HHIQCD 2024

Modified homotopy approach for diffractive production in the saturation region

In collaboration with Carlos Contreras (USM) Eugene Levin (Tel. Aviv) Rodrigo Meneses (UV)

José Garrido Federico Santa María Technical University

10.1103/PhysRevD.110.054045 Thanks to Fondecyt (Chile) grant 1231829 and to UTFSM for support.

Outline

- Yesterday and Today
- Diffraction at high energy
- Conclusions

- The theoretical approach to high energy scattering in the **pre-QCD** era was established by V. Gribov and is known as **Gribov's Reggeon Calculus (1968).**
- The brick from which we wanted to do this was the **Pomeron** (**Reggeon** with the intercept close to 1).
- Of course one defect of the approach has been seen from the beginning, namely **the absence of a theoretical idea** how to select the interaction between Pomerons.
- **The death of the Reggeon Approach** $\leq R$ was in **1974.**

- The **microscopic theory of QCD** was established by **Fritzsch, Gell-Mann and Leutwyler (1973), Gross and Wilczek (1973), and Weinberg (1973).**
- One of the simplest scattering processes that occur at short distances is the reaction $e + p \longrightarrow e' + X$

▪ The **Deep Inelastic Scattering (DIS)** experiment allows us to investigate the structure of the hadron at short distances by observing the recoil electron e′

- **Previous figure was in the infinite momentum** frame (IMF).
- However, since our goal is to study the high energy behavior of QCD, it's better to use the **dipole picture of DIS (Gribov (1970); Bjorken and Kogut (1973); Bertsch et al. (1981); Frankfurt and Strikman (1988); Kopeliovich et al. (1981); Mueller (1990); Nikolaev and Zakharov(1991))**

- **Colour dipoles are the correct degrees of freedom at high energy QCD.**
- **The physical picture of DIS presented is the** following: virtual photon splits into a **quark– antiquark pair**, which, by the time it reaches the target develops a cascade of dipoles, each of which independently interacts with the target.

• First attempt to the study of high energy limit in QCD began with the derivation of the **Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron (1975).**

The BFKL equation represents an important step toward understanding of high energy asymptotics of QCD. But also raised some important questions.

■ The BFKL evolution equation for the dipole-target scattering amplitude N(x10, b, Y; R) was derived

$$
\frac{\partial}{\partial Y} N(x_{10}, b, Y; R) = \left(\text{With } K^{\text{LO}}(x_{02}, x_{12}; x_{10}) = \frac{x_{10}^2}{x_{02}^2 x_{12}^2} \right)
$$
\n
$$
\bar{\alpha}_S \int \frac{d^2 x_2}{2 \pi} K(x_{02}, x_{12}; x_{10}) \left(N(x_{12}, b - \frac{1}{2} x_{20}, Y; R) + N(x_{20}, b - \frac{1}{2} x_{12}, Y; R) - N(x_{10}, b, Y; R) \right)
$$

■ Using a Mellin transform with respect to Y, and then expanding the dipole distribution on a conformal basis, we find (**Lipatov, 1986**)

$$
N^{BFKL}(\rho_{1}, \rho_{2}; \rho_{1'}, \rho_{2'}; Y) = 8 \bar{\alpha}_{S}^{2} \sum_{even \ n}^{\infty} \int_{-\infty}^{\infty} d\nu \int e^{\bar{\alpha}_{S} \chi(n,\nu)Y} \frac{\nu^{2} + \frac{n^{2}}{4}}{[\nu^{2} + \frac{(n+1)^{2}}{4}][\nu^{2} + \frac{(n-1)^{2}}{4}]} G^{n,\nu}(\rho_{1}, \rho_{2}; \rho_{1}', \rho_{2}')
$$

\n
$$
With \omega(n, \nu) = \bar{\alpha}_{S} \chi(n, \nu) = \bar{\alpha}_{S} (2\psi(1) - \psi(\frac{1+|n|}{2} + i\nu) - \psi(\frac{1+|n|}{2} - i\nu)), h = \frac{1}{2} + i\nu + \frac{n}{2}, \tilde{h} = \frac{1}{2} + i\nu - \frac{n}{2}
$$

\n
$$
G^{n,\nu}(\rho_{1}, \rho_{2}; \rho_{1}', \rho_{2}') = b_{n,-\nu} w^{h} w^{*\tilde{h}} {}_{2}F_{1}(h, h, 2h; w) {}_{2}F_{1}(\tilde{h}, \tilde{h}; 2\tilde{h}; w^{*})
$$

\n
$$
+ b_{n,\nu} w^{1-h} w^{*1-\tilde{h}} {}_{2}F_{1}(1-h, 1-h, 2-2h; w) {}_{2}F_{1}(1-\tilde{h}, 1-\tilde{h}; 2-2\tilde{h}; w^{*}),
$$

\n
$$
b_{n,\nu} = \pi^{3} 2^{4i\nu} \frac{\Gamma(-i\nu + \frac{1+|n|}{2})}{\Gamma(i\nu + \frac{1+|n|}{2})} \frac{\Gamma(i\nu + \frac{|n|}{2})}{\Gamma(1-i\nu + \frac{|n|}{2})}; \quad w = \frac{\rho_{12}\rho_{1'2'}}{\rho_{11'}\rho_{22'}}
$$

