
Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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BUT SHOULD I GO WITH A MORE FOCUSED PHYSICS TALK?

i) Quantum-thermodynamics framework for non-equilibrium processes in gauge theories 
(and thermalization probing)

ii) High-energy scattering of quarks and mesons in simple confining models: simulation and 
phenomenology

iii) String breaking and charge-formation dynamics in adiabatic and diabatic real-time processes: 
phenomenology and experiment
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THE OVERVIEW OF TALK 
IN ONE PICTURE…



Bauer, ZD, Klco, and Savage, Quantum simulation of fundamental 
particles and forces, Nature Rev. Phys. 5 (2023) 7, 420-432.

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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Recall Ian Low’s talk on Thursday!



A LITTLE BACKGROUND…



� Fluctuations in the action
� A competitive result in 1983
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Yes!      lattice!44

QCD ON A CHIP!

        times or more slower 
than current supercomputers! 
Only few Kbytes of memory!

1010



Frontier supercomputer, Oak Ridge National Laboratory, USA

WITH MANY REMARKABLE THEORY, ALGORITHM, AND CO-DESIGN EFFORTS TO WORK AND 
HAVING ACCESS TO HUNDREDS OF MILLION CPU HOURS (OR COMPARABLE GPU HOURS) 
ON THE LARGEST SUPERCOMPUTERS IN AROUND THE WORLD LED TO MANY IMPRESSIVE 
RESULTS.

Oak Ridge National Laboratory



Supports NP
Experimental Program 

5

Based on slide content courtesy of Martin Savage.

LATTICE QCD IS SUPPORTING A MULTI-BILLION DOLLAR 
EXPERIMENTAL PROGRAM IN NP (HEP)!



ZD, Detmold, Fu, Grebe, Jay, Murphy, Oare, 
Shanahan, Wagman, arXiv:2402.09362 [hep-lat]. 
See also our two-neutrino studies in Tiburzi 
et al (ZD) (NPLQCD), Phys. Rev. D96, 054505 
(2017)and Shanahan, ZD et al (NPLQCD), Phys. 
Rev. Lett. 119, 062003 (2017).
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large quark masses. Clearly, it is the value of g
NN
⌫ (µ)

with the physical quark masses that is of phenomenolog-
ical interest and, a priori, the quark-mass dependence of
such an LEC is unknown. Therefore, an attempt to con-
strain g

NN
⌫ (µ) or the renormalization-scale–independent

quantity

(1 + 3g
2
A)J1(p̄, p̄; µ) � m

2
n

8⇡2
egNN

⌫ (µ) (50)

at the quark masses of this work will likely have little
bearing on the physical value of the coupling.

Nonetheless, one may still obtain an estimate of the
value of this LEC at the quark-mass value of this work,
in which case the corresponding values of two-nucleon
scattering parameters need to be used in the matching
relation. To date, there are two classes of LQCD compu-
tations of low-energy two-nucleon spectra and scattering
parameters at m⇡ ⇡ 800 MeV via the use of Lüscher’s
finite-volume formalism. The earlier computations in-
volve asymmetric two-nucleon correlation functions, and
point to the existence of rather deep bound states in
both the spin-singlet and spin-triplet two-nucleon chan-
nels [44, 50, 52, 55, 67, 68]. These were subsequently
used to constrain the relevant LECs in electromagnetic
and weak reactions of two-nucleon systems at various
pion masses and allowed preliminary extrapolations to
the physical point [20, 21, 45, 69, 70]. However, at
the finite-volume ground-state two-nucleon energy, which
sets the kinematics of the amplitude in this work, the pi-
onless EFT converges poorly when using the values for
the e↵ective range and scattering length in those stud-
ies. Therefore, obtaining the desired 0⌫��-decay ampli-
tude using those results requires extensions of the current
leading-order matching formalism, or the use of alternate
power-counting schemes. The other set of calculations at
m⇡ ⇡ 800 MeV build symmetric correlation functions to
enable accessing the low-lying spectra via a variational
method. These lead to upper bounds on ground-state en-
ergies that are also consistent with less bound or unbound
two-nucleon systems within uncertainties [54, 62, 71]. No
bound states are seen in complementary studies using the
Bethe-Salpeter potential method [72, 73]. While the as-
sociated scattering length and e↵ective range for these
bounds allow the use of the leading-order matching for-
malism here, it is non-trivial to turn variational bounds
on the energies to bounds on the desired LEC of the EFT,
given the nonlinearity of the matching relation.

Despite these caveats, the matching to the EFT am-
plitude using the above calculation of Ann!pp, leads to
g̃

NN
⌫ (µ = m⇡ = 806 MeV) values that di↵er by a factor of

four depending on whether the non-variational determi-
nations of two-nucleon energy and scattering parameters
or those from the variational studies are used (assuming
the variational bounds are saturated). In both cases, the
extracted values are within an order of magnitude of the
phenomenological estimate of Ref. [64]. Consequently, in-
creasingly controlled determinations of the two-nucleon
quantities that are input to the matching relation are

needed for a robust determination of this LEC. For cal-
culations with physical quark masses, such two-nucleon
quantities are well determined phenomenologically, which
would ease the matching procedure.

Improving on this situation thus requires calculations
of Ann!pp and the finite-volume two-nucleon spectrum
at or near the physical quark masses. A point worth
emphasizing is that the pionless EFT converges at the
finite-volume ground-state energy of the spin-singlet two-
nucleon system, provided that the lattice volume is suf-
ficiently large, hence putting another requirement on fu-
ture calculations. For an exploration of the impact of
volume on the determination of g

NN
⌫ (µ) at the physical

values of quark masses, see Ref. [37].

V. SUMMARY AND CONCLUSION

Within the coming few decades, the sensitivity of exper-
imental neutrinoless double-beta decay searches is pro-
jected to increase by several orders of magnitude, corre-
sponding to an order of magnitude decrease in the e↵ec-
tive 0⌫�� masses that can be probed [16]. Given current
best estimates of nuclear matrix elements, these exper-
iments will likely—but not definitively—be sensitive to
the entirety of the parameter space for the inverted hi-
erarchy of neutrino masses. These searches thus have a
large discovery potential but also present the possibility
of definitively ruling out the Majorana nature of the neu-
trino if they find no such decays and if neutrino oscillation
experiments confirm the inverted mass hierarchy. Thus,
either positive or negative results in next-generation ex-
periments will shed crucial light on this problem provided
that the dominant mode of decay is via the exchange of
a light Majorana neutrino and that the corresponding
nuclear matrix elements can be computed accurately to
extract m�� from measured (bounds on) half-lives.

Starting with the low-energy constants from nuclear
e↵ective field theories, nuclear many-body theories can
provide ab initio calculations of binding energies and
0⌫�� matrix elements in light to moderate (A . 48)
nuclei [74, 75]. For heavier nuclei (16 . A . 132),
EFT-based approximations to nuclear physics can pre-
dict 0⌫�� half-lives with more control than the nuclear
models currently used [76–78]. As such, determining
these low-energy constants in the timescales relevant for
these next-generation experiments is of substantial im-
portance to the nuclear- and particle-physics communi-
ties [16, 17].

This work presents the first LQCD calculation of the
long-distance 0⌫��-decay amplitude of a nuclear system,
yielding the result

a
2Ann!pp = 0.078(16) (51)

on a single LQCD ensemble with a lattice spacing of a =
0.145 fm, a lattice volume of (L/a)3⇥T/a = 323⇥48, and
quark masses corresponding to a pion mass of m⇡ = 806

⌫e

e+

L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3 µ = mphys.
⇡ = 140 MeV@

Savage et (ZD) [NPLQCD], Phys. 
Rev. Lett. 119,062002 (2017).

