Examination of the ϕ -NN bound-state problem with lattice QCD N- ϕ potentials

Faisal Etminan

University of Birjand and iTHEMS YITP Hadrons and Hadron Interactions in QCD 2024 (HHIQCD2024), Oct. 14 - Nov. 15, 2024, YITP, Kyoto, Japan

دانشگاه بیرجند University of Birjand

Table of Contents

Introduction

- Three-body bound states in Hyperspherical Harmonics (HH) expansion method method
- Two-body potentials in ϕ -NN systems
- Numerical results
 - Three-body ground state binding energies
 - The nuclear matter radius
- Summary

- This presentation is based on [F. Etminan and A. Aalimi PRC 109 2024]
- Possibility of the formation of φ-mesic bound states with N is important due to the quark content of the φ-meson as ss. [J. J. Cobos-Martinezet et al PRC 96, 2017] [I. Filikhin et al PRD 110 2024]
- One of the simplest candidates for φ-mesic nuclei can be the φ-NN system.
 [V. B. Belyaev et al Few-Body Syst. 44, 2008]
- The two-body bound states or resonances may become robust in few-body systems,

e.g. there is not seen any bound for strangeness -1 dibaryon states but the hypertriton ${}^{3}_{\Lambda}H(I) J^{P} = (0) 1/2^{+}$, is bound with a separation energy of 130 ± 50 keV. [H. Garcilazo et al PRC 99 2019]

▶ In the older work: using the folding method, Faddeev equations mostly attractive phenomenological $N-\phi$ interaction by central binding energy of 9.47 MeV and the semi-realistic Malfliet-Tjon (MT) *NN* potential are employed. [S. A. Sofianos et al. J. Phys. G Nucl. Part. Phys. 37 2010]

They concluded that ϕ -NN is bound with 40(23) MeV for triplet(singlet) NN interaction.

► from the experimental point of view,

- ► ALICE collaboration measured the correlation function of proton- ϕ in heavy-ion collisions, together by indicating a $p-\phi$ bound state using two-particle correlation functions [ALICE PRL 127,2021, E. Chizzali et al PLB 848,2024]
- Femtoscopic analysis of hadron-deuteron (hd) correlation functions could play a crucial role in understanding structure of the atomic nuclei. [ALICE Phys. Rev. X 14 2024]
- > These request the proton $-\phi$ bound state hypothesis.
- ► Recently, HAL QCD Collaboration has derived $N-\phi$ potential in ${}^{4}S_{3/2}$ channel from lattice QCD at nearly physical quark masses, [Y. Lyu et al PRD 106,2022]

♦ We examined hypothetical multi-strangeness nucleus ϕ -NN by using HAL N- ϕ potential

3B bound states in HH expansion method

✦ Jacobi coordinates (x_i, y_i)

•
$$x_i = \sqrt{A_{jk}}r_{jk} = \sqrt{A_{jk}}(r_j - r_k),$$

•
$$y_i = \sqrt{A_{(jk)i}} r_{(jk)i} = \sqrt{A_{(jk)i}} \left(r_i - \frac{A_i r_j + A_k r_k}{A_j + A_k} \right),$$

✦ Reduced masses:

•
$$A_{jk} = \frac{A_j A_k}{A_j + A_k}$$
,
• $A_{(jk)i} = \frac{(A_j + A_k)A_i}{A_i + A_i + A_k}$,

where

•
$$i, j, k \in (1, 2, 3)$$
,

• $A_i = \frac{m_i}{m}$, m_i the mass of particle *i* in a.