\n
$$
\rho_{ik} = \rho_{i} - \rho_{k};
$$

• At large values of Y=ln(1/x) the main contribution stems from the first term with $n = 0$. We have

$$
H^{\gamma}(w, w^*) = 8\bar{\alpha}_S^2 \frac{(\gamma - \frac{1}{2})^2}{(\gamma(1 - \gamma))^2} \{b_\gamma w^{\gamma} w^{*\gamma} {}_2F_1(\gamma, \gamma, 2\gamma; w) {}_2F_1(\gamma, \gamma; 2\gamma; w^*)
$$

+ $b_{1-\gamma} w^{1-\gamma} w^{*1-\gamma} {}_2F_1(1 - \gamma, 1 - \gamma, 2 - 2\gamma; w) {}_2F_1(1 - \gamma, 1 - \gamma; 2 - 2\gamma; w^*)\}$

With
$$
\gamma = \frac{1}{2} + i\nu
$$
, $b_{\gamma} = \pi^3 2^{4(1/2-\gamma)} \frac{\Gamma(\gamma)}{\Gamma(1/2-\gamma)} \frac{\Gamma(1-\gamma)}{\Gamma(1/2+\gamma)}$, $\bar{\alpha}_S = \frac{\alpha_S N_c}{\pi}$

• Taking the integral over γ using the method of steepest decent, we see that

$$
\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1-\gamma) \approx \chi(\gamma_{cr}) + \frac{1}{2}\chi''(\gamma_{cr})(\gamma - \gamma_{cr})^2
$$

$$
N(r,R;Y,b)=\underbrace{\sqrt{\frac{1}{2\pi\bar{\alpha}_S\chi''(\gamma_{cr})}}8\bar{\alpha}_S^2\frac{(\gamma_{cr}-\frac{1}{2})^2}{(\gamma_{cr}(1-\gamma_{cr}))^2}b_{\gamma_{cr}}\left(\left(\frac{r^2R^2}{(\mathbf{b}^2-\frac{1}{2}(\mathbf{r}-\mathbf{R}))^2(\mathbf{b}^2+\frac{1}{2}(\mathbf{r}-\mathbf{R}))^2}\right)e^{\bar{\alpha}_S\frac{\chi(\gamma_{cr})}{1-\gamma_{cr}}}Y\right)^{1-\gamma_{cr}}}{=N_0}
$$

• Defining

$$
\xi = \ln\left(\frac{r^2 R^2}{(\mathbf{b}^2 - \frac{1}{2}(\mathbf{r} - \mathbf{R}))^2 (\mathbf{b}^2 + \frac{1}{2}(\mathbf{r} - \mathbf{R}))^2}\right) = \ln(r^2 Q_s^2 (Y = 0, b))
$$

,

$$
\kappa = \frac{\chi(\gamma_{cr})}{1-\gamma_{cr}}, \quad Q_s^2(Y,b) = Q_s^2(Y=0,b) e^{\bar{\alpha}_S \kappa Y},
$$

■ We obtain \int_{0}^{1} , \int_{0}^{1} , \int_{0}^{1} , \int_{0}^{1}

$$
N(z)=N_0e^{z\bar{\gamma}}
$$

- This shows the so called **geometric scaling.**
- Value of γ_{cr} is found by solving $\frac{\chi(\gamma_{cr})}{\chi(\gamma_{cr})} = -\frac{d\chi(\gamma_{cr})}{d\chi(\gamma_{cr})}$, we find $\gamma_{cr}=0.37\,$ and for $\bar{\alpha}_S=0.2\,$ we get

■ Seminal paper of Gribov, Levin and Ryskin (GLR, **1983)** put forward the idea that nonlinear effects in QCD evolution lead to saturation of gluonic density at high enough energy.

▪ Nonlinear term slows down the small-x evolution, leading to **parton saturation** and to total cross sections adhering to the **black disk limit** $\sigma_{tot} \leq 2 \pi R^2$.

▪ This BFKL Parton cascade leads to **Balitsky-Kovchegov (BK) equation** for the amplitude and gives the theoretical description of the DIS **(Mueller (1994), Balistky (1999), Kovchegov (1999), Levin and Lublinsky (2003)).**

$$
\overline{\alpha_{S}}\int \frac{d^{2}x_{2}}{2\pi} K(x_{02}, x_{12}; x_{10}) \left(N(x_{12}, b - \frac{1}{2}x_{20}, Y; R) + N(x_{20}, b - \frac{1}{2}x_{12}, Y; R) - N(x_{10}, b, Y; R)\right)
$$
\n
$$
- N(x_{12}, b - \frac{1}{2}x_{20}, Y; R) N(x_{20}, b - \frac{1}{2}x_{12}, Y; R) \right)
$$
\n
$$
\overline{\alpha_{S}}\int \frac{d^{2}x_{2}}{2\pi} K(x_{02}, x_{12}; x_{10}) \left(N(x_{12}, b - \frac{1}{2}x_{12}, Y; R)\right)
$$
\n
$$
\overline{\alpha_{S}}\int \frac{\sinh(\pi i t)}{t^{S}} \frac{\cosh(\pi i t)}{\cosh(\pi i t)} \frac{\cosh(\pi i t)}{\cos
$$

■ Saturation region of QCD for the elastic scattering amplitude. The critical line (z=0) is shown in red. The initial condition for scattering with the dilute system of partons (with proton) is given at $\xi s = 0$. For heavy nuclei the initial conditions are placed at YA = (1/3) In A \gg 1, where A is the number of nucleon in a nucleus.