TWO EXAMPLES: REACTIONS OF NUCLEONS

Proton-proton fusion Neutrinoless double-  decayβ

For a review see: ZD, Detmold, Orginos, Parreño, 
Savage, Shanahan, Wagman, Phys. Rept. 900, 1-74 (2021).



DOES THIS MEAN WE ARE ALL SET?

…WELL, UNFORTUNATELY NOT!



THREE FEATURES MAKE LATTICE QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with the 
number of quarks.

iii) Excitation energies of nuclei are much smaller than the 
QCD scale.

ii) There is a severe signal-to-noise degradation.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



Many-body nuclear structure 
and reaction calculations

A NUCLEAR PHYSICS ROADMAP

Standard Model (QCD)

Physics

Effective Field Theories or 
Phenomenological Models



i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD…both with lattice QCD 
and with ab initio nuclear many-body methods.

LQCD ! LQCD � iµ
X

f

q̄f�
0qf

Path integral formulation:

e�S[U,q,q̄]

with a complex action:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

DOI:10.1063/1.3131566

Image credit: NSF/LIGO/Sonoma State 
University/A. Simonnet



ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang…

…and a wealth of dynamical response functions, transport properties, hadron distribution 
functions, and non-equilibrium physics of QCD.

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

Image credit: Chaudhuri, Advances in High Energy Physics, vol. 2013,\.

<latexit sha1_base64="+yJNp4LbAXCBOeJIbbU60VGwKAc=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCh1ISEfVY9OKxomkLaSyb7aZdutmkuxshhPhXvHhQxKs/xJv/xm2bg7Y+GHi8N8PMPD9mVCrL+jZKK6tr6xvlzcrW9s7unrl/0JZRIjBxcMQi0fWRJIxy4iiqGOnGgqDQZ6Tjj6+nfueRCEkjfq/SmHghGnIaUIyUlvpmlTxk9M516pN6z0cim+Re3jdrVsOaAS4TuyA1UKDVN796gwgnIeEKMySla1ux8jIkFMWM5JVeIkmM8BgNiaspRyGRXjY7PofHWhnAIBK6uIIz9fdEhkIp09DXnSFSI7noTcX/PDdRwaWXUR4ninA8XxQkDKoITpOAAyoIVizVBGFB9a0Qj5BAWOm8KjoEe/HlZdI+bdjnDfv2rNa8KuIog0NwBE6ADS5AE9yAFnAABil4Bq/gzXgyXox342PeWjKKmSr4A+PzB4r8lLY=</latexit>
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eiS[U,q,q̄]

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

Tensor-network methods are 
suitable but still limited! See 
Patrick’s Emonts’s talk later!



An opportunity to explore new 
paradigms and new technologies:


Turning to quantum computation 
since:


i) Hilbert spaces can be encoded 
exponentially more compactly.


ii) Operations can be highly 
parallelized using quantum 
coherence and entanglement!

https://www.pechakucha.com/

Quantum Information Science and Technology for Nuclear Physics, Beck, Carlson, 
Davoudi, Formaggio, Quaglioni, Savage, et al, arXiv:2303.00113 [nucl-ex].

Quantum Simulation for High Energy Physics, Bauer, ZD et al, PRX Quantum 4 
(2023) 2, 027001, arXiv:2204.03381 [quant-ph].

Bauer, ZD, Klco, and Savage, Quantum simulation of fundamental particles and 
forces, Nature Rev. Phys. 5 (2023) 7, 420-432.



Many-body nuclear structure 
and reaction calculations

A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES

Standard Model (QCD)

Quantum 
simulation and 

quantum 
computation?

Physics

Effective Field Theories or 
Phenomenological Models

See e.g., “Cloud 
Quantum Computing of 
an Atomic Nucleus”, 
Dumitrescu, 
McCaskey, Hagen, 
Jansen, Morris, 
Papenbrock, Pooser, 
Dean, and Lougovski, 
Phys. Rev. Lett. 
120, 210501 (2018).



Many-body nuclear structure 
and reaction calculations

A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES

Standard Model (QCD)

Quantum 
simulation and 

quantum 
computation?

Physics

Effective Field Theories or 
Phenomenological Models



A RANGE OF QUANTUM SIMULATORS/COMPUTERS WITH VARING CAPACITY AND CAPABILITY

UNIVERSITY OF MARYLANDHarvard

Atomic systems (trapped 
ions, cold atoms, Rydbergs)


Condensed matter systems 
(superconducting circuits, 
dopants in semiconductors 
such as in Silicon, NV 
centers in diamond)


Optical quantum 
computing

Innsbruck

IO Palaiseau

USTC

LMU/MPQ

Xanadu

Duke/UMD



WHERE DO COMMERCIAL-GRADE SYSTEMS STAND TODAY…AND TOMORROW? 
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WHERE DO COMMERCIAL-GRADE SYSTEMS STAND TODAY…AND TOMORROW? 



QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS

i) Quantum-simulation steps: A brief introduction

ii) Various modes of quantum simulation: Digital, analog, hybrid

iii) Digital-quantum-simulations basics:


qubits and gates

Encoding fermions and bosons onto qubits

State-preparation strategies

Time evolution (via product formulas)

Measurement strategies and observables



ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:

Prepare the 
initial state

Nontrivial specially in 
strongly-interacting 
theories like quantum 
chromodynamics (QCD).

 Thermal states possible.



Depends on the mode of 
the simulator.

The choice of formulation 
and basis states impacts 
the implementation.

Evolve with 

e�iHt

ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:



Measure 
observables

May require non-trivial 
circuits given the 
observable

Exponentially large 
number of amplitudes to 
be measured. Efficient but 
approximate protocols are 
being developed.

ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:



Prepare the 
initial state

Evolve with 

e�iHt
Measure 

observables

Conventional lattice QCD

?

?

QUANTUM SUBPROCESS

CAN WE COMBINE THIS WITH CLASSICAL COMPUTING?
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THIS LECTURE CONCERNS PRIMARILY TIME EVOLUTION.

Evolve with 

e�iHt



Analog
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DIFFERENT APPROACHES TO QUANTUM SIMULATION



Analog

Evolve with 
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.
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

e�iHt

Degrees of freedom in the 
simulator: fermions, bosons, 
spins (of various dimensions), etc.



Analog

Evolve with 

..
.

..
.

DIFFERENT APPROACHES TO QUANTUM SIMULATION

The engineered simulator 
Hamiltonian that mimics the 
Hamiltonian of target system.

Some of the leading analog simulators are: cold-atoms in optical lattices, 
Rydberg atoms with optical tweezers, trapped ions, superconducting 
circuits (including when coupled to photonics systems), etc. 

e�iHt

Atoms in optical lattices

Theory:  Jaksch et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);
Greiner et al., Nature (2001);
Phillips et al., J. Physics B (2002)       
Esslinger et al., PRL (2004);
and many more …

Eugene Demler lectures, 
Harvard University.CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND
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Digital

:

..
.

..
.

DIFFERENT APPROACHES TO QUANTUM SIMULATION

Only qubits as DOF. Only 
universal single- and two-
qubit operations allowed.



Digital

DIFFERENT APPROACHES TO QUANTUM SIMULATION

t = NT � t

..
.

e�i(H1+H2+··· )t =
⇥
e�iH1�te�iH2�t · · ·

⇤t/�t
+O((�t)2)

Trotter-Suzuki expansion:

Other digitalization schemes also exist.

:

e�iH1�t

e�iH2�t

..
.

H = H1 +H2 + · · ·

Andrew Childs lectures on Quantum 
Simulation, University of Maryland.

Each of these can now potentially 
be decomposed to a universal 
set of single and two-qubit gates.

Example of a digital scheme:

…other methods exist too.



Digital

:

..
.

