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Yesterday
▪ The theoretical approach to high energy scattering 

in the pre-QCD era was established by V. Gribov 
and is known as Gribov‘s Reggeon Calculus 
(1968).  

▪ The brick from which we wanted to do this was the 
Pomeron (Reggeon with the intercept close to 1). 

▪ Of course one defect of the approach has been 
seen from the beginning, namely the absence of 
a theoretical idea how to select the interaction 
between Pomerons. 

▪ The death of the Reggeon Approach was in 1974.
was in 1974.



Yesterday
▪ The microscopic theory of QCD was established by 

Fritzsch, Gell-Mann and Leutwyler (1973), Gross 
and Wilczek (1973), and Weinberg (1973). 

▪ One of the simplest scattering processes that occur at 
short distances is the reaction  

▪ The Deep Inelastic Scattering (DIS) experiment 
allows us to investigate the structure of the hadron at 
short distances by observing the recoil electron e′



Yesterday
▪ Previous figure was in the infinite momentum 

frame (IMF). 
▪ However, since our goal is to study the high energy 

behavior of QCD, it’s better to use the dipole 
picture of DIS (Gribov (1970); Bjorken and 
Kogut (1973); Bertsch et al. (1981); Frankfurt 
and Strikman (1988); Kopeliovich et al. (1981); 
Mueller (1990); Nikolaev and Zakharov(1991))  

▪



Yesterday
▪ Colour dipoles are the correct degrees of 

freedom at high energy QCD. 
▪ The physical picture of DIS presented is the 

following: virtual photon splits into a quark–
antiquark pair, which, by the time it reaches the 
target develops a cascade of dipoles, each of 
which independently interacts with the target. 

▪



Yesterday
▪ First attempt to the study of high energy limit in QCD 

began with the derivation of the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) Pomeron (1975). 

▪ The BFKL equation represents an important step 
toward understanding of high energy asymptotics of 
QCD. But also raised some important questions.



Yesterday
▪ The BFKL evolution equation for the dipole-target 

scattering amplitude N(x10, b, Y; R) was derived 

▪ Using a Mellin transform with respect to Y, and 
then expanding the dipole distribution on a 
conformal basis, we find (Lipatov, 1986)
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Yesterday
▪ At large values of Y=ln(1/x) the main contribution 

stems from the first term with n = 0. We have 

▪ Taking the integral over     using the method of 
steepest decent, we see that

With                 , ,



Yesterday
▪ Defining 

▪ We obtain 

▪ This shows the so called geometric scaling. 
▪ Value of       is found by solving
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and for we get 



Today
▪ Seminal paper of Gribov, Levin and Ryskin (GLR, 

1983) put forward the idea that nonlinear effects in 
QCD evolution lead to saturation of gluonic density 
at high enough energy. 

▪ Nonlinear term slows down the small-x evolution, 
leading to parton saturation and to total cross 
sections adhering to the black disk limit



Today
▪ This BFKL Parton cascade leads to Balitsky-

Kovchegov (BK) equation for the amplitude and 
gives the theoretical description of the DIS 
(Mueller (1994), Balistky (1999), Kovchegov 
(1999), Levin and Lublinsky (2003)). 

▪



Today

▪ Saturation region of QCD for the elastic scattering 
amplitude. The critical line (z=0) is shown in red. 
The initial condition for scattering with the dilute 
system of partons (with proton) is given at ξs = 0. 
For heavy nuclei the initial conditions are placed 
at YA = (1/3) ln A ≫ 1, where A is the number of 
nucleon in a nucleus.



Today
▪ Performing a “Fourier transform” 

▪ We write (Kovchegov (2000)). 

▪ Differentiating this equation over     we get

Where



Today

▪ Introducing the variable     instead of     and the 
new function M as 

▪ At large      M is small so we can neglect the last 
term. This gives a “linear equation”, but with the 
term                      actually coming from the 

Where ,

with and

We can re-write the previous equation in the form

.