▪ Performing a "Fourier transform"

$$
N\left(x_{01}^2,b,Y\right) \;=\; x_{01}^2 \,\int \frac{d^2k_\perp}{2\pi}\,e^{i\bm{k}_\perp\cdot\bm{x}_{01}}\,{\widetilde N}\left(k_\perp,b,Y\right) \,=\, x_{01}^2 \int\limits_0^\infty k_\perp dk_\perp J_0\left(x_{01}k_\perp\right)\,{\widetilde N}\left(k_\perp,b,Y\right)
$$

▪ We write **(Kovchegov (2000)).**

$$
\frac{\partial \widetilde{N}\left(k_{\perp},b,Y\right)}{\partial Y} \;=\; \bar{\alpha}_S\Bigg\{\chi\left(-\,\frac{\partial}{\partial \tilde{\xi}}\right) \widetilde{N}\left(k_{\perp},b,Y\right) \;-\; \widetilde{N}^2\left(k_{\perp},b,Y\right)\Bigg\}
$$

Where $\tilde{\xi} = \ln (Q_s^2 (Y = Y_A, b) / k_{\perp}^2)$ and $\tilde{z} = \bar{\alpha}_s \kappa (Y - Y_A) + \tilde{\xi} = \ln (Q_s^2 (Y, b) / k_{\perp}^2)$

• Differentiating this equation over $\tilde{\xi}$ **we get** $\frac{\partial^2 \widetilde{N}\left(k_{\perp},b,Y\right)}{\partial Y\,\partial\tilde{\xi}}\,\,\,=\,\,$ $\left\{ \bar{\alpha}_S \!\left\{ \chi_0 \left(-\frac{\partial}{\partial \tilde{\xi}} \right) \; \frac{\partial \widetilde{N} \left(k_\perp,b,Y \right)}{\partial \, \tilde{\xi}} \; + \; \widetilde{N} \left(k_\perp,b,Y \right) \; - \; 2 \frac{\partial \widetilde{N} \left(k_\perp,b,Y \right)}{\partial \, \tilde{\xi}} \widetilde{N} \left(k_\perp,b,Y \right) \right\} \right\}$

Where
$$
\chi_0(\gamma) = \chi(\gamma) - \frac{1}{\gamma}
$$
, $\gamma = -\frac{\partial}{\partial \tilde{\xi}}$.

• Introducing the variable \tilde{z} **instead of** $\tilde{\xi}$ **and the** new function M as

$$
\frac{\partial \widetilde{N}\left(k_{\bot},b,\delta\tilde{Y}\right)}{\partial\,\tilde{z}}\;=\;\frac{1}{2}+M\left(\tilde{z},b,\delta\tilde{Y}\right)\quad\text{or}\quad\widetilde{N}\left(\tilde{z},b,\delta\tilde{Y}\right)\;=\;\frac{1}{2}\tilde{z}\,+\,\int\limits_{0}^{\tilde{z}}d\tilde{z}' M\left(\tilde{z}',b,\delta\tilde{Y}\right)\;=\;\frac{\tilde{z}+\zeta}{2}\,+\,\int\limits_{\tilde{z}}^{\infty}d\tilde{z}' M\left(\tilde{z}',b,\delta\tilde{Y}\right)
$$

We can re-write the previous equation in the form

$$
\frac{\partial M\left(\tilde{z}, b, \delta\tilde{Y}\right)}{\partial\delta\tilde{Y}} + \kappa\frac{\partial M\left(\tilde{z}, b, \delta\tilde{Y}\right)}{\partial\tilde{z}} \ = \chi_0\left(\frac{\partial}{\partial\tilde{z}}\right)\,M\left(\tilde{z}, b, \delta\tilde{Y}\right) - \ \left(\tilde{z} + \zeta\right)M\left(\tilde{z}, b, \delta\tilde{Y}\right) + M\left(\tilde{z}, b, \delta\tilde{Y}\right)\int_{\tilde{z}}^\infty d\tilde{z}' M\left(\tilde{z}', b, \delta\tilde{Y}\right)
$$

with $\delta \tilde{Y} = \overline{\alpha}_S (Y - Y_A)$ and $\zeta = \int_0^\infty dz' M(\tilde{z}', b, \delta \tilde{Y})$

At large \tilde{z} , M is small so we can neglect the last term. This gives a "linear equation", but with the term $(\tilde{z} + \zeta)\,M\left(\tilde{z},b,\delta\tilde{Y}\right)$ actually coming from the \tilde{N}^2 term

.

■ For region I, we have

$$
\kappa \frac{d M_0^I\left(\tilde{z},b\right)}{d\tilde{z}} = \chi_0\left(\frac{d}{d\tilde{z}}\right) M_0^I\left(\tilde{z},b\right) - \left(\tilde{z} + \zeta\right) M_0^I\left(\tilde{z},b\right)
$$

- We solve this equation using the Mellin transform $\epsilon+i\infty$ $M_0^I\left(\tilde{z},b\right)=\;\; \int \;\frac{d\gamma}{2\pi i}e^{\gamma(\tilde{z}+\zeta)}m_0^I\left(\gamma,b\right)$
- We find M0 and then we back to coordinates. The result is

