# Diquark mass and quark-diquark potential of the $1^+$ diquark in $\Sigma_c$ from Lattice QCD

Soya Nishioka, Noriyoshi Ishii RCNP, Osaka Univ.

# Introduction



## Diquark is a composite particle made of two quarks

• Diquarks are colored particles

$$3 \otimes 3 = \overline{3} \oplus \overline{3}$$
 Color

- Phenomenologically important diquarks: o good diquark :  $J^P = 0^+, I = 0$ , color  $\bar{3} \ll$ 
  - bad diquark :  $J^P = 1^+, I = 1$ , color  $\bar{3}$



• Experimental study : Difficult because of color confinement

**6** diquarks are considered to be much heavy.

favored by (1) one-gluon exchange interaction (2) instanton-induced interaction



Lattice QCD studies of diquarks Conventional method may not work in obtaining diquark mass due to color confinement —- We should not assume that 2-point functions have a pole for colored particles.

F.T.
$$\left\langle D(x)D^{\dagger}(0)\right\rangle = \frac{1}{q^2}$$

Diquark masses have been treated as follows.

- M.Hess et al., PRD.58.11502 Landau gauge fixing is employed Diquark mass is naively obtained from two-point function as a pole-mass.
- o C.Alexandrou et al., PRL.97.222002 A static quark is added to neutralize the system.
- o K.Watanabe, PRD.105.074510  $0^+$  diquark mass is treated as a mass parameter of a quark-diquark model which is constructed by an extended HAL QCD's potential method.



cf. Review on quark mass in PDG2020

Diquark mass is obtained by neglecting interaction energy between a diquark and a static quark.





## Our goal

### • We study $1^+$ diquark in $\Sigma_c^{++}(c\{uu\})$ .

We employ a similar strategy as K.Watanabe, PRD105 where  $0^+$  diquark in  $\Lambda_c(c[ud])$  was studied.



We obtain

- quark-diquark potential
- 1<sup>+</sup> diquark mass as a mass parameter of a quark-diquark model. Diquark mass is determined by employing a similar prescription which was proposed by T.Kawanai and S.Sasaki in ccbar sector.



by an extended HAL QCD's potential method from equal-time NBS wave function.



# Formalism



## **Quark-diquark** wave function

### Quark-diquark 4-point function and its spectral decomposition

$$C(\mathbf{x} - \mathbf{y}, t) \equiv \left\langle 0 \middle| T \left[ \frac{D(\mathbf{x}, t) c(\mathbf{y}, t) \cdot \bar{c}(t) = \sum_{n} \psi_{n}(\mathbf{x} - \mathbf{y}) a_{n} \exp(-M_{n}t) \right] \right\rangle$$

 $\circ 1^+$  diquark operator  $\dot{D}_{ai}(x) \equiv \epsilon_{abc} u_b^T(x) C \gamma_5 \gamma_i u_c(x)$ 

 $\circ$  Equal time quark-diquark Nambu-Bethe-Salpeter (NBS) wave function for  $\Sigma_c^{++}$ 

$$\boldsymbol{\psi}_{i\alpha}(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | \boldsymbol{D}_{ai}(\mathbf{x}) c_{a\alpha}(\mathbf{y}) | \boldsymbol{\Sigma}_{c} \rangle$$

**Rarita-Schwinger form** is used for  $\psi$ . Spin of swave  $\Sigma_c$  is 1/2 or 3/2.







# **Conventional HAL QCD's potential method**

We demand that NBS wave function should satisfy Schroedinger eq.

$$\left(-\frac{\nabla^2}{2\mu}+\hat{V}\right)\psi(\mathbf{r})=E\psi(\mathbf{r})$$
 with  $\hat{V}\simeq$ 

which split into

Schroedinger eq. in each channel  $\left( -\frac{\nabla^2}{2\mu} + V_0(\mathbf{r}) - V_s(\mathbf{r}) \right) \psi_{1/2}(\mathbf{r}) = \left( M_{1/2} - m_c - m_D \right) \psi_{1/2}(\mathbf{r})$  $\left( -\frac{\nabla^2}{2\mu} + V_0(\mathbf{r}) + \frac{1}{2} V_s(\mathbf{r}) \right) \psi_{3/2}(\mathbf{r}) = \left( M_{3/2} - m_c - m_D \right)$ 

We solve them inversely for potentials

**Central potential**  $V_0(\mathbf{r}) = \frac{2M_{3/2} + M_{1/2}}{3} - m_c - m_D + \frac{1}{2\mu} \left(\frac{2}{3} - \frac{2}{3}\right)$ Spin dependent potential  $V_{\rm s}(\mathbf{r}) = \frac{2}{3} (M_{3/2} - M_{1/2}) - \frac{1}{3} \left( \frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{2} \right)$ 3μ  $\psi_{3/2}(\mathbf{r})$ We encounter a **PROBLEM**:

**Choice of**  $m_c$  and  $m_D$  is not obvious. (2-point function should not be used due to confinement.)

$$V_0(r) + V_{\rm S}(r)\mathbf{s}_c \cdot \mathbf{s}_D$$

$$\psi_{1/2}(\mathbf{r})$$
 (J = 1/2)  
)  $\psi_{3/2}(\mathbf{r})$  (J = 3/2)

$$\frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} + \frac{1}{3} \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right)$$
$$- \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})}$$

$$\mathbf{s}_c \cdot \mathbf{s}_D = \begin{pmatrix} -1 & (J = 1/2) \\ 1/2 & (J = 3/2) \end{pmatrix}$$

- charm quark mass  $m_c$
- 1<sup>+</sup> diquark mass  $m_D$
- "binding energy"  $E \equiv m_{\Sigma_c} - m_c - m_D$

• reduced mass  

$$\mu \equiv \frac{1}{1/m_c + 1/m_D}$$

• for 
$$J = 1/2, 3/2$$
  
baryon mass  $M_J$   
wave function  $\psi_J$ 







## Kawanai-Sasaki prescription to determine diquark mass

Kawanai and Sasaki proposed a self-consistent method to determine quark mass. (PRL107.091601)

By applying their prescription to quark-diquark system, we demand

$$V_{\rm s}(\mathbf{r}) = \frac{2}{3} (M_{3/2} - M_{1/2}) - \frac{1}{3\mu} \left( \frac{\nabla^2 \psi_{3/2}(\mathbf{r})}{\psi_{3/2}(\mathbf{r})} - \frac{\nabla^2 \psi_{1/2}(\mathbf{r})}{\psi_{1/2}(\mathbf{r})} \right) \to 0 \quad \text{as} \ |\mathbf{r}| \to \infty$$

This leads to

Kawanai-Sasaki condition for quark-diquark system

- This approach avoids the issue of pole-mass in 2-point function of diquark. (Diquark mass is obtained as a mass parameter of quark-diquark model)



Combining HAL QCD's potential method with Kawanai-Sasaki prescription provides a self-consistent way to obtain diquark mass and quark-diquark potential



**Numerical Results** 



## Lattice QCD setup

- $\circ$  2+1 flavor QCD gauge config. on  $32^3 \times 64$  lattice [Ukita et al., PACS-CS Coll., PRD.79.034503]
  - RG improved Iwasaki gauge action  $(\beta = 1.90)$ O(a)-improved Wilson quark action ( $\kappa_{ud} = 0.137$ ,  $C_{SW} = 1.715$ )
  - a = 0.0907 fm • Lattice spacing  $1/a = 2.176 \, \text{GeV}$  $L = 2.90 \, \text{fm}$ Spatial extension
- Charm quark added with quenched approx. Relativistic heavy quark action [Namekawa et al., PACS-CS Coll., PRD.84.074505]
- Coulomb gauge fixing is employed





These setup reproduce typical hadron mass  $m_{\pi} \sim 700 \,{\rm MeV}, \, m_N \sim 1600 \,{\rm MeV}$  $m_{\eta_c} \sim 3025 \,\text{MeV}, \, m_{J/\psi} \sim 3144 \,\text{MeV}$ 

 $m_{\Lambda_c} \sim 2691 \,\mathrm{MeV}$  $m_{\Sigma_c(J=1/2)} \sim 2777 \,\text{MeV}, \, m_{\Sigma_c(J=3/2)} \sim 2859 \,\text{MeV}$ 





## 4-point function and NBS wave function

 $\tilde{C}(\mathbf{r},t) \equiv C(\mathbf{r},t)/C(\mathbf{0},t)$ 



# (t/a=22 has too large error bar to be accepted)



Rough convergence is achieved at t/a = 18in the region  $r < 10a \sim 0.9$  fm.

4-point func. at t/a=18 is accepted as a converged NBS wave func.





## **Determination of diquark mass**



We feel that  $m_D$  might be a bit underestimated because of large noise of  $F_{KS}$  at large r



## Spin-dependent (quark-diquark) potential

# V<sub>spin</sub> is short-ranged



## fit with 2-gaussian func. form $A \exp(-Br^2) + C \exp(-Dr^2)$



# Spin-indep. (quark-diquark) potential



Fit with Cornell type func. form

# $-A/r + \sigma r + const$ A = 86 MeV/fm $\sqrt{\sigma} = 565 \; {\rm MeV}$

Our feeling: A and  $\sigma$  may be overestimated due to possible underestimate of  $m_D$ .





## Quark diquark potential vs $c\bar{c}$ potential



# Fitting function $-A/r + \sigma r + const$

Coulomb coefficient

$$\begin{split} \Sigma_c & A = 86 \; \text{MeV/fm} \\ c \bar{c} & A = 103 \; \text{MeV/fm} \end{split}$$

### String tension

$$\sum_{c} \sqrt{\sigma} = 565 \text{ MeV}$$
$$C\overline{C} \sqrt{\sigma} = 459 \text{ MeV}$$



## $1^+$ diquark (this work) vs $0^+$ diquark (Watanabe's work)

Naive comparison

 $m_{1^+} = 867 \text{ MeV} < m_{0^+} = 1273 \text{ MeV}$ This is contrary to our expectations !

