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Diquark is a composite particle made of two quarks
Diquarks are colored particles 

              

Phenomenologically important diquarks: 
good diquark :  , color  
bad diquark :  , color  

Experimental study：Difficult because of color confinement

3 ⊗ 3 = 3̄ ⊕ 6

JP = 0+, I = 0 3̄

JP = 1+, I = 1 3̄

c

{u,u}

(c{uu})Σ++
c

c

[u,d]

(c[ud])Λ+
c

Color  diquarks are considered to be much heavy.6

{u,u}

 (bad) diquark1+

[u,d]

 (good) diquark0+
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favored by (1) one-gluon exchange interaction
                  (2) instanton-induced interaction

lightest !!



Lattice QCD studies of diquarks
Conventional method may not work in obtaining diquark mass due to color confinement 
̶- We should not assume that 2-point functions have a pole for colored particles. 
 
 
 
Diquark masses have been treated as follows. 
   
 
   
M.Hess et al.,PRD.58.11502 
Landau gauge fixing is employed 
Diquark mass is naively obtained from two-point function as a pole-mass. 

C.Alexandrou et al., PRL.97.222002 
A static quark is added to neutralize the system. 
Diquark mass is obtained by neglecting interaction energy between a diquark and a static quark. 

K.Watanabe, PRD.105.074510 
 diquark mass is treated as a mass parameter of a quark-diquark model 

which is constructed by an extended HAL QCD’s potential method.
0+

  F . T . ⟨D(x)D†(0)⟩ =
i

q2 − m2 + iϵ
+ ⋯ cf. Review on quark mass in PDG2020
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Our goal
We study  diquark in . 
We employ a similar strategy as K.Watanabe, PRD105 
where  diquark in  was studied. 
 
 
 
 
 
 
 
 
 
We obtain 

quark-diquark potential 
by an extended HAL QCD’s potential method from equal-time NBS wave function. 
 diquark mass as a mass parameter of a quark-diquark model. 
Diquark mass is determined by employing a similar prescription 
which was proposed by T.Kawanai and S.Sasaki in ccbar sector. 

1+ Σ++
c (c{uu})

0+ Λc(c[ud])

1+

c

[u,d]

(c[ud])Λ+
c

 (good) diquark0+

Watanabe’s work

c

{u,u}

(c{uu})Σ++
c

 (bad) diquark1+

Our study
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Formalism
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Quark-diquark 4-point function and its spectral decomposition  
 

       

 diquark operator  
                  

Equal time quark-diquark Nambu-Bethe-Salpeter (NBS) wave function for   
 
 
      
 

       Rarita-Schwinger form is used for . 
       Spin of swave  is 1/2 or 3/2.

C(x − y, t) ≡ ⟨0 T [D(x, t) c(y, t) ⋅ c̄(t = 0) D†(t = 0)] 0⟩
= ∑

n

ψn(x − y) an exp(−Mnt)

1+

Dai(x) ≡ ϵabcuT
b (x)Cγ5γiuc(x)

Σ++
c

ψiα(x − y) ≡ ⟨0 |Dai(x) caα(y) |Σc⟩

ψ
Σc

Quark-diquark wave function

QCD
process

∧
∧

∧
∧

c

D

×
×D(x)

c(y)
t = 0t

r = x − y

wall source

c

{u,u}

(c{uu})Σ++
c

 (bad) diquark1+
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We encounter a PROBLEM: 
    Choice of  and  is not obvious.  (2-point function should not be used due to confinement.)mc mD

Conventional HAL QCD’s potential method
   We demand that NBS wave function should satisfy Schroedinger eq.     
 