 $\epsilon - i \infty$

$$
N_0^I(z) = 1 - C \exp\left(-\frac{(z - \tilde{z})^2}{2\kappa}\right)
$$

With $\tilde{z} = 2(\ln 2 + \psi(1)) - \zeta$

• For region II, we have to solve

$$
\frac{\partial M_0^{II}}{\partial\,\delta\tilde Y}+\kappa\frac{\partial M_0^{II}}{\partial\tilde z}=\chi_0\left(\frac{\partial}{\partial\tilde z}\right)M_0^{II}-(\tilde z+\zeta)M_0^{II}
$$

■ We solve this equation using the Mellin transform

$$
M^{II}_0\left(\tilde{z},\delta\tilde{Y}\right) \;=\; \int\limits_{\epsilon-i\infty}^{\epsilon+i\infty} \frac{d\gamma}{2\pi i} e^{(\tilde{z}+\zeta)\;\gamma} m^{II}_0\left(\gamma,\delta\tilde{Y}\right)
$$

• Final result for the elastic amplitude in region II is

$$
N_0^{II}(\xi, z) = 1 - G(\xi) \exp\left(-\frac{(z - \tilde{z})^2}{2\kappa}\right)
$$

with $G(\xi) = \exp\left(\frac{(\xi - \tilde{z})^2}{2\kappa} - \frac{e^{\xi}}{4}\right)$

• From the matching condition on the line ξ_0^A

$$
N^I_0\left(z=\kappa\delta\tilde{Y}+\xi^A_0\right) \;=\; N^{II}_0(\xi=\xi^A_0, z=\kappa\delta\tilde{Y}+\xi^A_0)
$$

▪ We find constant C

$$
C = \exp\left(\frac{(\xi_0^A - \tilde{z})^2}{2\kappa} - \frac{e^{\xi_0^A}}{4}\right)
$$

 \blacksquare And from matching conditions at $z=0$ (red line)

$$
N_0^I(z=0) = N_0 \qquad \frac{d \ln N_0^I(z)}{dz} \bigg|_{z=0} = \bar{\gamma}
$$

we find $\tilde{z} = -\frac{\kappa \bar{\gamma} N_0}{1 - N_0} = -1.02$, $C = 0.83$, $\xi_0^A = 0.56$.

 \blacksquare

▪ An event is considered diffractive if it contains a rapidity gap (interval over which no particles are produced).

• The equation for the S-matrix in the BFKL cascade has the following form in the dipole approach to QCD (Mueller 1994)

$$
\frac{d}{dY}S(Y,r;\boldsymbol{b}) = \bar{\alpha}_S \int d^2r \frac{r^2}{\frac{r'^2(r-r')^2}{K(r,r')}} \left\{ S\left(Y,r';\boldsymbol{b}-\frac{1}{2}(r-r)\right) S\left(Y,r-r';\boldsymbol{b}-\frac{1}{2}r\right) - S(Y,r;\boldsymbol{b}) \right\}
$$

■ Writing

 $S^{D}(Y, r; b) = 1 - 2N(Y, r; b) + N^{D}(Y, Y_0, r, b)$

• And plugging this in the S-matrix equation we obtain the **Kovchegov-Levin equation (2000)**

 $\frac{\partial N^D\left(Y,Y_0,r_{10};b\right)}{=}$ ∂Y_M $\frac{\bar{\alpha}_S}{2\pi} \int d^2r_2 K(r_{10}|r_{12},r_{02}) \left\{ N^D\left(Y,Y_0,r_{12};b\right) + N^D\left(Y,Y_0,r_{20};b\right) - N^D\left(Y,Y_0,r_{10};b\right) \right\}$ $+N^D(Y; Y_0, r_{12}; b)N^D(Y; Y_0, r_{20}; b) - 2N^D(Y; Y_0, r_{12}; b)N(Y; r_{20}; b)$ $-2 N(Y; r_{12}; b) N^{D}(Y; Y_0, r_{20}; b) + 2 N(Y; r_{12}; b) N(Y; r_{20}; b)$, with $Y_M = Y - Y_0$ \overline{Y} N^D Y_0 Ω

The graphic representation of the terms of of the KL equation for diffraction production

EXECUTE: Introducing a new function:

$$
\mathscr{N}(z,\delta\tilde{Y},\delta Y_0) \,=\, 2\,N(z,\delta\tilde{Y}) \,-\,N^D(z,\delta\tilde{Y},\delta Y_0)
$$

where $\,\delta Y=\bar\alpha_S\,(Y-Y_A)$, $\,\delta Y_0=\bar\alpha_S\,(Y_0-Y_A)$, we rewrite

$$
\frac{\partial \mathcal{N}_{01}}{\partial Y} = \bar{\alpha}_S \int \frac{d^2 x_{02}}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} \Big\{ \mathcal{N}_{02} + \mathcal{N}_{12} - \mathcal{N}_{02} \mathcal{N}_{12} - \mathcal{N}_{01} \Big\}
$$

▪ With initial conditions

 $\mathcal{N}(z\rightarrow z_0, \delta\tilde{Y}=\delta Y_0, \delta Y_0) = 2 N(z_0, \delta Y_0) - N^2(z_0, \delta Y_0)$

• Replacing $\mathcal{N}(z, \delta Y_0) = 1 - \Delta^D(z, \delta Y_0)$, it takes the form ,

$$
\frac{\partial \Delta_{01}^D}{\partial Y} \,=\, \bar{\alpha}_S \int \frac{d^2 \, x_{02}}{2 \pi} \frac{x_{01}^2}{x_{02}^2 \, x_{12}^2} \Bigl\{ \Delta_{02}^D \Delta_{12}^D - \Delta_{01}^D \Bigr\}
$$