Analog

t = NT � t

Evolve with 

e�iHt

t

..
.

..
.

..
.

DIFFERENT APPROACHES TO QUANTUM SIMULATION

⇡ e�iHt

Analog-Digital
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A textbook of extreme popularity: 
Nielson and Chuang, Quantum Computation 
and Quantum Information.
But some of the newer notions not there.
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(Examples of ) quantum logic gates


State of two qubits: |ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩

≡ a

1
0
0
0

+ b

0
1
0
0

+ c

0
0
1
0

+ d

0
0
0
1

State of a single qubit: |ψ⟩ = a |0⟩ + b |1⟩ ≡ a (1
0) + b (0

1)
 ≡ cos(θ/2) |0⟩ + ieiϕ sin(θ/2) |1⟩

Any unitary on a finite number of qubits can be 
approximated efficiently by a finite sequence of a 
universal gate set.


Two common choices for these gate sets are:

• Rx(θ) = e−iθσ x/2, Ry(θ) = e−iθσy/2, Rz(θ) = e−iθσ z/2, Pϕ = (1 0
0 eiϕ), CNOT

Example of) 
a quantum 
circuit:

Solovay (1995) and Kitaev (1997).

•  (  not strictly needed but more economical.)H, S, CNOT, T S
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Fermions are finite-dimensional locally but obey Fermi statistics. Mapping 
a fermionic Hamiltonian into a qubit Hamiltonian can be done:


using one qubit per fermion but at the cost of non-local qubit 
interactions using Jordan-Wigner transformation:


using more than one qubit per fermion to assist retaining any existing 
locality in the original fermionic Hamiltonian (e.g. Verstrate-Cirac, 
compact, superfast encodings).

ψi = (∏
j<i

σz
j )σ+

i , ψ†
i = (∏

j<i

σz
j )σ−

i

Bosons are infinite-dimensional locally but obey Bose statistics. Mapping 
a bosonic Hamiltonian into a qubit Hamiltonian can be done, e.g.,


using binary encoding, requiring  qubits per boson, 
where  is the cutoff on boson occupation per site:


using unary encoding, requiring  qubits per boson.

η = log(Λ + 1)
Λ

Λ

N̂p |p⟩ = p |p⟩ where |p⟩ = ⊗η−1
j=0 |pj⟩ with p =

η−1

∑
j=0

2jpj
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple 
Hamiltonian, then adiabatically turn the Hamiltonian to that of the 
target Hamiltonian. Requires a non-closing energy gap.


Imaginary time evolution: Start with an easily prepared state and 
evolve with imaginary time operator to settle in the ground state. 
Require implementing non-unitary operator which can be costly.


Variational quantum eigensolver (VQE): Use the variational 
principle of quantum mechanic and classical processing to 
minimize the energy of a non-trivial ansatz wavefunction generated 
by a quantum circuit. The optimized circuit corresponding to the 
minimum energy generates an approximation to ground-state 
wavefunction. Can fail if stuck in local minima manifolds or 
manifolds with exponentially small gradients in qubit number.


Classically computed states: Use classical computing such as 
Monte Carlo or Tensor Networks to learn the state or features of 
the state when possible, for a direct implementation of the state as 
a quantum circuit, or as close enough state to the ground state as 
a starting point of the above algorithms so to achieve more 
efficient implementations.
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Start with a motivated 
parametrization of the state

Image credit:

 Navya Gupta (UMD)
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(IMPROVED) THEORY OF PRODUCT FORMULAS

First-order product formula

Second-order formula

A general bound also exist, see:
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HiConsider the Hamiltonian

is bounded by:

is bounded by:

<latexit sha1_base64="KqR2f8OgKug65fJLJe6LSV2y050="></latexit>

kV1(t)� e
�itHk  t

2

2

�X

i=1

����

 �X

j=i+1

Hj , Hi

�����

<latexit sha1_base64="cRJOeDHTJUbcvPY813r73aok1iY=">AAACGnicbZDLSgMxFIYz3q23qks3wSLUhWVSRN0IogtdKtgLdMYhk6YamswMyRmhDPMcbnwVNy4UcSdufBvTG6j1h8DHf87h5PxhIoUB1/1ypqZnZufmFxYLS8srq2vF9Y26iVPNeI3FMtbNkBouRcRrIEDyZqI5VaHkjbB71q837rk2Io6uoZdwX9HbSHQEo2CtoEjqASnD7jG/yfYEXAQkH1M191g7BoPHhndOlaJ5UCy5FXcgPAlkBCU00mVQ/PDaMUsVj4BJakyLuAn4GdUgmOR5wUsNTyjr0lveshhRxY2fDU7L8Y512rgTa/siwAP350RGlTE9FdpOReHO/K31zf9qrRQ6R34moiQFHrHhok4qMcS4nxNuC80ZyJ4FyrSwf8XsjmrKwKZZsCGQvydPQr1aIQcVcrVfOjkdxbGAttA2KiOCDtEJukCXqIYYekBP6AW9Oo/Os/PmvA9bp5zRzCb6JefzG5RDoAI=</latexit>

V1(t) = e�itH1e�itH2 · · · e�itH�

<latexit sha1_base64="Xohka4f4GTD5/I0v/pybgjv33gY="></latexit>

V2(t) = (e�itH�/2 · · · e�itH2/2e�itH1/2)(e�itH1/2e�itH2/2 · · · e�itH�/2)

<latexit sha1_base64="ylatuOfY77x7Kh8SYpBAqaE5LgI="></latexit>

kV2(t)� e
�itHk  t

3

12

�X

i=1

����

 �X

k=i+1

Hk,

 �X

j=i+1

Hj , Hi

������+
t
3

24

�X

i=1

����


Hi,


Hi,

�X

j=i+1

Hj

������

Childs, Su, Tran, Wiebe, Zhu, Phys. Rev. X 11, 011020 (2021).
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Energy and momentum, particle and charge (both locally 
and globally)


Various correlation functions (both static and dynamical)


Asymptotic S-matrix elements (assuming asymptotic final 
states are reached and overlap with a specified final state 
is desired)  


Entanglement measures such as entanglement spectrum 
(which can signal thermalization or lack of) using efficient 
ansatze.


Fidelities and full state tomography are hard as they demand 
exponentially large number of measurements.

EXAMPLES OF ACCESSIBLE OBSERVABLES

2
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FIG. 1. Schematic overview of the PTPQ-state preparation.
The colored squares in the R circuit denote randomly-chosen
single-qubit rotations around X and Y axes of the Bloch
sphere by angle ⇡

2
and the T gates. The entangling gates

are controlled-Z rotations. The two consecutive single-qubit
gates on each qubit are constrained to be di↵erent in this con-
struction. Entangling gates in each layer only act on adjacent
qubits and this pattern continues, see Ref. [119] for details.
H is a Hadamard gate.

be introduced by penalizing non-physical components of
the random pure state as they evolve in imaginary time.

By accurately obtaining, via a numerical simulation,
the phase diagram of a simple gauge theory (Z2 LGT in
1 + 1 D with matter) at finite temperature and chemical
potential, we demonstrate the utility of TPQ-state ap-
proach in studying thermodynamics of gauge theories for
the first time. Aiming at quantum-computing applica-
tions, associated quantum algorithms, quantum-resource
requirements, and robustness to algorithmic and hard-
ware errors are further studied. The results indicate that
the TPQ-state approach may be a suitable candidate for
e�cient phase-diagram studies of QCD in the future.