3B bound states in HH expansion method

3B wave function expansion on hyperspherical harmonics (HH): [I. Thompson et

al Comput. Phys. Commun 161, 87 2004]

$$\Psi_{j\mu}\left(\rho,\Omega\right)=\sum_{\beta}\mathcal{R}_{\beta}^{j}\left(\rho\right)\mathcal{Y}_{\beta j\mu}\left(\Omega\right)$$

- *j*: total angular momentum
- μ : projection of total angular momentum
- ρ : hyperradius ($\rho^2 = x^2 + y^2$)
- $\Omega = (\alpha, \hat{x}, \hat{y})$: a functions of five hyperspherical polar angles
- α : hyperangle ($\alpha = \arctan(x/y)$)
- $\beta \equiv \{K, I_x, I_y, I, S_x, j_{ab}\}$: a set of quantum numbers coupled to j
 - K: hypermomentum
 - I_x : orbital angular momentum related to Jacobi coordinate x
 - I_y : orbital angular momentum related to Jacobi coordinate y
 - $I = I_x + I_y$: total orbital angular momentum
 - S_x : spin of the particles associated with the x coordinate

•
$$j_{ab} = l + S_x$$

3B bound states in HH expansion method

The expansion of the 3B wave function's angular part $\mathcal{Y}_{\beta j\mu}(\Omega)$ on the hyperspherical harmonics $\Upsilon_{Klm_l}^{l_x l_y}$:

$$\mathcal{Y}_{\beta j \mu}\left(\Omega\right) = \sum_{\nu \iota} \left\langle j_{ab} \nu I \iota | j \mu \right\rangle \kappa_{I}^{\iota} = \sum_{m_{l} \sigma} \left\langle Im_{l} S_{x} \sigma | j_{ab} \nu \right\rangle \Upsilon_{Klm_{l}}^{l_{x}l_{y}}\left(\Omega\right) \chi_{S_{x}}^{\sigma}$$

- $\chi^{\sigma}_{S_{x}}$: spin wave function of two particles in the Jacobi coordinate x
- κ_I^{ι} : spin wave function of third particle
- HH are eigenstates of \hat{K}

•
$$\Upsilon_{Klm_{l}}^{l_{x}l_{y}}(\Omega) = \varphi_{K}^{l_{x}l_{y}}(\alpha) \left[Y_{l_{x}}(\hat{x}) \otimes Y_{l_{y}}(\hat{y})\right]_{lm_{l}}$$

- $\varphi_{K_{\perp}}^{l_{x}l_{y}}(\alpha) = N_{K}^{l_{x}l_{y}}(\sin \alpha)^{l_{x}}(\cos \alpha)^{l_{y}} P_{n}^{l_{x}+\frac{1}{2},l_{y}+\frac{1}{2}}(\cos 2\alpha)$
- $N_{K}^{l_{x}l_{y}}$: normalization constant
- $P_n^{a,b}$: Jacobi polynomial by order $n = (K I_x I_y)/2$

✦ For *NN* interactions, we use the Yukawa-type Malfliet-Tjon (MT) [R. Malfliet and J. Tjon NPA 127 1969]

$$V_{NN}(r) = \sum_{i=1}^{2} C_{i} \frac{e^{-\mu_{i}r}}{r},$$
(1)

This potential supports a deuteron binding energy of -2.2307 MeV.

(I, J)	<i>a</i> 0 (fm)	$ m r_{eff}$ (fm)	$C_1 (\text{MeV} \cdot \text{fm})$	$\mu_1 ~({\rm fm}^{-1})$	$C_2 (\text{MeV} \cdot \text{fm})$	$\mu_2 ({\rm fm}^{-1})$
(1,0)	-23.56	2.88	-513.968	1.55	14.38.72	3.11
(0,1)	5.51	1.89	-626.885	1.55	1438.72	3.11

Two-Body Potentials:

$N-\phi\left({}^{4}S_{3/2} ight)$ potential

★ concrete parameterizations, are taken straight from [Y. Lyu et al PRD 106,2022] which is published recently by the HAL QCD collaboration.