• with the initial conditions for Δ^D as

Region I: $\Delta_{01}^D(z \to z_0, \delta Y_0) = C^2 \exp \left(-\frac{(z_0 - \tilde{z})^2}{\kappa}\right)$

Region II: $\Delta_{01}^D(z \to z_0, \delta \tilde{Y} \to \delta Y_0, \delta Y_0) = 1 - N_{in} = G^2(\xi) \exp \left(-\frac{(z_0 - \tilde{z})^2}{\kappa}\right)$

with
$$
G(\xi) = \exp\left(\frac{(\xi - \tilde{z})^2}{2\kappa} - \frac{1}{4}e^{\xi}\right)
$$

■ The homotopy method we can use is as follows

$$
\mathscr{H}\left(p,u\right) \;=\; \mathscr{L}[u_p]\,+\,p\,\mathscr{N}_{\mathscr{L}}[u_p]\;=\;0
$$

With $u_p(Y, x_{10}, b) = u_0(Y, x_{10}, b) + p u_1(Y, x_{10}, b) + p^2 u_2(Y, x_{10}, b) + \ldots$

• In this work we include in $\mathscr{L}[u_p]$ part of the nonlinear corrections. First, we simplify the nonlinear term as

$$
\bar{\alpha}_S \int \frac{d^2 x_{02}}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} \Delta_{02}^D \Delta_{12}^D \rightarrow \Delta_{01}^D \int_0^z dz' \Delta_{02}^D = \Delta_{01}^D \left(\zeta_\Delta - \int_z^\infty dz' \Delta_{02}^D \right) \text{ with } \zeta_\Delta = \int_0^\infty dz' \Delta_{02}^D
$$

So we take

$$
\mathscr{L}\left(\Delta_0^D\right) \ = \ \left(\frac{\partial}{\partial\delta\tilde{Y}}\,+\,z\,-\,\zeta_\Delta\right)\,\Delta_0^D \ + \ \Delta_0^D\left(z,\delta\tilde{Y},z_0\right)\,\int\limits_z^\infty dz'\Delta_0^D\left(z',\delta\tilde{Y},z_0\right)\\ \mathscr{N}\mathscr{L}\left[\Delta^D\right] \ = \ \ \bar{\alpha}_S\,\int\,\frac{d^2\,x_{02}}{2\pi}\frac{x_{01}^2}{x_{02}^2\,x_{12}^2}\Delta_0^D\left(x_{02}\right)\Delta_0^D\left(x_{12}\right) - \Delta_0^D\,\int\limits_z^{x_{01}^2} \frac{dx_{02}^2}{x_{02}^2}\Delta_{02}^D\Delta_0^D\left(x_{12}\right)\,.
$$

■ The first iteration (p=0) gives

$$
\mathscr{L}\left(\Delta_0^D\right) \;=\; 0; \quad \left(\frac{\partial}{\partial \delta \tilde{Y}} \;+\; z \;-\; \zeta_{\Delta} \right) \Delta_0^D \;+\; \Delta_0^D\left(z,\delta \tilde{Y},z_0\right) \int\limits_z^\infty dz' \Delta_0^D\left(z',\delta \tilde{Y},\boldsymbol{z}_0\right) \,=\; 0;
$$

- Introducing $\Delta^{(0)}(z,\xi_s) = 1 \mathcal{N}_{01}(z,\xi_s) = \exp(-\Omega^{(0)}(z,\xi_s))$ with $\xi_s = \kappa \, \delta \tilde{Y}$, we obtain $\kappa \frac{\partial^2 \Omega^{(0)}(z,\xi_s)}{\partial \xi_s \partial z} = 1 - e^{-\Omega^{(0)}(z,\xi_s)}$
- For region I, it reduces to

$$
\kappa \frac{d^2 \Omega^{(0)}(z, z_0)}{dz^2} = 1 - e^{-\Omega^{(0)}(z, z_0)}
$$

• Solution is found by defining $\frac{d\Omega^{(0)}(z)}{dz} = p(\Omega^{(0)})$ so that

$$
\frac{1}{2}\kappa \frac{dp^2}{d\Omega^{(0)}} = 1 - e^{-\Omega^{(0)}(z)}
$$

▪ With the solution

 Ω (0)

$$
p = \frac{d\Omega^{(0)}}{dz} = \sqrt{\frac{2}{\kappa} \left(\Omega^{(0)} + \exp\left(-\Omega^{(0)}\right) - 1 \right) + C_1}
$$

. Integrating and applying initial conditions, we get

$$
\int_{a}^{\Omega} \frac{d\Omega'}{\sqrt{\Omega' + \exp(-\Omega') - a}} = \sqrt{\frac{2}{\kappa}} (z - \tilde{z})
$$
\nwith $a = (z_0 - \tilde{z})^2 / (2\kappa) - 2\ln C$.