Thermal Pure Quantum States for Gauge Theories.
Canonical TPQ states are defined as [120]

��,N� ≡ e−
�
2 H
� R� , (1)

with � being the inverse temperature, N the number of
degrees of freedom of the (discrete) system, and � R� a
Haar-random state. TPQ states approximate thermal
expectation values of ‘mechanical’ operators, i.e., those
that are low-degree polynomials of local operators, via

�O�� ≈
� ��,N �O��,N� �r

� ��,N ��,N� �r

, (2)

with exponential convergence in the system size (as
well as in inverse temperature), see Supplemental Ma-
terial [125] for details. While a single TPQ state su�ces
as N →∞, for faster convergence at finite N , a stochastic
average over r TPQ states can be preformed, denoted by
�⋅�r in the formula.

In gauge theories, ��R� may be unphysical, in which
case Eq. (1) will not reproduce physical thermal observ-
ables. While this issue can be avoided by eliminating
the gauge-field degrees of freedom with certain boundary
conditions in 1+1 D, such a strategy is not generally ap-
plicable. Therefore, we propose ‘physical’ thermal pure
quantum (PTPQ) states

��,N�phys
≡ e−

�
2 H̃
� R� , (3)

by adding a term to the Hamiltonian, H̃ ≡H +∑n f(Gn)

where Gn are Gauss’s law operators at site n, that is
[H,Gn] = 0. The function f is chosen such that un-
physical components of the state as it evolves in imag-
inary time are penalized in energy. Such an approach
is customary in the context of enforcing Gauss’s law in
analog and digital quantum simulation of gauge theo-
ries, and can be applied to both Abelian and non-Abelian
cases [46, 84, 126–131].

A circuit to prepare PTPQ states on quantum com-
puters is illustrated in Fig. 1. First, a random circuit R,
consisting of layers of single-qubit gates and entangling
two-qubit gates, is used to prepare an approximate Haar-
random state. Various designs are suggested for such
task with studied performance [132], and we adopt the
e�cient implementation of Ref. [119]. This random cir-
cuit is followed by a non-unitary operator e−�H�2 acting
upon the resulting random state to produce a standard
canonical TPQ state. Gauss’s law is enforced through

action with QG ≡ e−
�
2 ∑n f(Gn), the circuit implementa-

tion of which depends on the f chosen, see below for the
example of Z2 LGT in 1+1 D. These elements will be
further studied in the following.

Thermal chiral phase diagram of Z1+1
2 . The model that

will be studied in the following to demonstrate the value
of the TPQ-state approach in gauge theories is Z2 LGT
in 1+1 D coupled to staggered fermions (Z1+1

2 ). This
model is su�ciently simple to allow numerical verifica-
tions on classical computers, while it still exhibits a non-
trivial phase diagram which is aimed to be reproduced
by quantum simulation. The Hamiltonian of the model
is

H =
1

2a

N−2

�
n=0

(c†
n
�̃z

n
cn+1 + h.c.) +m

N−1

�
n=0

(−1)nc†
n
cn − ✏

N−2

�
n=0

�̃x

n
,

(4)
where c†

n
(cn) is fermionic creation (annihilation) op-

erator, and �̄z

n
and �̄x

n
are Pauli spin operators re-

alizing the Z2 link and electric field operators, re-
spectively. Open boundary conditions are considered
throughout, and generalization to other boundary con-
ditions is straightforward. N , a, m, and ✏ are fermionic

Image credit:
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One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.



SO WHERE DO WE START? WHAT ARE THE QUESTIONS 
TO ADDRESS? WHAT DO WE NEED TO DEVELOP?



Theory developments

Algorithmic developments

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: A MULTI-PRONG EFFORT

Implementation, benchmark, 
and co-development



Theory developments

How to formulate Standard Model field theories in 
the Hamiltonian language?

What are the efficient formulations? Which bases 
will be most optimal toward the continuum limit?

How to preserve the symmetries? How much 
should we care to retain gauge invariance? 

How to quantify systematics such as finite volume, 
discretization, boson truncation, time digitization, etc?



Fermion 
mass

Fermion 
hopping term

Energy of color 
electric field

Energy of color 
magnetic field

4

The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.
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ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
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The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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corresponds to the energy stored in the electric
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Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
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temporal direction equal to unity.
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa
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Ê

c

L
,

[Êa

R
, Ê
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Ê

c

R
,

[Êa
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spectrum of U is bounded but continuous. 

HAMILTONIAN FORMULATION OF U(1) AND SU(N) LATTICE GAUGE THEORIES

Fermion 
mass

Fermion 
hopping term

Energy of color 
electric field

Energy of color 
magnetic field



4

The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
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FIG. 3. On a grid (left panel) of irreducible representations organized by their dimensionality and plaquette connectivity (as
shown in Fig. 2), support of the the ground state wavefunction  (R), shown for g = 0.5, is localized to low irrep dimensionalities
(center panel). Conjugate irreps appear on the left half of the grid with real irreps appearing along the center vertical. The
right panel shows log (R) on a scaled quadratic grid for visual clarity of the convergence structure.
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FIG. 4. Mass gap (left panel) and vacuum expectation value of the Hermitian magnetic plaquette operator ⇤̂+ ⇤̂† (right panel)
for one plaquette in SU(3) gauge theory as a function of ⇤p, the irrep tensor index truncation. Convergence is demonstrated
for six di↵erent values of the coupling (g = 0.1 to 1). Inset panels show the percent deviation in observables from their values
without truncation. The inset x-axes are squared for visual clarity of the convergence structure.

structure of the irrep-space wavefunction is visually clear.

The exponential localization of the single plaquette wavefunction extends this profitable convergence also to static

and dynamic observables. Figure 4 shows the convergence of the mass gap and the magnetic plaquette operator

expectation value at a range of couplings. Static observables for the unit coupling are found to converge to 10�8

percent of their asymptotic values at a low irrep truncation of ⇤p = 4 up to and including tensor irreps with four

fundamental and four anti-fundamental indices. As g is lowered and the wavefunction disperses in irrep space,

truncation errors naturally become more dramatic. Interestingly, the mass gap demonstrates low g-dependence at

high truncation, ⇤p, throughout the shown coupling range. The insets of Fig. 4 provide convergence information

with tensor index truncations scaled quadratically, as in the right panel of Fig. 3, such that the linear trajectories

experienced at large tensor index truncations express Gaussian-type convergence structure. From these insets, one

can connect necessary quantum resources to the attainable precision of local observables as the weak-coupling limit is

approached. For example, percent-level precision for these quantities at couplings g � 0.3 is expected to be achievable

with ⇤p  10 or equivalently 3-4 qubits per index register. These features are expected to apply to the link-space

localization and convergence on larger lattices of SU(3) gauge theory. This suggests that SU(3) Yang-Mills simulations

in a cubic spatial lattice of extent 10⇥ 10⇥ 10 could be performed with <
⇠ 104 qubits at this coupling.