✤ composed of attractive Gaussian and long-range Yukawa squared attractions

$$V_{A}(r) = \sum_{i=1}^{2} \alpha_{i} e^{-(r/\beta_{i})^{2}} + a_{3} m_{\pi}^{4} f(r; \beta_{3}) \left(\frac{e^{-m_{\pi}r}}{r}\right)^{2}.$$
 (2)

+ long-range part of $N-\phi$ dominated by two-pion exchange (TPE).

This behavior suggests the $V_A(r)$ has a TPE tail at long range with a strength coefficient m_{π}^4 . for comparison, a purely phenomenological Gaussian form is considered,

$$I_{B}(r) = \sum_{i=1}^{3} \alpha_{i} e^{-(r/\beta_{i})^{2}}.$$
(3)

Two-Body Potentials:

$N-\phi\left({}^{4}S_{3/2} ight)$ potential

★ for $f(r; b_3)$ two different types commonly used in the *NN* potential, is applied a Nijmegen-type form factor

$$f_{erfc}(r;\beta_3) = \left[erfc\left(\frac{m_{\pi}}{\Lambda} - \frac{\Lambda r}{2}\right) - e^{2m_{\pi}r}erfc\left(\frac{m_{\pi}}{\Lambda} + \frac{\Lambda r}{2}\right)\right]^2/4, \quad (4)$$

• and the Argonne-type form factor,

$$f_{exp}(r;\beta_3) = \left(1 - e^{-(r/\beta_3)^2}\right)^2,$$
 (5)

• $m_{\pi} = 146.4$ MeV, $\Lambda = 2/\beta_3$ and *erfc* $(z) = \frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{-t^2} dt$ is the complementary error function

function.

• we refer to $V_A(r)$ with $f_{erfc}(f_{exp})$ form factor as $A_{erfc}(A_{exp})$ model, \blacklozenge and model B is applied to $V_B(r)$.

★ by A_{erfc} potential are the scattering length $a_0^{N-\phi} = -1.43(23)$ fm, and the effective range $r_{eff}^{N-\phi} = 2.36(10)$ fm and no binding energy is observed for this interaction.

$N - \phi \left({}^{4}S_{3/2} \right)$ potential

Table: The parameters of $N-\phi$ (${}^{4}S_{3/2}$) potential at lattice Euclidean time 14. The numbers in parentheses indicate statistical errors.

	$\alpha_1 \text{ (MeV)}$	$\beta_1 \text{ (fm)}$	α_2 (MeV)	$\beta_2 \text{ (fm)}$	$\alpha_3 m_{\pi}^{4n} $ (MeV · fm ²ⁿ)	β_3 (fm)
A _{erfc}	-376(20)	0.14(1)	306(122)	0.46(4)	-95(13)	0.41(7)
A _{exp}	-371(27)	0.13(1)	-119(39)	0.30(5)	-97(14)	0.63(4)
B-3G	-371(19)	0.15(3)	-50(35)	0.66(61)	-31(53)	1.09(41)

[Y. Lyu et al PRD 106,2022]

Two-Body Potentials:

 $N-\phi \left({}^{4}S_{3/2} \right)$ potential

★ for three model, i.e. A_{erfc} (blue solid line), A_{exp} (red dashed lines), and B - 3G (purple dot line) using the parameters given in Table.

Nuclear matter radius

The common feature of all HH calculations is a very rapid convergence of the WF and a relatively slow one for the binding energy. The geometrical properties of these systems can be extracted by [B. Danilin et al. NPA 1998] The nuclear matter radius of A-nucleon system:

$$r_{mat} = \sqrt{\langle r^2 \rangle} = \sqrt{\frac{1}{A} \left[\left(\sum_{q=1}^3 A_q \left\langle r_{A_q}^2 \right\rangle \right) + \langle \rho^2 \rangle \right]}; \quad r^2 = \frac{1}{A} \sum_{i=1}^A r_i^2$$