• To solve the integral, we assume $\Omega^{(0,I)}$ is large, so that we can use the expansion $\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty} \frac{(2n-1)!!x^n}{2^n n!}$

$$
\frac{1}{\sqrt{\Omega' + \exp(-\Omega') - a}} = \frac{1}{\sqrt{\Omega' - a}} \left(1 + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{k!} \left(-\frac{e^{-\Omega'}}{2(\Omega' - a)} \right)^k \right)
$$

• So defining function $\mathscr{U}(\Omega^{(0,I)})$ as

$$
\mathscr{U}\left(\Omega^{(0,I)}\right)=\int\limits_{a}^{\Omega^{(0,I)}}\frac{d\Omega'}{\sqrt{\Omega'+\exp\left(-\Omega'\right)-a}}
$$

■ We obtain

$$
\mathscr{U}\left(\Omega^{(0,I)}\right)=2\sqrt{\Omega^{(0,I)}-a}+\sum_{k=1}^{\infty}\frac{(-1)^kk^{k-\frac{1}{2}}(2k-1)!!}{2^k\,k!}e^{-a\,k}\left(\frac{(-1)^k2^k\sqrt{\pi}}{(2k-1)!!}-\Gamma\left(\frac{1}{2}-k,(k(-a+\Omega^{(0,I)})\right)\right)
$$

• Now using the asymptotic expansion $\Gamma(a, z) \sim z^{a-1}e^{-z}$

▪ And for large z leads to we obtain
 $2\sqrt{\Omega^{(0,I)}-a}+\sum_{i=1}^{\infty}\frac{(-1)^{k-1}(2k-1)!!}{2^kk!}\left(\frac{1}{\Omega^{(0,I)}-a}\right)^{k+\frac{1}{2}}\exp\left(-k\Omega^{(0,I)}\right) = \sqrt{\frac{2}{\kappa}}(z-\tilde{z})$

$$
\Omega^{(0,I)}\left(z\right)\,-\,a\,\,=\,\,\frac{\left(z\,-\,\tilde{z}\right)^2}{2\,\kappa}-\sum_{k=1}^{\infty}\frac{(-1)^{k-1}(2k-1)!!}{2^{k}k\,k!}\left(\frac{1}{\frac{\left(z-\tilde{z}\right)^2}{2\,\kappa}}\right)^{k+\frac{1}{2}}\exp\left(-k\,\frac{\left(z-\tilde{z}\right)^2}{2\,\kappa}\right)
$$

• Finally $\Delta_0^{(0,I)} = \exp(-\Omega^{(0,I)})$ can be rewritten as follows

$$
\Delta_0^{(0,I)}(z) = \Delta_{LT}(z) \exp\left(-a + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (2k-1)!!}{2^k k k!} \left(\frac{2\kappa}{(z-\tilde{z})^2}\right)^{k+\frac{1}{2}} \Delta_{LT}^k(z)\right)
$$
\nwhere

\n
$$
\Delta_{LT}(z) = \exp\left(-\frac{(z-\tilde{z})^2}{2\kappa}\right)
$$

■ For region II, we have

$$
\frac{\partial^2 \Omega^{(0)}(z,\xi_s)}{\partial z^2} - \frac{\partial^2 \Omega^{(0)}(z,\xi_s)}{\partial t^2} = \frac{1}{\kappa} \left(1 - e^{-\Omega^{(0)}(z',\xi_s)}\right)
$$

where $z = \xi_s + \xi$ and $t = \xi_s - \xi$.

- **This equation has the traveling wave solution** $\Omega^{(0)}(z,\xi_s)$ $\int_{\Omega_0^{(0)}(z_0,\xi_{0,s})} \frac{d\Omega'}{\sqrt{C_1+\frac{2}{\kappa(\mu^2-\nu^2)}(\Omega'+\exp{(-\Omega')})}}=\mu z\ +\ \nu\,t\ +\ C_2$
	- We rewrite as follows for satisfy initial conditions $\Omega^{(0)}(z,\xi_s)$ $\int_{\Omega_0}^{z,\zeta_s} \frac{d\Omega'}{\sqrt{-\Omega_0 + \Omega' + \exp(-\Omega')}} = \sqrt{\frac{2}{\kappa}} \left((1+\nu) \; z + \nu \, t - \tilde{z} - 2 \nu \, \xi_{0,s} \right)$

• Therefore $\Omega^{(0,II)}$ is the solution to the equation

$$
\mathscr{U}\left(\Omega^{(0,II)},\Omega_0\right) = \sqrt{\frac{2}{\kappa}}\left((1+\nu) z + \nu t - \hat{z}\right)
$$

where $\hat{z} = \tilde{z} + 2\nu \xi_{0,s}$

• Following the same steps, we obtain

$$
\Delta_0^{(0,II)}(z,\xi_s) = \tilde{\Delta}_{LT}(z,\xi_s) \exp\left(-\Omega_0 + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (2k-1)!!}{2^k k k!} \left(\frac{2\kappa}{((1+\nu)z+\nu t-\hat{z})^2}\right)^{k+\frac{1}{2}} \tilde{\Delta}_{LT}^k(z,\xi_s)\right)
$$

where $\tilde{\Delta}_{LT}(z,\xi_s) = \exp\left(-\frac{((1+\nu)z+\nu t-\hat{z})^2}{2\kappa}\right)$

• By doing the matching on the line $\xi = \xi_0^A$ **, we find** $\nu=0$

■ Let's rewrite the KL equation as follows

$$
n^{D}_{01}\;\;=\;\;\frac{\bar{\alpha}_{S}}{2\pi}\,\int\,d^{2}r_{2}\,K\left(r_{10}|r_{12},r_{02}\right)\left\{ N^{D}_{12}+N^{D}_{02}\,-\,N^{D}_{01}+N^{D}_{12}N^{D}_{02}\,-\,2\,N^{D}_{12}\,N_{02}\,-\,2\,N_{12}N^{D}_{02}\,+\,2N_{12}N_{02}\right\}
$$