 
 

  　  　     with     

   
 

       which split into  
 
 
 
 
 
 
 
         We solve them inversely for potentials

(− ∇2

2μ + ̂V) ψ(r) = E ψ(r) ̂V ≃ V0(r) + VS(r)sc ⋅ sD

  Schroedinger eq. in each channel
   

(− ∇2

2μ +V0(r) − Vs(r)) ψ1/2(r) = (M1/2 − mc − mD) ψ1/2(r) (J = 1/2)

(− ∇2

2μ +V0(r) +
1
2

Vs(r)) ψ3/2(r) = (M3/2 − mc − mD) ψ3/2(r) (J = 3/2)

• Central potential                      

           

 /• Spin dependent potential    

    

V0(r) =
2M3/2 + M1/2

3 −mc − mD+ 1
2μ ( 2

3
∇2ψ3/2(r)

ψ3/2(r) + 1
3

∇2ψ1/2(r)
ψ1/2(r) )

Vs(r) = 2
3 (M3/2 − M1/2)−

1
3μ ( ∇2ψ3/2(r)

ψ3/2(r) −
∇2ψ1/2(r)

ψ1/2(r) )
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• charm quark mass  
•  diquark mass     

• “binding energy” 
 

• reduced mass 

mc
1+ mD

E ≡ mΣc
− mc − mD

μ ≡
1

1/mc + 1/mD

  　sc ⋅ sD = ( −1 (J = 1/2)
1/2 (J = 3/2)

• for 
    baryon mass    
    wave function   

J = 1/2, 3/2
MJ
ψJ



Kawanai-Sasaki prescription to determine diquark mass
Kawanai and Sasaki proposed a self-consistent method to determine quark mass. (PRL107.091601) 
 
By applying their prescription to quark-diquark system, we demand　      
   
 
 
 

                                                

 
 
 

This leads to

Vs(r) = 2
3 (M3/2 − M1/2)−

1
3μ ( ∇2ψ3/2(r)

ψ3/2(r) −
∇2ψ1/2(r)

ψ1/2(r) ) → 0 as |r | → ∞

Kawanai-Sasaki condition for quark-diquark system  
 
  

　μ = − lim
r→∞

1
2(M3/2 − M1/2) ( ∇2ψ3/2(r)

ψ3/2(r) −
∇2ψ1/2(r)

ψ1/2(r) )
Using  from Kawanai-Sasaki 
prescription in  sector. 
 

               

mc
cc̄

mD =
1

1/μ − 1/mc

• Combining HAL QCD’s potential method with Kawanai-Sasaki prescription provides 
a self-consistent way to obtain diquark mass and quark-diquark potential 
 
  
  • This approach avoids the issue of pole-mass in 2-point function of diquark. 
(Diquark mass is obtained as a mass parameter of quark-diquark model)
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Numerical Results
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Lattice QCD setup
2+1 flavor QCD gauge config. on  lattice  
[Ukita et al., PACS-CS Coll., PRD.79.034503] 

RG improved Iwasaki gauge action （ )  
-improved Wilson quark action （ , 

）   

Lattice spacing           fm
                                   GeV 
    Spatial extension       fm 
 

Charm quark added with quenched approx. 
Relativistic heavy quark action  
[Namekawa et al., PACS-CS Coll., PRD.84.074505]    

  

Coulomb gauge fixing is employed

323 × 64

β = 1.90
O(a) κud = 0.137
CSW = 1.715

a = 0.0907
1/a = 2.176

L = 2.90

↑
↓

 [fm
]

a
≃

0.0907
 [G

eV]
a

−
1≃

2.176

 [fm]L = 32a ≃ 2.90

323 × 64

These setup reproduce
typical hadron mass 
 

,  
,  

  , 

mπ ∼ 700 MeV mN ∼ 1600 MeV
mηc

∼ 3025 MeV mJ/ψ ∼ 3144 MeV

mΛc
∼ 2691 MeV

mΣc(J=1/2) ∼ 2777 MeV mΣc(J=3/2) ∼ 2859 MeV
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4-point function and NBS wave function  

Rough convergence is achieved at t/a = 18  
in the region .r < 10a ∼ 0.9 fm

4-point func. at  t/a=18 is accepted as a converged NBS wave func. 
(t/a=22 has too large error bar to be accepted)

  

C(r, t) = ∑
n

ψn(r) ane−Mnt

→ ψ0(r) a0e−M0t for large t

C̃
(r

,t
)≡

C
(r

,t
)/

C
(0

,t
)