- r_i : position of *i*-th nucleon with respect to the C.M. of the system
- A_q: Mass number
- $\left\langle r_{A_q}^2 \right\rangle$ squared radius of each cluster
- $\left\langle \rho^2 \right\rangle = \sum_{\beta} \int d\rho \rho^2 \left| \mathcal{R}^j_{\beta} \left(\rho \right) \right|^2$
- To calculate the r.m.s. matter radius of the φ-d system, strong interaction radius of proton, neutron and φ-meson 0.82, 0.80 fm and 0.46 fm, respectively, are used as input.
 [X.-Y. Wang et al PRC 108 2023]

Numerical Results

- B₃: Three-body binding energies (in MeV) for (1) $J^{\pi} = (0)2^{-} \phi d$ by $K_{max} = 80$
- Nuclear matter radius (*r_{mat}*)
- By experimental values of masses, $m_N = 938.9 \ MeV/c^2$ and $m_{\phi} = 1019.5 \ MeV/c^2$,
- And masses obtained from (2 + 1)-flavor lattice QCD simulations, $m_N = 954.0 \ MeV/c^2$ and $m_{\phi} = 1048.0 \ MeV/c^2$
- no bound state found for $(I)J^{\pi} = (1)1^{-} \phi NN$ state, i.e. ϕnn and ϕpp

	A _{erfc}		A _{exp}		B – 3G	
	B_3 (MeV)	<i>r_{mat}</i> (fm)	B_3 (MeV)	r _{mat} (fm)	B_3 (MeV)	<i>r_{mat}</i> (fm)
Expt.	6.9	8.33	6.8	8.24	6.7	8.08
Lattice	7.3	8.35	7.2	8.25	7.1	8.05

 B₃ by lattice masses are a bit larger than by the experimental masses. Increasing the masses, repulsive kinetic energy contribution will decrease which in turn leads to an increment in binding energies.

Summary

- Binding energy of the three-body system ϕNN is examined using the
- HAL lattice QCD $N \phi$ potential in the ${}^{4}S_{3/2}$ channel in three different analytical forms, i.e. A_{erfc} , A_{exp} and B 3G
- And semi-realistic Malfliet-Tjon NN interactions.
- Coupled Faddeev equations in the coordinate space are solved within the hyperspherical harmonics expansion method.
- No bound state or resonances found for $(I)J^{\pi} = (1)1^{-}\phi nn$ and ϕpp systems.
- (1)J^π = (0)2[−], φ−d system in the maximal spin presents a bound state about 7 MeV and a nuclear matter radius of about 8 fm.
- $\phi-d$ system in the maximal spin channel cannot couple to the lower three-body open channels ΛKN and ΣKN because D wave subsystems ΛK and ΣK are kinematically suppressed at low energies.
- Because of the small phase space, the decay to final states by four or more particles e.g. $\Sigma \pi KN$, $\Lambda \pi KN$, and $\Lambda \pi \pi KN$ are supposed to be suppressed
- Last but not least, in original HAL $N \phi$ potential the OZI(Okubo-Zweig-Iizuka) violating $s\bar{s}$ annihilation is not considered in their simulations. Nevertheless, considering the coupling to channels like ρN or $\pi \Delta$ could change the results obtained here significantly.

Thanks **HHIQCD2024** organizers for organizing such wonderful event!

Thank You for your attention!

Backup

Hyperradial wave function are expanded in a discrete orthonormal basis up to i_{max} hyperradial excitations in each channel,

$$\mathcal{R}_{\beta}^{j}\left(\rho\right) = \sum_{i=0}^{i_{max}} C_{i}^{\beta j} R_{i\beta}\left(\rho\right),$$

 $C_i^{\beta j}$: diagonalization coefficients, Hyperradial functions is

 $R_{i\beta}(\rho) = \rho_0^{-3} \left[i! / (i+5)! \right]^{1/2} L_i^5(z) \exp\left(-z/2\right),$

 $L_{i}^{5}(z)$: Laguerre polynomial, $z = \rho/\rho_{o}$ with scaling radius ρ_{0} .