▪ We see that

$$
n^D\left(z,Y_M,z_0,\delta Y_0;b\right)\;=\;\frac{\partial N^D(z,\delta\tilde{Y},\delta Y_0)}{\partial \delta \tilde{Y}}\;=\;-\frac{\partial \mathcal{N}(z,\delta\tilde{Y},\delta Y_0)}{\partial \delta \tilde{Y}}\;+\;2\frac{\partial N(z,\delta\tilde{Y},\delta Y_0)}{\partial \delta \tilde{Y}}
$$

• Applying chain rule on function \mathscr{U}

 $\frac{d\mathscr{U}\left(\Omega^{\left(0,I\right)}\right)}{dz}=\frac{d\mathscr{U}\left(\Omega^{\left(0,I\right)}\right)}{d\Omega^{\left(0,I\right)}}\frac{d\Omega^{\left(0,I\right)}}{dz}=\frac{d\Omega^{\left(0,I\right)}}{dz}\frac{1}{\sqrt{\Omega^{\left(0,I\right)}+\exp\left(-\Omega^{\left(0,I\right)}\right)-a}}=\sqrt{\frac{2}{\kappa}}$

■ We obtain

 $\frac{\partial \mathcal{N}(z, \delta \tilde{Y}, \delta Y_0)}{\partial \delta \tilde{Y}} = \kappa \frac{d \Omega^{(0,I)}}{dz} \exp\left(-\Omega^{(0,I)}\right) = \sqrt{2 \kappa} \sqrt{\Omega^{(0,I)}+\exp\left(-\Omega^{(0,I)}\right)-a} \ \exp\left(-\Omega^{(0,I)}\right)$

• Therefore

$$
n^{(D,I)} = -\sqrt{2\kappa \left(\Omega^{(0,I)} + \Delta_0^{(0,I)} - a^I\right)} \,\Delta_0^{(0,I)} + 2\sqrt{2\kappa \left(\Omega^{(0,I)} + \Delta_0^{(0,I)} - a^I/2\right)} \,\Delta_0^{(0,I)} \nn^{(D,II)} = -\sqrt{2\kappa \left(\Omega^{(0,II)} + \Delta_0^{(0,II)} - a^{II}\right)} \,\Delta_0^{(0,II)} + 2\sqrt{2\kappa \left(\Omega^{(0,II)} + \Delta_0^{(0,II)} - a^{II}/2\right)} \,\Delta_0^{(0,II)} \n\text{where } a^I = \left(z_0 - \tilde{z}\right)^2 / (2\kappa) - 2\ln C \text{ and } a^{II} = \frac{(z_0 - \tilde{z})^2}{2\kappa} - \frac{(z_0 - \xi_{0,s} - \tilde{z})^2}{\kappa} + \frac{1}{2}\exp\left(z_0 - \xi_{0,s}\right)
$$

Finally, amplitude $N^D(Y; Y_0, r_{01}; b)$ is given by

$$
N^{D}(Y;Y_{0},r_{01};b) = N_{el}^{2}(Y_{0}) + \int_{Y_{0}}^{Y} dY' \sigma_{diff}(Y',Y_{0},b) \equiv N_{el}^{2}(Y_{0}) + \int_{0}^{Y_{M}} dY' n^{D}(Y'_{M},Y_{0},r_{01};b)
$$

For relate with experiment, we should use formulas $\sigma^{\text{diff}}(Y, Y_0, Q^2) = \int d^2 r_\perp \int dz \, |\Psi^{\gamma^*}(Q^2; r_\perp, z)|^2 \, \sigma_{\text{dipole}}^{diff}(r_\perp, Y, Y_0)$ where $\sigma_{\text{dipole}}^{diff}(r_{\perp}, Y, Y_0) = \int d^2b d^2b' N^D(r_{\perp}, Y, Y_0; b)$

▪ Now, the equation for the second iteration is

$$
\left(\kappa\frac{\partial}{\partial z}+z-\zeta\right)\!\Delta_{1}^{D}\left(z,z_{0}\right)+\left.\Delta_{0}^{D}\left(z,z_{0}\right)\int\limits_{z}^{\infty}dz'\Delta_{1}^{D}\left(z',z_{0}\right)+\left.\Delta_{1}^{D}\left(z,z_{0}\right)\int\limits_{z}^{\infty}dz'\Delta_{0}^{D}\left(z',z_{0}\right)=-\underbrace{\mathscr{N}_{\mathscr{L}}[\Delta_{0}^{D}\left(z\right)]}_{\sim\left(\Delta^{0}\right)^{2}}
$$

- **Example 1** Taking into account only terms of the order of $(\Delta^0)^2$ $\Delta^D_1\left(z,z_0\right) \;=\; -\Delta^D_0\left(z,z_0\right) \int\limits^{+\infty}_0 dz' \frac{1}{\Delta^D_0\left(z',z_0\right)}\;\mathscr{N}_\mathscr{L}[\Delta^D_0\left(z'\right)]$
- The particular solution can be written as follows

$$
\Delta_{1}^{D}(z, z_{0}) = -\Delta_{0}^{D}(z, z_{0}) \int_{z}^{\infty} dz' \frac{1}{\Delta_{0}^{D}(z', z_{0})} \mathcal{N}_{\mathcal{L}}[\Delta_{0}^{D}(z')]
$$