It is important to keep in mind that our analysis has been performed in the electric basis, and requires increasing

25

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�
�
E n

/E
n

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�

� � � � � � � �

�
� � � � � � �

�

�
�

� � � �

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

�

�
E n

/E
n

�

� � � � � � � �

�
� � � � � � �

�

�
�

� � � �

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

�

�
E n

/E
n

�

� � � � � � � �

�
� � � � � � �

�

�
�

� � � �

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

�

�
E n

/E
n

x = 1

x = 25

x = 100

x = 400

�
E

0 /
E

0

⇤

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n

/E
n

FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�

� � � � � � � �
� �

� � � � � �

�

� � � � � �

0 2 4 6 8

-0.05

0.00

0.05

0.10

�

�
E n
/E
n � 1st

� 21st

� 283rd

�
E

0 /
E

0

p
x

⇤ = 0

⇤ = 1

��

�
�

�
� � � � �

0 10 20 30 40 50 60

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

x

�
E/
E

��

�
�

� � � � � �
0 10 20 30 40 50 60

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

x

�
E/
E

r ⇡ �0.940

r ⇡ �0.461

⇤ = 2

r ⇡ �0.879

⇤ = 2��

�
� � � � � � � � � � �

0 20 40 60 80 100

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

x

�
E/
E

�
E

0 /
E

0

p
x

�

�
�

� �
� � � � � �

20 40 60 80 100
-0.886
-0.884
-0.882
-0.880
-0.878
-0.876
-0.874
-0.872

x

�
E/
E

p
x

r ⇡ �0.884

FIG. 18. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
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0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of
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x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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those based on tensor networks have enabled studies of
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dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of
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x, and

are denoted in the plots. The colored regions denote the
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values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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FIG. 18. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.

tonian H
0(KS):

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

x=0

⇥
 

†(x)U(x) (x + 1) + h.c.
⇤
+

N2X

x=0

E2(x) + µ

N3X

n=0

(�1)n
 

†(x) (x), (89)

where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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FIG. 5. The plaquette expectation value (defined in Sec. III A) as a function of bits-per-link for di↵erent
lattice volumes, normalized to the undigitized value for 164. These results are computed on ensembles of
100 configurations with V = L

4 and � = 2 (except for the V = 124, which has 1000 configurations). Refer
to Fig. 3 for more details.

plots the relative systematic error induced by
the di↵erent digitization schemes for the data
shown in Fig. 6. The Polyakov loop is close to
zero in the confined phase, and so we see pre-
dominantly noise at lower �s. However, in the
deconfined phase, the curves in Fig. 7 appear
to be flat, indicating that the e↵ect of the dig-
itization for each � value is simply an overall
multiplication by a constant smaller than one.
Figure 8 shows the relative error averaged over
the range 2.4  �  2.6 as a function of bits-
per-link, making it clear that this multiplicative
constant approaches zero as the bits-per-link are
reduced, again consistent with our arguments
in Sec. III B. Figure 8 also shows convergence
to the undigitized result explicitly. Projection
with APR produces less error than with the L2
norm and appears to converge to the undigitized
value quicker, but our data are unable to deter-
mine whether any systematic error survives in
the limit of large bits-per-link for either scheme.
We see no error due to digitization and projec-
tion in the critical value of � where the system
deconfines, a positive indication as projection
should not change the phase dynamics.

Finally, we turn to the static potential. Fig. 9

shows the static potential aV (r) as a function of
distance r/a, computed in the usual lattice QCD
ultrafine digitization. Due to the large lattice
spacing of this ensemble (i.e., the strong bare
coupling), the potential is dominantly linear in
all distance scales in our simulation. Above
r/a ⇡ 6, the data become unreliable due to
the exponentially decreasing signal in the Wil-
son loop as shown in Eq. (5). We restrict our
subsequent discussion and figures to the region
r/a . 6.

Fig. 10 shows the digitization error in the
static potential as a function of distance. The
most interesting feature of this figure is the dis-
tance dependence. For any given mesh size,
within our statistical precision, the error induced
by digitizing V (r) decreases with distance until
saturating around r/a ⇡ 3 where our statistical
error becomes appreciable. It is also worth not-
ing that the static potential gets larger as the
bits-per-link gets smaller, a consequence of the
expectation values of Wilson loops approaching
zero for projections to coarser digitizations. The
APR projection outperforms the L2 projection
at short distances. At longer distances r/a & 3
the situation is not as clear: APR appears to

10

Gauge-field truncation
See also Tong, Albert, McClean, Preskill, and Su (2021) and Ciavarella (2023).

ZD, Raychowdhury, and Shaw, 
Phys. Rev. D 104, 074505 (2021).
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FIG. 6. We show the lowest 60 eigenvalues of the discre-
tised Laplace-Beltrami operator for the Linear partitionings
Lm with m = 4, 5, 6, 10 and m = 25. The solid lines corre-
sponds to the expected continuum values from Eq. (42).

going to mostly exclude �1 from the following discussion.

For the linear partitioning we show the 60 lowest eigen-
values �i in FIG. 6. While the di↵erent point styles dis-
tinguish values of m from 4 to 25, the line indicates the
continuum spectrum from Eq. (42). It is clearly visible
that with increasing m the spectrum of ��Lm converges
towards the continuum spectrum with the correct multi-
plicity.

In FIG. 7 we show the convergence for di↵erent eigen-
values �P of the discretised Laplace-Beltrami operator
separately. We plot the relative deviation from the ex-
pected continuum value �

|�P � �|
�

as a function of 1/N for di↵erent eigenvalues �k with
k = 2, 5, 6, 14, 15, 30, 31, 55. Note that we order the eigen-
values such that �i  �i+1. Our choices for i, therefore,
correspond to the first and the last eigenvalue in a multi-
plet. We observe convergence towards the expected con-
tinuum value for all the eigenvalues we investigated and
all the partitionings.

The most regular and smooth convergence pattern is ob-
served for the linear partitioning. The Volleyball par-
titioning behaves similarly, but with some dependence
on the actual value of N . The convergence rate of the
RFCC partitioning falls in line with the one of the Linear
partitioning, but with somewhat smaller amplitude.

The Genz partitioning seems to be also converging, how-
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FIG. 7. We plot |�P � �|/� as a function of 1/N for the
Volleyball, the Linear, the RFCC and the Genz partitionings
for the eigenvalues �i with i = 2, 5, 6, 14, 15, 30, 31, 55.

ever, with a visibly slower convergence rate than the
other partitionings towards large N -values. In partic-
ular for the last eigenvalues of a given multiplet we also
observe sign changes in �P � �.

Empirically, the convergence rates appear to be indepen-
dent of the index i and very similar to the rates of con-
vergence of the volume.

D. Operator Convergence

Finally, we discuss the operator convergence by checking
Eq. (43) numerically. For this we pick a value from the
resolvent set of ⇢ = �2. Other ⇢-values lead to similar
and qualitatively equivalent results.

In FIG. 8 we plot

k(⇢ � �)�1 � (⇢ � �Dm(N))
�1k (56)

as a function of 1/N for ⇢ = �2. As discussed in sec-
tion III D, we evaluate Eq. (56) using a finite subset of
the spherical harmonics YJ,l1,l2 by imposing J < Jmax.

Jakobs et al, 
arXiv:2304.02322 [hep-
lat] (2021).
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.

<latexit sha1_base64="bKJoS9/XFjLVjUstQ7RrVL4PZ30=">AAAB+3icbVBNS8NAEN34WetXrEcvwSJUhJKIqMdSLwUvFe0HtDFsttt26WYTdifSEvJXvHhQxKt/xJv/xm2bg7Y+GHi8N8PMPD/iTIFtfxsrq2vrG5u5rfz2zu7evnlQaKowloQ2SMhD2faxopwJ2gAGnLYjSXHgc9ryRzdTv/VEpWKheIBJRN0ADwTrM4JBS55ZOKs9Jl2gY0hKt/enaepVPbNol+0ZrGXiZKSIMtQ986vbC0kcUAGEY6U6jh2Bm2AJjHCa5ruxohEmIzygHU0FDqhyk9ntqXWilZ7VD6UuAdZM/T2R4ECpSeDrzgDDUC16U/E/rxND/9pNmIhioILMF/VjbkFoTYOwekxSAnyiCSaS6VstMsQSE9Bx5XUIzuLLy6R5XnYuy87dRbFSzeLIoSN0jErIQVeogmqojhqIoDF6Rq/ozUiNF+Pd+Ji3rhjZzCH6A+PzBxq1k9c=</latexit>

