Diquark mass and quark-diquark potential of the 1^+ diquark in Σ_c from Lattice QCD

Soya Nishioka, Noriyoshi Ishii RCNP, Osaka Univ.

Introduction

Diquark is a composite particle made of two quarks

Diquarks are colored particles

$$
3 \otimes 3 = \bar{3} \oplus 3 \qquad \qquad \text{Color}
$$

- o Phenomenologically important diquarks: good diquark : $J^P = 0^+, I = 0$, color $\bar{3}$
	- **bad diquark**: $J^P = 1^+, I = 1$, color 3

o **Experimental study**: Difficult because of color confinement

6 diquarks are considered to be much heavy.

favored by (1) one-gluon exchange interaction (2) instanton-induced interaction

Lattice QCD studies of diquarks Conventional method may not work in obtaining diquark mass due to color confinement ̶- We should not assume that 2-point functions have a pole for colored particles.

Diquark masses have been treated as follows.

- M.Hess et al.,PRD.58.11502 Landau gauge fixing is employed Diquark mass is naively obtained from two-point function as a pole-mass.
- C.Alexandrou et al., PRL.97.222002 A static quark is added to neutralize the system.
- K.Watanabe, PRD.105.074510 0^{+} diquark mass is treated as a mass parameter of a quark-diquark model which is constructed by an extended HAL QCD's potential method.

Diquark mass is obtained by neglecting interaction energy between a diquark and a static quark.

$$
F.T.\langle D(x)D^{\dagger}(0)\rangle = \frac{1}{q^2}
$$

cf. Review on quark mass in PDG2020

Our goal

W e study 1⁺ diquark in $\Sigma_c^{++}(c\{uu\})$.

We employ a similar strategy as K.Watanabe, PRD105 where 0⁺ diquark in Λ_{*c*}(*c*[*ud*]) was studied.

by an extended HAL QCD's potential method from equal-time NBS wave function.

- quark-diquark potential
- 1⁺ diquark mass as a mass parameter of a quark-diquark model. Diquark mass is determined by employing a similar prescription which was proposed by T.Kawanai and S.Sasaki in ccbar sector.

We obtain

Formalism

Quark-diquark 4-point function and its spectral decomposition

$$
C(\mathbf{x} - \mathbf{y}, t) \equiv \left\langle 0 \left| \mathbf{T} \left[D(\mathbf{x}, t) c(\mathbf{y}, t) \cdot \bar{c}(t=0) D^{\dagger}(t=0) \right] \right| 0 \right\rangle
$$

$$
= \sum_{n} \psi_n(\mathbf{x} - \mathbf{y}) a_n \exp(-M_n t)
$$

1⁺ diquark operator $D_{ai}^{\dagger}(x) \equiv \epsilon_{abc} u_b^T(x) C \gamma_5 \gamma_i u_c(x)$

$$
\psi_{i\alpha}(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | D_{ai}(\mathbf{x}) c_{a\alpha}(\mathbf{y}) | \Sigma_c \rangle
$$

Rarita-Schwinger form is used for ψ . Spin of swave Σ_c is 1/2 or 3/2.

Quark-diquark wave function

Conventional HAL QCD's potential method

 Schroedinger eq. in each channel $\left(-\frac{\nabla^2}{2\mu}\right)$ $+V_0(\mathbf{r}) - V_s(\mathbf{r}) \Psi_{1/2}(\mathbf{r}) = (M_{1/2} - m_c - m_D) \Psi_{1/2}(\mathbf{r}) \qquad (J = 1/2)$ $\left(-\frac{\nabla^2}{2\mu} + V_0(\mathbf{r}) + \right]$ 1 2 $V_s(\mathbf{r})$ $\psi_{3/2}(\mathbf{r}) = (M_{3/2} - m_c - m_D) \psi_{3/2}(\mathbf{r})$ (*J* = 3/2)

We solve them inversely for potentials

We encounter a **PROBLEM**: • **Central potential** / • **Spin dependent potential** $V_0({\bf r}) =$ $2M_{3/2} + M_{1/2}$ $\frac{+M_{1/2}}{3}-m_c-m_D+\frac{1}{2\mu}$ 2 3 $V_{\rm s}(\mathbf{r}) =$ $\frac{2}{3}(M_{3/2}-M_{1/2})-\frac{1}{3\mu}$

Choice of m_c and m_D is not obvious. (2-point function should not be used due to confinement.)

$$
\psi_{1/2}(\mathbf{r}) \qquad (J = 1/2)
$$

\n $\psi_{3/2}(\mathbf{r}) \qquad (J = 3/2)$

We demand that **NBS wave function** should satisfy Schroedinger eq.