C̃
(r

,t
)≡

C
(r

,t
)/

C
(0

,t
)
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Determination of diquark mass /1713

Kawanai-Sasaki condition  
  

　　 　μ = − lim
r→∞

FKS(r) ∼ 600 MeV

Diquark mass    

　　  

where charm quark mass
　　  (from ccbar sector)

mD =
1

1/μ − 1/mc
≃ 867 MeV

mc ≃ 1950 MeV

FKS(r) ≡
1

2(M3/2 − M1/2) ( ∇2ψ3/2(r)
ψ3/2(r) −

∇2ψ1/2(r)
ψ1/2(r) )

Kawanai-Sasaki function  
 
 
 
Reduced mass is determined by 

We feel that  might be a bit underestimated because of large noise of  at large mD FKS r

-600 MeV

Fit with
   A exp(−Br2) + C exp(−Dr2) + E



Spin-dependent (quark-diquark) potential /1714

fit with 2-gaussian func. form
A exp(−Br2) + C exp(−Dr2)

 is short-rangedVspin



r [fm]

V 0
(r

)[
M

eV
]

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 0.2  0.4  0.6  0.8  1

−A/r + σr + const

Fit with Cornell type func. form

A = 86 MeV/fm

 MeVσ = 565

/1715Spin-indep. (quark-diquark) potential

 is of Cornell-typeV0

Our feeling:
 and  may be overestimated  

due to possible underestimate of .
A σ

mD



Quark diquark potential vs  potentialcc̄
V 0

(r
)[

M
eV

]

r [fm]

 MeVσ = 565

Σc

 MeVσ = 459

cc̄

−A/r + σr + const
Fitting function

A = 86 MeV/fm
A = 103 MeV/fm

Coulomb coefficient

String tension
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Σc
cc̄

Σc

cc̄

-2000

-1500
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 0

 500

 1000

 1500

 0.2  0.4  0.6  0.8  1



 diquark (this work) vs  diquark (Watanabe’s work)1+ 0+ 17

 MeVm1+ = 867  MeVm0+ = 1273<

Naive comparison

Possible reasons:

Watanabe uses p-wave spectrum to determine diquark mass and charm quark mass,  
whereas we use Kawanai-Sasaki method for this determination.

Watanabe employs charm quark mass  MeV
                                                      ours is  MeV 
   Note: Larger charm quark mass results in smaller diquark mass.

 has large error at long distance  
leading to an uncertainty in determining the constant part. 

mc ∼ 1840
mc ∼ 1950

FKS(r)

This is contrary to our expectations !

mD =
1

1/μ − 1/mc

mc

mD



 diquark (this work) vs  diquark (Watanabe’s work) [cont'd]1+ 0+ 18

If we employ Watanabe's value of the charm quark mass 

Mass increases slightly but it is not enough. 
 
 
Possible way out in the future: 

• Improve the statistical noise of  at long distance  
to improve the value of .

• Use p-wave spectrum to determine also the  diquark mass 

mc = 1840

FKS(r)
μ

1+

 MeV → about  MeV    (< 1273 MeV) m1+ = 867 900



Summary /1719

An extended HAL QCD method was applied to  (c-{uu}) in the heavy quark mass region 
  to study  diquark mass and quark-diquark potentials by 2+1 flavor lattice QCD   
  

diquark mass was obtained by using Kawanai-Sasaki prescription. 
   

Central potential is of Cornell type
Spin dependent potential is short-ranged  

     MeV      MeV/fm  
Precise evaluation is needed. 
We feel that Diquark mass may be a bit underestimated.  and  may be a bit overestimated. 

 is noisy at long distance  
  

Future plans
Quark mass dependence 

 Comparison of our  diquark result with  diquark in K.Watanabe, PRD.105.074510 
(He obtained  GeV by a similar but different method) 
Several things have to be fixed before the comparison 
•  Watanabe employs  whereas ours is . 