+H
(KS)
B

<latexit sha1_base64="kSNnPd8CtuK3C8yRNSb1MUr88Vs=">AAACGHicbZBNS8NAEIY3ftb6FfXoJVgED1ITEfUiFD3YYwWrhSaGzXbaLm42YXcillj/hRf/ihcPinj15r9xW3vQ6gsLD+/MMDtvlAqu0XU/rYnJqemZ2cJccX5hcWnZXlm90EmmGNRZIhLViKgGwSXUkaOARqqAxpGAy+j6ZFC/vAGleSLPsZdCENOO5G3OKBortHeap1c0VNvV4Mjdvh/ynZ9q7isqOwLC3Ee4xTzt9nS53z9yQ7vklt2hnL/gjaBERqqF9offSlgWg0QmqNZNz00xyKlCzgT0i36mIaXsmnagaVDSGHSQDw/rO5vGaTntRJkn0Rm6PydyGmvdiyPTGVPs6vHawPyv1sywfRjkXKYZgmTfi9qZcDBxBik5La6AoegZoExx81eHdamiDE2WRROCN37yX7jYLXv7Ze9sr1Q5HsVRIOtkg2wRjxyQCqmSGqkTRh7IE3khr9aj9Wy9We/frRPWaGaN/JL18QW9F6BA</latexit>

[Ga
r , H] = 0, G

a
r | iphys. = 0

<latexit sha1_base64="Cl5hkzcrV+774dVCspUYDu7ZKH4=">AAACC3icbVA9SwNBEN2LXzF+RS1tjgTBKtyJqI0QtNAygvmAXDz2NpNkyd7esTsnhjO9jX/FxkIRW/+Anf/GzUehiQ8GHu/NMDMviAXX6DjfVmZhcWl5JbuaW1vf2NzKb+/UdJQoBlUWiUg1AqpBcAlV5CigESugYSCgHvQvRn79DpTmkbzBQQytkHYl73BG0Uh+vnB5S3314MWae4rKrgA/9RDuMY17A10aDs8cP190Ss4Y9jxxp6RIpqj4+S+vHbEkBIlMUK2brhNjK6UKORMwzHmJhpiyPu1C01BJQ9CtdPzL0N43StvuRMqURHus/p5Iaaj1IAxMZ0ixp2e9kfif10ywc9pKuYwTBMkmizqJsDGyR8HYba6AoRgYQpni5lab9aiiDE18OROCO/vyPKkdltzjknt9VCyfT+PIkj1SIAfEJSekTK5IhVQJI4/kmbySN+vJerHerY9Ja8aazuySP7A+fwD69Juk</latexit>

Ga
r | iphys. = 0

Physical sector

An infinite-dimensional Hilbert space that needs to be truncated. There are also (local) Gauss’s law constraints.
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FIG. 6. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with PBC (a)
and OBC (b) is approximated by epN , and the coe�cient of
the lattice size, N , in the exponent is obtained from fits to the
N dependence of Nstates for several values of ⇤. The expo-
nents approach, with an exponential form, a fixed value, and
the empirical fit to this ⇤ dependence obtains the asymptotic
value of p denoted by the horizontal lines in the plots and
shown in the inset boxes. The uncertainty on these values is
estimated by variations in the fit values when each data point
is removed from the set, one at a time, and the remaining
points are refit. The numerical values associated with these
plots are listed in Appendix B.

the plot. Second, as expected, the number of states
grows exponentially with the system size at a fixed
cuto↵, as plotted in Fig. 5-(a). The growth, up
to constant factors and higher order terms in the
exponent, can be approximated by Nstate ⇠ e

pN .
The coe�cient of N in the exponent approaches a
constant value as a function of cuto↵, as shown in
Fig. 6-(a). This value can be obtained from a fit to
points shown in the plot, as depicted in the figure.
For moderate N values such that the higher-order
terms in the exponent are negligible, this p value
can be used to approximate the number of states
in the physical Hilbert space with PBC as ⇤ ! 1.

. For OBC, the number of states in the physical
Hilbert space grows as a function of ⇤ until it be-
comes a constant for ⇤ � N (⇤ � N +2✏0 for an ar-
bitrary ✏0), as depicted in Fig. 4-(b). The reason for
this behavior is that the J quantum number only
changes (by 1

2
) from the left to the right side of site

x if the site’s total fermionic occupation number is
equal to one. If the JR value at site x = 0 is set
to ✏0, it can become at most JL = ✏0 + N/2 at the
last site. Increasing the cuto↵ beyond this value
will not change the states present in the physical
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FIG. 7. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with OBC is
approximated by eq⇤, and the coe�cient of the cuto↵ on the
electric-field excitations, ⇤(= 2Jmax), in the exponent is ob-
tained from fits to the ⇤ dependence of Nstates for several val-
ues of N . The exponents approach, with a exponential form,
a fixed value, and the empirical fit to this N dependence ob-
tains the asymptotic value of q denoted by the horizontal line
in the plot and shown in the inset box. The uncertainty on
this value is estimated by variations in the fit values when
each data point is removed from the set, one at a time, and
the remaining points are refit. The numerical values associ-
ated with these plots are listed in Appendix B.

Hilbert space. The growth of the number of states
to this saturation value at a fixed N can be approx-
imated by an exponential form, Nstates ⇠ e

q⇤. The
coe�cient of ⇤ in the exponent for various values
of N is plotted in Fig. 7 and is seen to asymptote
to a constant value at large N . The fit to this
asymptotic value is shown in the plot. This value
can be used to approximate the number of states
in the physical Hilbert space for an arbitrary large
N and any ⇤. Similarly, the dependence of the
number of states in the physical Hilbert space on
the lattice size can be approximated by an expo-
nential form, Nstate ⇠ e

pN , for a fixed cuto↵, and
up to constant factors and higher order terms in
the exponent. The coe�cient of N in the exponent
asymptotes to a constant value at large ⇤, as shown
in Fig. 6-(b).

. The size of the full Hilbert space before implement-
ing physical constraints can be approximated by

N
(full)

states
(N, ⇤) =

2

44 ⇥
X

j

(2j + 1)2

3

5
N

, (68)

with PBC, where j = {0,
1

2
, 1, · · · ,

⇤

2
}. To com-

pare this with the number of states in the physical
Hilbert space with PBC, one can again write the
lattice-size dependence of the number of states as
e
pN . The coe�cient of N in this exponent as a

function of ⇤ can be plotted for both the full and
physical Hilbert space, as is shown in Fig. 8. As is
evident, even for small values of the cuto↵, the full
Hilbert space grows much faster with the system’s

Full

Physical
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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An infinite-dimensional Hilbert space that needs to be truncated. There are also (local) Gauss’s law constraints.
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The choice of basis matters! It dictates which Hamiltonian term is naturally diagonal, how complex the rest of the 
terms are, and what level of truncation is needed.
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MANY HAMILTONIAN FORMULATIONS OF GAUGE THEORIES EXIST, WHICH ONE TO PICK?

Group-element representation

Zohar et al; Lamm et al; Jansen, Urbach, et al.

Manifold lattices 

Buser et al

Spin-dual representation

Mathur et al

Loop-String-
Hadron basis

Raychowdhury, 
Stryker, Kadam

Fermionic basis

Hamer et al; Martinez et al; 
Banuls et al Bosonic basis


Cirac and Zohar

Link models, qubitization

Chandrasekharan, Wiese et al; 
Alexandru, Bedaque, et al; Hersch 
et al, Banerjee, Marinkowich, et al.

Prepotential formulation

Mathur, Raychowdhury et al

Local irreducible representations

Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis

Bender, Zohar et al; Kaplan and Styker; Unmuth-Yockey; 
Hasse et al; Jansen, Muschik et al; Bauer and Grabowska

Gauge-field theories (Abelian and non-Abelian):

Light-front quantization Kreshchuk, 
Love, Goldstien, Vary et al

Scalar field theory

Field basis

Jordan, Lee, and Preskill

Harmonic-oscillator basis

Klco and Savage

Single-particle basis

Barata , Mueller, Tarasov, and Venugopalan.