which split into

$$
\left(-\frac{\nabla^2}{2\mu} + \hat{V}\right)\psi(\mathbf{r}) = E \psi(\mathbf{r}) \quad \text{with} \quad \hat{V} \simeq V_0(r) + V_S(r)\mathbf{s}_c \cdot \mathbf{s}_D
$$

$$
\frac{1}{2\mu} \left(\frac{2}{3} \frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} + \frac{1}{3} \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)
$$

$$
\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)
$$

• reduced mass
\n
$$
\mu \equiv \frac{1}{1/m_c + 1/m_D}
$$

$$
\mathbf{s}_c \cdot \mathbf{s}_D = \begin{pmatrix} -1 & (J = 1/2) \\ 1/2 & (J = 3/2) \end{pmatrix}
$$

- charm quark mass m_c
- 1^+ diquark mass m_D^c
- "binding energy" $E \equiv m_{\Sigma_c} - m_c - m_D$

• for
$$
J = 1/2, 3/2
$$

baryon mass M_J
wave function ψ_J

Kawanai-Sasaki prescription to determine diquark mass

Kawanai and Sasaki proposed a self-consistent method to determine quark mass. (PRL107.091601)

Kawanai-Sasaki condition for quark-diquark system *μ* = − lim *r*→∞ 1 $2(M_{3/2} - M_{1/2})$

By applying their prescription to quark-diquark system, we demand

This leads to

$$
V_{s}(\mathbf{r}) = \frac{2}{3}(M_{3/2} - M_{1/2}) - \frac{1}{3\mu} \left(\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right) \to 0 \text{ as } |\mathbf{r}| \to \infty
$$

-
- This approach avoids the issue of pole-mass in 2-point function of diquark. (Diquark mass is obtained as a mass parameter of quark-diquark model)

• Combining HAL QCD's potential method with Kawanai-Sasaki prescription provides a **self-consistent way** to obtain **diquark mass** and **quark-diquark potential**

Numerical Results

Lattice QCD setup

- 2+1 flavor QCD gauge config. on $32^3 \times 64$ lattice [Ukita et al., PACS-CS Coll., PRD.79.034503]
	- RG improved Iwasaki gauge action $(\beta = 1.90)$ $O(a)$ -improved Wilson quark action $(\kappa_{ud} = 0.137,$ $C_{SW} = 1.715$
	- Lattice spacing $a = 0.0907$ fm $1/a = 2.176$ GeV Spatial extension $L = 2.90$ fm
- Charm quark added with quenched approx. Relativistic heavy quark action [Namekawa et al., PACS-CS Coll., PRD.84.074505]
- Coulomb gauge fixing is employed

These setup reproduce typical hadron mass $m_{\pi}\thicksim700\,\mathrm{MeV}$, $m_{N}\thicksim1600\,\mathrm{MeV}$ m_{η_c} ~ 3025 MeV, $m_{J/\psi}$ ~ 3144 MeV $m_{\Lambda_c}^{} \sim 2691~{\rm MeV}$

, *m*Σ*c*(*J*=1/2) ∼ 2777 MeV *m*Σ*c*(*J*=3/2) ∼ 2859 MeV

4-point function and NBS wave function

4-point func. at t/a=18 is accepted as a converged **NBS wave func.**

˜*C* $\smash{\smash{\bigcup}}$ **r** \bullet *t* \curvearrowright ≡ *C* $\smash{\smash{\bigcup}}$ **r** \bullet *t* \curvearrowright / *C* $\smash{\smash{\bigcup}}$ **0** \bullet *t* \curvearrowright

(t/a=22 has too large error bar to be accepted)

Rough convergence is achieved at $t/a = 18$ in the region $r < 10a \sim 0.9$ fm.

We feel that m_D might be a bit underestimated because of large noise of F_{KS} at large r

fit with 2-gaussian func. form $A \exp(-Br^2) + C \exp(-Dr^2)$

Spin-dependent (quark-diquark) potential 14/17

*V*spin **is short-ranged**

Our feeling: A and σ may be overestimated due to possible underestimate of m_D .

Fit with Cornell type func. form

$-AYr + \sigma r + \text{const}$ $A = 86$ MeV/fm $\sqrt{\sigma} = 565$ MeV

15/17 Spin-indep. (quark-diquark) potential

Quark diquark potential vs *cc*¯ potential

$$
\Sigma_c \quad A = 86 \text{ MeV/fm}
$$

$$
c\overline{c} \quad A = 103 \text{ MeV/fm}
$$

Coulomb coefficient

String tension

$1⁺$ diquark (this work) vs $0⁺$ diquark (Watanabe's work) 17

Naive comparison

- whereas we use **Kawanai-Sasaki method** for this determination.
- Watanabe employs charm quark mass $m_c \sim 1840$ MeV $\frac{1}{2}$ ours is $m_c \sim 1950$ MeV

Possible reasons:

Watanabe uses **p-wave spectrum** to determine diquark mass and charm quark mass,

 $m_{1+} = 867$ MeV $\langle m_{0^+} = 1273$ MeV This is contrary to our expectations !