 (This is due to different formalism employed to obtain charm quark mass) 
• Large statistical noise of Kawanai-Sasaki function at long distance has to be improved 

for precise determination of  diquark mass.

Σc
1+

1+

mD ∼ 867 MeV σ = 565 A = 86
σ A

FKS(r)

1+ 0+

m0+ ∼ 1.27

mc ∼ 1.840GeV mc ∼ 1.950GeV

1+



Backup
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-dependence of the diquark mass t mD

•  increases with t approaching a constant 
value  MeV in the region .

• In the following slides, we employ , 
where sufficient convergence is achieved.

mD
mD ∼ 800 t ≥ 15

t/a ∼ 18

/1821Determination of diquark mass
m

D
(t

/a
)[

M
eV

]

t/a

diqaurk mass



2 point function -> mass split of Σc

2-point function

Giαjβ(t) ≡ ∑⃗
x

⟨Biα( ⃗x, t)B̄jβ(0)⟩

（Baryon operator ）Biα( ⃗x, ⃗y, t) ≡ Da
i ( ⃗x, t)caα( ⃗y, t)

gJ(t)
large t Ae−MJt

Let  be projection of this operator onto the spin  stategJ(t) J

Take   from the effective mass to obtain the mass differenceMJ

MJ
eff(t) ≡ log

gJ(t)
gJ(t + 1)

This is called the effective mass, 
which asymptotically approaches  in the large  region.MJ t  MeVM3/2 − M1/2 = 82(8)

effective mass plot

 2700

 2750

 2800

 2850

 2900

 2950

 3000

 10  12  14  16  18  20  22  24

1/2
+
(wall)

1/2
+
(smeared)
3/2

+
(wall)

3/2
+
(smeared)

t/a

M
eff

(t)
[M

eV
]

2859 MeV

2777 MeV

22



-1950

 sectorcc̄

t/a

M
eff

(t)
[M

eV
]

 3000

 3050

 3100

 3150

 3200

 10  15  20  25  30

PS(wall)
PS(smeared)

V(wall)
V(smeared)

3144 MeV

3025 MeV

ηc : 3025 MeV
J/ψ : 3144 MeV

Δm = 119 MeV

Kawanai-Sasaki condition
　　  

　　　　 　

mc = − lim
r→∞

Fcc̄
KS(r)

Fcc̄
KS(r) ≡

1
Δm ( ∇2ψJ/ψ(r)

ψJ/ψ(r) −
∇2ψηc(r)

ψηc(r) )

-5

 0

 5

 10
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 20

 25

 0  0.2  0.4  0.6  0.8  1

t=+018

t=+014

t=+014

F
cc̄ K

S(
r)

[G
eV

]

   t/a=22
   t/a=18
   t/a=14

mc = 1951(9)

➡︎ Charm quark mass：  MeV1950(9)
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24 sectorcc̄
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V 0

(r
)[

M
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]

r [fm]
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Vspin

V s
pi

n(
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[M
eV

]

r [fm]

 (Lattice unit)A ∼ 0.526
σ = 459 MeV

 MeV, (Lattice unit)A = 1283 B = 0.80
 MeV,     (Lattice unit)C = 90 D = 0.14

A exp(−Br2) + C exp(−Dr2)−A/r + σr + const



 vs spin independent potentialmD

-2000

-1500

-1000

-500

 0
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 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

meson

m
A
=966

m
A
=1557

m
A
=1651

m
A
=1961

r [fm]

V 0
(r

)[
M

eV
]

c u
u

color 3 color 3̄

c c̄

⃗r

⃗r
Far enough away, the behavior is the same.

Σc

cc̄

−A/r + σr =
1

6μ
(Ṽ(r) − Ṽ(

A
σ

))

Distance-dependent part 
                          of spin-independent potential

where、Ṽ(r) =
∇2ψ1/2

ψ1/2
+ 2

∇2ψ3/2

ψ3/2

 increase ➡︎  increase ➡︎  decreasemD μ σ

Larger  may be more naturalmD

quark-diquark potential

quark-anti quark potential
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