Continuous-variable basis

Pooser, Siopsis et al

Wavelet basis

Bagherimehrab, Sanders, et al.



How do we do state preparation 
and compute observables like 
scattering amplitudes?

Algorithmic developments

[Digital]

Near- and far-term algorithms with 
bounded errors and resource 
requirement for gauge theories?

Can given formulation/encoding 
reduce qubit and gate resources?

Can we develop gauge-invariant 
simulation algorithms? 
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How many qubits and gates are required to achieve accuracy      
in a given observables? Are there algorithms that scale optimally?

ϵ

Algorithmic progress for U(1), SU(2), and SU(3) quantum field theories include:
Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021). 
Kan and Nam, arXiv:2107.12769 [quant-ph].
Lamm, Lawrence, and Yamauchi, Phys.Rev.D 100 (2019) 3, 034518.
Paulson et al, PRX Quantum 2 (2021) 030334.
Murairi, Cervia, Kumar, Bedaque, Alexandru, arXiv:2208.11789 [hep-lat].
ZD, Shaw, and Stryker, Quantum 7, 1213 (2023).
Sakamoto, Morisaki, Haruna, Itou, Fujii, Mitarai, Quantum 8, 1474 (2024).
M. Rhodes, M. Kreshchuk, S. Pathak, arXiv:2405.10416 [quant-ph].
Lamm et al, arXiv:2405.12890 [hep-lat].

Algorithms for simulating quantum field theories started from pioneering work 
of Jordan, Lee, Preskill.



What about the ultimate theory for us?

Quantum Chromodynamics, a SU(3) LGT in 3+1 coupled to 6 flavors of quarks



What about the ultimate theory for us?

Quantum Chromodynamics, a SU(3) LGT in 3+1 coupled to 6 flavors of quarks

How far can we continue to improve? Will this problem become reasonably doable in the fault-tolerant era?

Kan and Nam:

ZD and Stryker:

Rhodes, 
Kreshchuk, 
Pathak

Ciavarella, 
Klco, Savage: 

Lamm et al:

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Evaluates matrix elements quantumly

Uses product formulas. Breaks all bosonic ladder ops. to even/odd space

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Evaluates matrix elements quantumly

Uses PFs. Breaks only some of the bosonic ladder ops. to even/odd space

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Uses QROM to access matrix elements evaluated classically

Uses block encoding of time evolution. No even-odd breaking.

Kogut and Susskind in E basis, some Gauss-law implementation a priori

Uses controlled operations to access matrix elements evaluated classically

Not a full algorithm in 3+1 D with error analysis

Kogut and Susskind in U basis, no Gauss-law implementation a priori

Matrix elements simple (no Clebsch–Gordan coeff. in this basis)

Uses block encoding, no full error analysis for SU(3) subgroups yet

 lattice at 
fixed paramts.
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The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0

5

10

15

20

Mb
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SU(2) “proton”
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6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-

Low-lying spectrum of SU(2) 
with matter in 1+1 D on IBM

Atas et al, Nature 
Communications 12, 6499 (2021). 
SU(3) example: Atas et al: 
arXiv:2207.03473 [quant-ph].

Hamiltonian methods in general: 
Itou, Matsumoto, Tanizaki, 
arXiv:2307.16655 [hep-lat]. 
See also studies on D-wave 
annealers:
Rahman et al, Phys. Rev. D 104, 
034501 (2021), Illa and Savage, 
arXiv:2202.12340 [quant-ph], Farrel 
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FIG. 11. The top panel shows the expectation of the electric energy for a five plaquette chain with open boundary conditions
where every other plaquette has been initialized to the single plaquette vacuum. The bottom panel shows the expectation of
the electric energy after the boundaries of the initial domains have been stitched together with VQE.

FIG. 12. The left panel shows the expectation of a plaquette operator at the center of a domain as a function of domain length
for both the initial ansatz and the state after using VQE to stitch domains together. The dashed blue line shows the vacuum
expectation of a single plaquette operator on an infinite chain of plaquettes with g = 0.9. The right panel shows the error in
the vacuum plaquette expectation as a function of the domain size.

B. Hardware Implementation

As with the single plaquette case, it is instructive to study multiple plaquettes on existing quantum hardware.
Unfortunately, simulating multiple plaquettes in a local basis as described in the previous section is beyond the reach
of existing hardware. However, these techniques can be applied to state preparation in a global basis. IBM’s Manila
quantum processor was used to simulate a two plaquette system truncated at an electric field representation of 3 in the
global CP invariant basis [136]. For this simple system, preparing the single plaquette vacuum is equivalent to using
the vacuum state obtained using the Lanczos algorithm with a Krylov dimension of two. The results of performing
VQE with the error mitigation procedures described in Appendix A are shown in Fig. 13. As this figure shows, the
VQE algorithm is able to converge to the true vacuum energy whether it begins in the electric or single plaquette
vacuum. However, by initializing the state in the single plaquette vacuum, the VQE algorithm is able to converge to
the true vacuum state faster. While the two initial states converge to the same vacuum state, the uncertainties in the
vacuum energy they converge to are quite di↵erent. This is due to the circuit ansatz used to initialize the state having
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FIG. 13. Variational state preparation of the vacuum state for a two plaquette system with g = 1 and PBC run on the IBM
Manila quantum processor. The blue points show the results of performing gradient descent beginning at the electric vacuum
and the green points show the results for beginning with the single plaquette vacuum. The data in this figure is available in
Table IV

redundancies in the angle parametrization of the state, leading to the two initial ansatzes converging to di↵erent sets
of angles describing the same state. In the absence of noise on the quantum processor, these parametrizations would
be equivalent. However, existing quantum processors are noisy and there are systematic errors with angle dependence
leading to the di↵erent error bars shown in Fig. 13.

V. DISCUSSION

Achieving a quantum advantage in the simulation of lattice gauge theories requires the preparation of physically
interesting states, such as the vacuum. In the NISQ era, hybrid algorithms such as VQE will be essential. To make
use of VQE, an appropriate classical optimizer and ansatz circuit must be chosen. In this work, state preparation
on simple SU(3) lattice gauge theories has been performed with an eye towards scalability. In the variational state
preparation of single plaquette systems, we showed that Bayesian optimization su↵ers from convergence issues as the
coupling g is decreased, while gradient descent methods su↵er from no such issue. This suggests that VQE calculations
at scale may need to make use of gradient descent methods in order to converge, despite the increase in computational
overhead required to compute the gradient. Note that gradient based methods may converge to a local minimum
instead of the true vacuum. This has not occurred for the simple systems studied in this work, but may need to be
considered when performing calculations at scale.

Calculations at scale will also require appropriate ansatz circuits to perform VQE. Due to the exponential growth
of the Hilbert space with lattice size, circuits capable of preparing a generic state on the lattice will not be able to go
to scale. In this work, it was demonstrated that in a quasi-1D SU(3) lattice gauge theory, VQE can be used to stitch
together domains in their vacuum state to prepare the vaccum state of a larger lattice. The exponential convergence
with domain size on an infinite lattice suggests that even shallow circuits may be able to achieve a large overlap with
the true vacuum state at scale. The calculations on IBM’s Manila quantum processor showed that circuit ansatzes
that respect a global symmetry will still respect the global symmetry on existing hardware despite the presence of
noise and imperfect gates. This allows global symmetries to be used to construct circuit ansatzes that have fewer free
degrees of freedom which makes them easier to optimize.