Note: Larger charm quark mass results in smaller diquark mass.

 has large error at long distance *FKS*(**r**) leading to an uncertainty in determining the constant part.

$1⁺$ diquark (this work) vs $0⁺$ diquark (Watanabe's work) [cont'd] $1⁸$

If we employ Watanabe's value of the charm quark mass $m_c=1840$

Mass increases slightly but it is not enough.

Possible way out in the future:

- Improve the statistical noise of $F_{KS}(\mathbf{r})$ at long distance to improve the value of μ .
- Use p-wave spectrum to determine also the 1^+ diquark mass
-
- $m_{1+} = 867$ MeV \rightarrow about 900 MeV (< 1273 MeV)
	-

Summary 19/17

to study 1⁺ diquark mass and quark-diquark potentials by 2+1 flavor lattice QCD

- 1^+ diquark mass was obtained by using Kawanai-Sasaki prescription.
- **Central potential is of Cornell type**

- Quark mass dependence
- Comparison of our 1^+ diquark result with 0^+ diquark in K.Watanabe, PRD.105.074510 (He obtained $m_{0^+} \sim 1.27$ GeV by a similar but different method) Several things have to be fixed before the comparison
	- Watanabe employs $m_c \sim 1.840{\rm GeV}$ whereas ours is $m_c \sim 1.950{\rm GeV}$. (This is due to different formalism employed to obtain charm quark mass) $m_c\thicksim 1.840\hbox{GeV}$ whereas ours is $m_c\thicksim 1.950\hbox{GeV}$
	- Large statistical noise of Kawanai-Sasaki function at long distance has to be improved for precise determination of 1^{+} diquark mass.

An extended HAL QCD method was applied to Σ_c (c-{uu}) in the heavy quark mass region $\frac{1}{2}$

-
-

Spin dependent potential is short-ranged

 $m_D \sim 867 \,\mathrm{MeV}$ $\sqrt{\sigma} = 565 \,\mathrm{MeV}$ $A = 86 \,\mathrm{MeV}$ /fm Precise evaluation is needed. We feel that Diquark mass may be a bit underestimated. σ and A may be a bit overestimated. $F_{\rm KS}(r)$ is noisy at long distance

Future plans

Determination of diquark mass and the contract of $21/18$

*t***-dependence of the diquark mass** m_D

- m_D increases with t approaching a constant value $m_D^{} \sim 800$ MeV in the region $t \geq 15.5$
- In the following slides, we employ $t/a \sim 18$, where sufficient convergence is achieved.

t/*a*

25

2 point function -> mass split of Σ*^c*

2-point function

$$
G_{i\alpha j\beta}(t) \equiv \sum_{\vec{x}} \langle B_{i\alpha}(\vec{x}, t) \bar{B}_{j\beta}(0) \rangle
$$

(Baryon operator $B_{i\alpha}(\vec{x}, \vec{y}, t) \equiv D_i^a(\vec{x}, t) c_{a\alpha}(\vec{y}, t)$)

 \circ Let $g_J(t)$ be projection of this operator onto the spin *J* state

$$
g_J(t) \xrightarrow{\text{large } t} Ae^{-M_J t}
$$

 \circ Take M_J from the effective mass to obtain the mass difference

$$
M_{\text{eff}}^J(t) \equiv \log \frac{g_J(t)}{g_J(t+1)}
$$

This is called the effective mass,
which asymptotically approaches M_J in the large t region.

c c¯ sector

Kawanai-Sasaki condition

$$
m_c = -\lim_{r \to \infty} F_{\text{KS}}^{c\bar{c}}(\mathbf{r})
$$

$$
F_{\text{KS}}^{c\bar{c}}(\mathbf{r}) \equiv \frac{1}{\Delta m} \left(\frac{\nabla^2 \psi_{J/\psi}(\mathbf{r})}{\psi_{J/\psi}(\mathbf{r})} - \frac{\nabla^2 \psi_{\eta_c}(\mathbf{r})}{\psi_{\eta_c}(\mathbf{r})} \right)
$$

→ Charm quark mass : 1950(9) MeV

23

$c\bar{c}$ sector 24

 $-A/r + \sigma r + \text{const}$ $A \exp(-Br^2) + C \exp(-Dr^2)$

m_D vs spin independent potential

565 MeV 488 MeV 480 MeV

Larger m_D may be more natural

