = 0.7$	1.11%	2.81%	2.71%	0.00%	93.37%
$\alpha = 1.0$	0.66%	2.53%	2.45%	0.00%	94.36%
$\alpha = 1.3$	0.32%	2.16%	2.10%	0.00%	95.42%

- $\chi_{c0}(2P)$ is the main component.
 - $\chi_{c0}(2P)$ is closest.
- $D^* \overline{D}^* ({}^1S_0)$ is the second main component.
- $D_s^+ D_s^- ({}^1S_0)$ is small but not zero.
 - Considered $\chi_{cJ}(2P)$ couples only to the S wave of hadronic molecules.
 - χ_{c0} coupling with $D_s^+ D_s^-({}^1S_0)$ is smaller than the one with $D^* \overline{D}^*({}^1S_0)$ due to the spin factor.

Wave function of $X(3860)(0^{++})$

- In hadroninc molecules, $D^* \bar{D}^* ({}^1S_0)$ is the main component and $D^+_s D^-_s ({}^1S_0)$ is the second main component.
- $D^* \overline{D}^* ({}^5D_0)$ is very small.

Mixing ratio of $X(3872)(1^{++})$

	$D^0 ar{D}^{*0} ({}^3S_1)$	$D^+D^{*-}({}^3S_1)$	$Dar{D}^*({}^3D_1)$	$D^*ar{D}^*({}^5D_1)$	$\chi_{c1}(2P)$
Mass (MeV)	3872	3880	3876	4017	3953
$\alpha = 0.7$	80.49%	5.05%	0.00%	0.00%	14.46%
$\alpha = 1.0$	82.03%	4.97%	0.01%	0.01%	12.99%
$\alpha = 1.3$	84.76%	4.86%	0.02%	0.02%	10.33%

- $D^0 \overline{D}^{*0}$ is the main component.
 - Much closer than any other channel.
- $\chi_{c1}(2P)$ is the second main component.
 - $\chi_{cJ}(2P)$ must be large to reproduce Z(3930) as well.
- Different structure from 0^{++} .
- Isospin symmetry is broken.

Wave function of $X(3872)(1^{++})$

- $D^0 \bar{D}^{*0}$ is very large and is the main component.
- Isospin symmetry is broken.
- Different structure from 0^{++} .

	$D_{s}^{+}D_{s}^{-}(^{1}D_{2})$	$D^{*0} ar{D}^{*0} ({}^5S_2)$	$D^{*+}D^{*-}({}^{5}S_{2})$	$D^*ar{D}^*(^1D_2)$	$D^*ar{D}^*({}^5D_2)$	$\chi_{c2}(2P)$
Mass (MeV)	3937	4014	4021	4017	4017	3979
$\alpha = 0.7$	0.00%	4.61%	4.38%	0.00%	0.00%	91.00%
$\alpha = 1.0$	0.00%	3.67%	3.50%	0.00%	0.00%	92.83%
$\alpha = 1.3$	0.00%	2.67%	2.55%	0.00%	0.00%	94.78%

- $\chi_{c2}(2P)$ is the main component.
- $D^* \overline{D}^* ({}^5S_2)$ is the second main component.
- $D_s^+D_s^-({}^1D_2)$ is almost zero, unlike 0^{++} .
 - Considered $\chi_{cJ}(2P)$ couples only to the S wave of hadronic molecules.

Wave function of $Z(3930)(2^{++})$

• It has almost the same form as the 0^{++} case except that $D_s^+ D_s^- ({}^5S_0)$ is almost zero.

- Theoretical predictions of $\chi_{c1}(2P)$, $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ are not consistent with the experimental data.
- Considered the superposition of $\chi_{cJ}(2P)$ and hadronic molecules.
- X(3872), Z(3930) and X(3860) could be explained in a consistent way.
- In the case of Z(3930) and X(3860), $\chi_{cJ}(2P)$ are the main component.
- In the case of X(3872), $D^0 \overline{D}^{*0}$ hadronic molecule is the main component.
- X(3860) contains a small amount of $D_s^+D_s^-$, but in Z(3930), it is almost zero.
- However, these mixing ratios are highly model dependent.

- Use ${}^{3}P_{0}$ model for the potential between $\chi_{cJ}(2P)$ and hadronic molecules.
- Calculate resonance states using the complex scaling method.
- Study the decay and compare it to the experiment.
- Calculate $\chi_{bJ}(3P)$ using the same model.

Back up

Parameter	Value
g	0.55
g_v	$rac{m_ ho}{\sqrt{2}f_\pi}$
β	0.9
λ	$0.56\mathrm{GeV}^{-1}$

$$igg(igg| egin{aligned} & \left[[Qar{q}]_0[S[qar{q}]_0]_0
ight]_0
ight
angle \ & \left[[Qar{Q}]_1[S[qar{q}]_1]_1
ight]_0
ight
angle \end{pmatrix} = igg(egin{aligned} & rac{1}{2} & rac{\sqrt{3}}{2} \ & rac{\sqrt{3}}{2} & -rac{1}{2} \end{pmatrix} igg(igg| Dar{D}(^1S_0) igr
angle \ & \left[D^*ar{D}^*(^1S_0) igr
angle \end{pmatrix}$$

(13)