Possible reasons:

- whereas we use Kawanai-Sasaki method for this determination.
- Watanabe employs charm quark mass  $m_c \sim 1840$  MeV

Note: Larger charm quark mass results in smaller diquark mass.

•  $F_{KS}(\mathbf{r})$  has large error at long distance leading to an uncertainty in determining the constant part.



o Watanabe uses p-wave spectrum to determine diquark mass and charm quark mass,

```
ours is m_c \sim 1950 \text{ MeV}
```

## 1<sup>+</sup> diquark (this work) vs 0<sup>+</sup> diquark (Watanabe's work) [cont'd]

If we employ Watanabe's value of the charm quark mass  $m_c = 1840$ 

Mass increases slightly but it is not enough.

Possible way out in the future:

- Improve the statistical noise of  $F_{\rm KS}({f r})$  at long distance to improve the value of  $\mu$ .
- Use p-wave spectrum to determine also the  $1^+$  diquark mass

- $m_{1+} = 867 \text{ MeV} \rightarrow \text{about } 900 \text{ MeV}$  (< 1273 MeV)



## Summary

# to study $1^+$ diquark mass and quark-diquark potentials by 2+1 flavor lattice QCD

- 1<sup>+</sup>diquark mass was obtained by using Kawanai-Sasaki prescription.
- Central potential is of Cornell type

### oSpin dependent potential is short-ranged

°  $m_D \sim 867 \,\mathrm{MeV}$   $\sqrt{\sigma} = 565 \,\mathrm{MeV}$   $A = 86 \,\mathrm{MeV/fm}$ Precise evaluation is needed We feel that Diquark mass may be a bit underestimated.  $\sigma$  and A may be a bit overestimated.  $F_{\rm KS}(r)$  is noisy at long distance

### **o**Future plans

- o Quark mass dependence
- $^{\circ}$  Comparison of our  $1^+$  diquark result with  $0^+$  diquark in K.Watanabe, PRD.105.074510 (He obtained  $m_{0^+} \sim 1.27$  GeV by a similar but different method) Several things have to be fixed before the comparison
  - Watanabe employs  $m_c \sim 1.840 \text{GeV}$  whereas ours is  $m_c \sim 1.950 \text{GeV}$ . (This is due to different formalism employed to obtain charm quark mass)
  - Large statistical noise of Kawanai-Sasaki function at long distance has to be improved for precise determination of  $1^+$  diquark mass.

 $\circ$ An extended HAL QCD method was applied to  $\Sigma_c$  (c-{uu}) in the heavy quark mass region







## **Determination of diquark mass**

t-dependence of the diquark mass  $m_D$ 



t/a

- $m_D$  increases with t approaching a constant value  $m_D \sim 800$  MeV in the region  $t \ge 15$ .
- In the following slides, we employ  $t/a \sim 18$ , where sufficient convergence is achieved.





## **2** point function -> mass split of $\Sigma_c$

o 2-point function

$$\begin{aligned} G_{i\alpha j\beta}(t) &\equiv \sum_{\vec{x}} \left\langle B_{i\alpha}(\vec{x},t) \bar{B}_{j\beta}(0) \right\rangle \\ \text{(Baryon operator } B_{i\alpha}(\vec{x},\vec{y},t) \equiv D_i^a(\vec{x},t) c_{a\alpha}(\vec{y},t)) \end{aligned}$$

• Let  $g_J(t)$  be projection of this operator onto the spin J state

$$g_J(t) \xrightarrow{\text{large t}} Ae^{-M_J t}$$

 $\circ$  Take  $M_J$  from the effective mass to obtain the mass difference

$$M_{\text{eff}}^{J}(t) \equiv \log \frac{g_{J}(t)}{g_{J}(t+1)}$$

This is called the effective mass,

which asymptotically approaches  $M_J$  in the large t region.









### cc sector



**Kawanai-Sasaki condition** 

$$m_{c} = -\lim_{r \to \infty} F_{\text{KS}}^{c\bar{c}}(\mathbf{r})$$

$$F_{\text{KS}}^{c\bar{c}}(\mathbf{r}) \equiv \frac{1}{\Delta m} \left( \frac{\nabla^{2} \psi_{J/\psi}(\mathbf{r})}{\psi_{J/\psi}(\mathbf{r})} - \frac{\nabla^{2} \psi_{\eta_{c}}(\mathbf{r})}{\psi_{\eta_{c}}(\mathbf{r})} \right)$$

➡ Charm quark mass : 1950(9) MeV



23

### cc sector

### $-A/r + \sigma r + const$



 $A \exp(-Br^2) + C \exp(-Dr^2)$ 



24

## $m_D$ vs spin independent potential



Larger  $m_D$  may be more natural