,

term



Today
▪ For region I, we have 

▪ We solve this equation using the Mellin transform 

▪ We find M0 and then we back to coordinates. 
The result is .

With



Today
▪ For region II, we have to solve 

▪ We solve this equation using the Mellin transform 

▪ Final result for the elastic amplitude in region II is 
.

with



Today
▪ From the matching condition on the line 

▪ We find constant C 

▪ And from matching conditions at z=0 (red line)
.

.

we find , , .



Diffraction at high energy
▪ An event is considered diffractive if it contains a 

rapidity gap (interval over which no particles are 
produced).

elastic process  

single diffractive 
dissociation 

double diffractive 
dissociation 

central exclusive diffraction  



Diffraction at high energy
▪ The equation for the S-matrix in the BFKL 

cascade has the following form in the dipole 
approach to QCD (Mueller 1994)



Diffraction at high energy
▪ Writing 

▪ And plugging this in the S-matrix equation we 
obtain the Kovchegov-Levin equation (2000) 

with,



Diffraction at high energy
▪ The graphic representation of the terms of of the 

KL equation for diffraction production 

▪ Introducing a new function:

where

,

, , we rewrite



Diffraction at high energy
▪ With initial conditions  

▪ Replacing                                             , it takes 
the form 

▪ with the initial conditions for       as

,

,



Diffraction at high energy
▪ The homotopy method we can use is as follows 

▪ In this work we include in L [up] part of the non-
linear corrections. First, we simplify the non-
linear term as 

▪

With

So we take 



Diffraction at high energy
▪ The first iteration (p=0) gives 

▪ Introducing  

▪ For region I, it reduces to 

with                , we obtain              



Diffraction at high energy
▪ Solution is found by defining                       so that  

▪ With the solution 

▪ Integrating and applying initial conditions, we get

with 



Diffraction at high energy
▪ To solve the integral, we assume           is large, 

so that we can use the expansion        

▪ So defining function                  as  

▪ We obtain 



Diffraction at high energy
▪ Now using the asymptotic expansion  

▪ And for large z leads to 

▪ Finally                          can be rewritten as follows 

we obtain

where 



Diffraction at high energy
▪ For region II, we have 

▪ This equation has the traveling wave solution  

▪    

▪ We rewrite as follows for satisfy initial conditions

where                     and  



Diffraction at high energy
▪ Therefore               is the solution to the equation  

▪ Following the same steps, we obtain   

▪ By doing the matching on the line           , we find  

where                

where                



Diffraction at high energy
▪ Let’s rewrite the KL equation as follows 

▪ We see that  

▪ Applying chain rule on function       

▪ We obtain 



Diffraction at high energy
▪ Therefore 

▪ Finally, amplitude 
▪   

▪

where and 

is given by  

For relate with experiment, we should use formulas 

where



Diffraction at high energy
▪ Now, the equation for the second iteration is 

▪ Taking into account only terms of the order of  

▪ The particular solution can be written as follows



Diffraction at high energy
▪ This was numerical calculation, but you can also 

do some simplifications for obtain an analytical 
solution  

▪ Finally, let me briefly talk you about 
region where            and initial conditions are 

,

or



Diffraction at high energy
▪ We have 

▪ and we rewrite this as 

▪ Considering              large for                        and  

,

small for , we obtain 



Diffraction at high energy

▪ Finally, for the second iteration we have  

,

where 



Conclusions
■ It has been shown that the zero order solution 

(first iteration) is a good approximation for 
solving non-linear equation that appear in QCD, 
and that the iteration procedure, which is being 
partly numerical, leads to small corrections. 

▪ However, there are still some open questions. 
What about for a running coupling? (actually, in 
development!), what about for other nonlinear 
equations? (in development too), how to confront 
these results with experimental data?, etc.

,

Thank you for your attention!

ありがとう!


