Diquark Mass and Quark-Diquark Potential from Lattice QCD

KELVIN LEE KAI WEN, NORIYOSHI ISHII

RCNP Theory Group

Introduction

Introduction: What is a Diquark?

- A coloured-object, so it cannot be isolated as asymptotic state due to color confinement in QCD.
- 2 (major) types of diquarks [1]:
- "Good" diquark: $\overline{3}_F$, $\overline{3}_c$, $J^P=0^+$ (scalar)
- "Bad" diquark: 6_F , $\overline{3}_c$, $J^P = 1^+$ (axial-vector)

Why diquark?

- It is a useful building blocks for phenomenological descriptions of hadronic states. Diquark pictures is very useful in understanding baryons and even exotics.
- "Good" diquark condenses in high density region, forming color superconductor.

Ref:

Background:

Previous work 0: *M. Hess et al, PRD58 (1998), Y. Bi et al*, Chin. Phys. C 40 (2016) :

They naively calculate diquark mass from two-point correlator in Landau gauge.

- They do no seem to take account the color confinement seriously.
- We shall not assume the existence of particle pole in two-point correlator. (R.L. Workman, PTEP 2022)

Previous work 1: *C Alexandrou et al, PRL 2006, A. Francis*, JHEP 2022 :

They calculated the *mass differences* between various diquark channels with a spectator static quark.

• The binding energy between the static quark and the diquark is neglected contaminating the diquark mass.

Previous work 2: *K. Watanabe*, PRD 2022 :

An extended HALQCD potential method is applied to $Λ_c$ baryon as a charm – scalar diquark system (*cD*) with a self-consistent determination of scalar diquark mass.

- Diquark mass is separated from the binding energy
- Charm quark mass --> way of determination is not unique --> affects the diquark mass

This work:

• We modify K. Watanabe, PRD2022 by considering a bound system of a static quark and a scalar diquark to avoid the uncertainty in the charm quark mass. The set of the set o

Extended HALQCD potential method

Equal-time Nambu-Bethe-Salpeter (NBS) wavefunction and the HALQCD method

 \boldsymbol{x}

• Equal-time Nambu-Bethe-Salpeter (NBS) wavefunction

$$
\psi_{J^P}(\mathbf{r}) = \sum \langle 0| D_c(\mathbf{x}) Q_c(\mathbf{y}) | B(J^P) \rangle,
$$

where $D_c(x) = \varepsilon_{abc} u_a^T C \gamma_5 d_b(x)$ is the scalar diquark interpolator and $Q_c(x)$ is the static quark field.

• We demand the equal-time NBS wavefunction shall satisfy the following Schrodinger equation:

$$
\left(-\frac{\nabla^2}{2m_D} + \hat{V_0}(r)\right)\psi_{J^P}(\mathbf{r}) = (\varepsilon_B - m_D)\psi_{J^P}(\mathbf{r})
$$

Where

 ε_R = total relativistic energy for $|B(J^P)\rangle$

 $\hat{V}_0(\boldsymbol{r}) = V_0(\boldsymbol{r}) + O(\nabla^2)$ = HALQCD potential (unknown)

 m_D = mass of scalar diquark (unknown)

A self-consistent determination of HALQCD potential and the diquark mass

Strategy:

- $V_0(\boldsymbol{r})$ is determined from S-wave sector with unknown parameter, m_D
- m_D , is determined by demanding that $V_0(\bf{r})$ should reproduce p-wave spectrum obtained from the 2-point correlator.

Lattice Setup

- **(2+1)-flavors gauge configuration generated by CP-PACS and JLQCD Collab. [1]**
	- Renormalization-group-improved Iwasaki gauge action $\beta = \frac{6}{g^2} = 1.83$.
- Lattice size $= L^3 \times T = 16^3 \times 32$
- **Nonperturbatively** *O(a)***-improved Wilson quark action**
	- $\kappa_{ud} = \kappa_s = 0.13710, \quad c_{sw} = 1.761$
- Lattice spacing : $a\simeq 0$. 121(2)fm ($a^{-1}\simeq 1$. 63 GeV), L $\simeq 1$. 93(3)fm
- $m_{\pi} \simeq 1014 \text{ MeV}, m_N \simeq 2026 \text{ MeV}$
- **Quark propagators from Wall-source and Gaussian-smeared source with Coulomb gauge fixing**