\n
$$
\sum_{\substack{0.025 \\ \Delta_{\mathcal{L}} \supseteq 0.015 \\ 0.000}} \sqrt{\sum_{z} \frac{1}{\Delta_{0}^{D}(z', z_{0})} \mathcal{N}_{\mathcal{L}}[\Delta_{0}^{D}(z')]}
$$

 \angle

■ This was numerical calculation, but you can also do some simplifications for obtain an analytical solution

$$
\begin{aligned}\n\left(\kappa \frac{\partial}{\partial z} + z\right) \Delta_1^D(z, \xi, z_0) &= -\mathcal{N}_{\mathscr{L}}[\Delta_0^D(z)] = -\exp\left(-\frac{(z - 2\ln 2)^2}{\kappa} - \tilde{\phi}(\xi, z_0)\right) \\
\kappa \Delta_1^D(z, \xi, z_0) &= \Delta_0^D(z, \xi, z_0) \int_{z_0}^z dz' \frac{\mathcal{N}_{\mathscr{L}}[\Delta_0^D(z')]}{\Delta_0^D(z, \xi, z_0)} \\
&= \Delta_0^D(z, \xi, z_0) \sqrt{\frac{\pi \kappa}{2}} e^{\frac{4 \ln^2 2}{\kappa}} \left(-\text{erf}\left(\frac{z_0 - 4\ln 2}{\sqrt{2\kappa}}\right) + \text{erf}\left(\frac{z - 4\ln 2}{\sqrt{2\kappa}}\right)\right)\n\end{aligned}
$$

Finally, let me briefly talk you about $\Delta_0^{pQCD}(z_D,\xi,z_0)$, region where $z_0 \leq 0$ and initial conditions are

 $\left(\mathcal{N}^D(z\rightarrow z_0,\delta\tilde{Y}=\delta Y_0)=2\,N^{\text{BFKL}}\left(z_0,\delta Y_0\right)-\left(N^{\text{BFKL}}\left(z_0,\delta Y_0\right)\right)^2=2\,N_0\left(r^2\,Q_s^2\left(\delta Y_0\right)\right)^{\bar{\gamma}}-N_0^2\left(r^2\,Q_s^2\left(\delta Y_0\right)\right)^{2\bar{\gamma}}$ or

 $\Omega_0^{0,pQCD} = \mathcal{N}^D(z \to z_0, \delta \tilde{Y} = \delta Y_0, \delta Y_0) = 2 N_0 (r^2 Q_s^2 (\delta Y_0))^{\bar{Y}} - N_0^2 (r^2 Q_s^2 (\delta Y_0))^{\bar{Z} \bar{Y}} = 2 N_0 e^{\bar{\gamma} z_0} - N_0^2 e^{\bar{Z} \bar{\gamma} z_0}$

■ We have

$$
\int\limits_{\Omega_0^{0,pQCD}} \frac{d\,\Omega'}{\sqrt{\Omega'+e^{-\Omega'}-1+\frac{1}{2}\left(\bar\gamma^2\,\kappa\,-\,1\right)\left(\Omega_0^{0,pQCD}\right)^2}}=\sqrt{\frac{2}{\kappa}}\, (z\ -\ z_0)
$$

E and we rewrite this as

$$
\Omega^{0,pQCD}\left(\tilde{\zeta},\Omega_0^{0,pQCD}\right) > 1 \quad \Delta_0^{pQCD}\left(z_D,\xi,z_0\right) = \exp\left(-\Omega^{0,pQCD}(\tilde{\zeta})\right)
$$
\n
$$
\text{with } \tilde{\zeta} = \sqrt{\frac{2}{\kappa}}\left(z-z_0\right) - \mathcal{U}_2\left(\Omega_0^{(pQCD,0)}\right)
$$
\n
$$
\Omega^{0,pQCD}\left(\tilde{\zeta},\Omega_0^{0,pQCD}\right) < 1 \quad \Delta_0^{pQCD}\left(z_D,\xi,z_0\right) = \Omega_0^{0,pQCD}\left(\cosh\left(\frac{z-z_0}{\sqrt{\kappa}}\right) + \bar{\gamma}\sqrt{\kappa}\sinh\left(\frac{z-z_0}{\sqrt{\kappa}}\right)\right)
$$
\n
$$
\text{where } \mathcal{U}_2(\Omega_0^{(pQCD,0)}) = -\sqrt{2}\left(\frac{1}{2}\ln(\Omega_0^{(pQCD,0)})^2 + \frac{1}{2}\ln\frac{(\bar{\gamma}^2\kappa - 1)}{4} \frac{1 + \frac{1}{\bar{\gamma}\sqrt{\kappa}}}{1 - \frac{1}{\bar{\gamma}\sqrt{\kappa}}}\right)
$$

■ Finally, for the second iteration we have

,

Conclusions

- **It has been shown** that the **zero order solution (first iteration)** is a **good approximation** for solving non-linear equation that appear in QCD, and that the iteration procedure, which is being partly numerical, leads to **small corrections**.
- However, there are still some **open questions.** What about for a running coupling? (actually, in development!), what about for other nonlinear equations? (in development too), how to confront these results with experimental data?, etc.

Thank you for your attention!

ありがとう!