To reduce statistical noise, we consider

- ➢ **HYP smearing on gauge links to compute Wilson lines for static quark propagator**
- ➢ **4 source points at t/a = 0, 8, 16, …**
- ➢ **Cubic group (Rotational symmetry of the lattice)**

Ref: [1] T. Ishikawa et. al., PRD **78**, 011502(R) (2008)

^{2.} H. Nagahiro et al, PRD 95 2017

Effective Mass Plot (Scalar vs Vector)

Scalar VS Vector channel

- The effective mass plot by all source operators, SRC(01,02,03,08) give **consistent plateau for the scalar channel**.
- For vector channel, the statistical noise is large. However, we can roughly identify the plateau region.
- We shall improve the result by implementing the variational method in future.

Four-point function and equal-time NBS wavefunction

 $C(\mathbf{r},t;t_{src})$

$$
= \sum_{\mathbf{x}, \mathbf{x}', \mathbf{y}'} \langle 0 | D_c(\mathbf{x}, t) Q_c(\mathbf{x} + \mathbf{r}, t) \left(D_{c'}(\mathbf{x}', t_{\rm src}) Q_{c'}(\mathbf{y}', t_{\rm src}) \right)^{\dagger} | 0 \rangle
$$

$$
= \sum_{n} A_n \psi_n(\mathbf{r}) e^{-E_n t}
$$

$$
\simeq A_0 \psi_0(\mathbf{r}) e^{-E_0 t} \quad \text{(for large t)}
$$

- Speed of convergence: SRC01 > SRC03 > SRC08
- Hence, we choose the source operator to be SRC01 (Gaussian-smeared source)

Prepotential, $\tilde{V}_0(r) = \frac{\nabla^2 \psi_S(\mathbf{r})}{\psi_S(\mathbf{r})} = 2m_D(V_0(r) + m_D - \varepsilon_B)$

SRC01

- From the plot, we can see that the potential converged at $t/a = 10$.
- We then fit the potential to a Cornell-type potential at $t/a = 10$.

$$
\tilde{V}_0^{\text{fit}}(r) = -A/r + Br + v_0
$$

Determination of m_D by comparing P-wave spectrum

 m_D = Diquark mass

Quark-diquark potential

Prepotential (SRC01)

• Value of A (Coul. Coeff.) might be affected by the HYP smearing[1].

Our \sqrt{B} (sqrt. of string tension) are slight larger than the static qqbar potential, i.e 510 MeV > 440 MeV. R_{eff}

We compute the potential of this baryon from the prepotential:

$$
V_0(r) = \frac{1}{2m_D} \tilde{V}_0(r) + E_{jP} = 0^+
$$

with
$$
E_{jP=0^+} = M_{jP=0^+} - m_D
$$

Quark-diquark potential:

$$
V_0(r) = -\frac{A}{r} + Br + v_0
$$

\n
$$
\triangleright A = 0.121(4) \text{ GeV fm}
$$

\n
$$
\triangleright \sqrt{B} = 510(5) \text{ MeV}
$$

\n
$$
\triangleright v_0 = 0.141(15) \text{ GeV}
$$

[1] A. Hasenfratz, F. Knechtli, PRD **64** 034504, 2001

Summary and Future outlook

- ❑ We calculated the energy spectrum of system made up from diquark and static quark. Our results are consistent with C Alexandrou's result.
- ❑ Then, in order to get the scalar diquark mass, we employ the extended HALQCD potential method.
- ❑ We obtained the scalar diquark mass to be 1.241 GeV, which is roughly close to twice the naïve constituent quark mass, i.e. 2/3 mass of proton: 1.351 GeV.
- \Box We also constructed the potential for the scalar diquark-static quark baryon, which behave like a Cornell-type potential.
- \Box We also obtained the Coulomb coefficient = 0.121(4) GeV fm and $\sqrt{string \t tension}$ = 510 MeV.

Relation between our diquark mass and Alexandrou's diquark mass:

Future work:

- \Box We will also compare their Coulomb coefficient and string tension to the static quarkantiquark potential in the future.
- ❑ Variational method will be considered to improve the convergence of the effective mass plot.
- \Box To improve the result, we shall consider gauge configuration with larger lattice volume.
- ❑ Axial-vector diquark.
- ❑ Quark mass dependence of diquark and their potential.