While the computations in this work are encouraging, preparing a vacuum state for QCD with VQE will require
significant developments in the application of quantum algorithms to lattice gauge theories. The calculations per-
formed in this work were for a one dimensional string of plaquettes, but QCD is a three-dimensional theory. In a
3D theory, the domains being initialized in their vacuum state will be 3D blocks and the number of circuits required
to stitch them together will scale with the surface area of the domain blocks. Additionally, a QCD calculation that
can be taken to the continuum limit may require more electric field representations to be included, which will in-
crease the number of possible local rotations in the VQE stitching circuit. It is conceivable that it is possible to
reach the continuum limit without increasing the field truncation, but this remains to be investigated. Regardless,

Variational state preparation of the vacuum state for a two 
plaquette system in pure SU(2) LGT on IBM 
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computer should reflect the property of exponentially decaying correlations between these subsets of qubits separated
by r � ⇠ [99, 100]. One way to establish the ground state is to initialize the quantum register in a state without
correlations between qubits, e.g., a tensor product state, and then systematically introduce correlations through
the action of quantum circuits. A crucial point is that the exponential decay of correlations implies that the state
preparation circuits need only have structure for qubits spatially separated by r . ⇠ [99, 100]. This is su�cient to
obtain exponentially converged accuracy in the prepared state. Due to translational invariance, the ground state for
an arbitrarily large lattice can be prepared by repeating these circuits across the entire register.

To study the dynamics of physically relevant systems in a quantitative way, with a complete quantification of
uncertainties, simulations of large volumes of spacetime are typically required. The discussions in the previous
paragraph motivate new workflows that utilize the hierarchies of length scales present in such systems, as first discussed
in Refs. [99, 100]. Concretely, quantum circuits that (e�ciently) prepare a given state to a specified level of precision
are determined on modest-sized lattices that are large enough to contain the longest correlation lengths. Depending on
the size of ⇠, this can either be accomplished on classical simulators using HPC resources, or on a quantum computer.
Once determined, (discrete) translation invariance is used to scale these circuits up to the full lattice. Since the
quality of the prepared state becomes independent of the spatial lattice length, L, with O(e�⇠/L) corrections, this is
a potential path toward quantum simulations of lattice QFTs that are beyond the capabilities of HPC.

In this work, scalable quantum circuits which prepare the Schwinger model vacuum are identified, and executed
on up to 100 qubits on IBM’s Eagle quantum processors. Underlying the development is the ADAPT-VQE algo-
rithm [101], which is extended to large systems, and called “Scalable Circuits ADAPT-VQE” (SC-ADAPT-VQE), a
sketch of which can be seen in Fig. 1. The implementation of ADAPT-VQE which is used organizes the ground-state
preparation circuits into scalable volume and fixed-size boundary pieces. After building the necessary Trotterized
circuits, ADAPT-VQE is performed using the qiskit classical simulator on system sizes up to L = 14 (28 qubits).
It is found that both the energy density and chiral condensate converge exponentially with circuit depth to the exact
results. Importantly, both the quality of the prepared state and the structure of the associated circuits are found to
converge with system size. This allows the state preparation circuits, determined on small lattices, to be extrapo-
lated to much larger lattices, with a quality that becomes independent of L. The scaled circuits are used to prepare
the L  500 vacua using qiskit’s Matrix Product State (MPS) circuit simulator, and to prepare the L  50 (100
qubits) vacua on the registers of IBM’s superconducting-qubit quantum computers ibm brisbane and ibm cusco.
The results obtained from both the MPS circuit simulator, and from IBM’s quantum computers (after introducing an
improved error mitigation technique), are found to be in excellent agreement with Density Matrix Renormalization
Group (DMRG) calculations.

FIG. 1. The SC-ADAPT-VQE algorithm.

II. THE LATTICE SCHWINGER MODEL

The Schwinger model [6] has a long history of study in the continuum and using numerical lattice techniques. In the
continuum it is described by the Lagrange density

L =  (iD/ � m ) �
1

4
Fµ⌫Fµ⌫ . (1)

Electrically-charged fermions are described by the field operator  with mass m , the electromagnetic gauge field
by Aµ with field tensor Fµ⌫ , and the covariant derivative is defined as Dµ = @µ � ieAµ. It is the Hamiltonian
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FIG. 8. The left panel shows the connected contributions to the spatial charge-charge correlation functions, hQ̂jQ̂kic, for
L = 50 (the inset shows the number of standard deviations the results obtained from ibm cusco deviate from the MPS simulator

results). The right panel shows the volume averaged correlation functions as a function of distance d, hQ̂Q̂ic(d), with the points
following the same color map as in the left panel.

To further probe the quality of the prepared wavefunctions, correlations between electric charges on the spatial
sites are considered. The charge on a spatial site is defined to be the sum of charges on the two associated staggered

sites, Q̂k = Q̂2k + Q̂2k+1, where k is an integer corresponding to the spatial site. Of particular interest are connected
correlation functions between spatial charges,15 defined as

hQ̂jQ̂kic = hQ̂jQ̂ki � hQ̂jihQ̂ki . (11)

These correlations decay exponentially for |j � k| & ⇠ due to confinement and charge screening. Unlike the chiral

condensate, which is a sum of single qubit observables, hQ̂jQ̂kic is sensitive to correlations between qubits, i.e., requires

measuring hẐjẐki. The results from ibm cusco for L = 50 are shown in Fig. 8. The correlations are symmetric under
j $ k, and only the lower-triangle of the correlation matrix is shown. Each measured value is within 3� of the MPS
simulator result, consistent with statistical fluctuations. Also shown in Fig. 8 are the spatial charge-charge correlations
as a function of distance, averaged over the lattice volume,

hQ̂Q̂ic(d) =
1

L � 4 � d

L�3�dX

k=2

hQ̂kQ̂k+dic . (12)

To reduce the e↵ects of the boundaries, this sum omits the first and last two spatial lattice sites. As anticipated,
this correlation function decays exponentially, with a characteristic length scale proportional to ⇠ = 1/mhadron.16 For
d > 2, the correlations are consistent with zero, and increased numbers of shots and twirlings are needed to distinguish
additional points from zero. The local chiral condensate and charge-charge correlations corresponding to the other
values of L are given in App. H.

VI. SUMMARY AND OUTLOOK

In this work, the vacuum of the lattice Schwinger model has been prepared on up to 100 qubits of IBM’s 127-
qubit Eagle-processor quantum computers, ibm brisbane and ibm cusco. This was made possible through the
determination of systematically improvable state preparation quantum circuits that can be robustly scaled to operate
on any number of qubits. The utility of scalable circuits relies on physically relevant systems often having a (discrete)
translational symmetry, and a finite correlation length set by the mass gap. Together, these imply that the state
preparation circuits have unique structure over approximately a correlation length [99, 100], which is replicated

15 For periodic boundary conditions, hQ̂ki = 0 but, for OBCs, hQ̂ki decays exponentially away from the boundaries, see App. B.
16 The exponential decay of charge-charge correlations motivates the construction of a truncated Hamiltonian where charge-charge terms

are omitted beyond a certain distance. See App. A for more details.

Schwinger model 
vacuum on a 100 
qubits IBM system: 
Connected 
correlation 
functions between 
spatial charges  

See also: Gustafson et al, 
arXiv:2408.12641 [quant-ph].
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FIG. 4. The schematic diagram of the double smearing of the mesonic wave packet. b
†
 is assembled from

b
†
k weighted with  (k), the manually-adopted wave-packet profile. Each b

†
k is built upon optimized mesonic

ansatz ⌘(p, q).

The fermion-antifermion pairs, or bare mesons, are distributed in momentum space following
the ansatz function ⌘(p, q). Similar to Ref. [33], we consider a Gaussian distribution in relative
momentum p � q:

⌘(p, q) = N⌘ exp

✓
iµ

A

k
(p � q)

2

◆
exp

 
�

(p � q)2

4�
A

k

2

!
. (11)

Here, µ
A

k
and �

A

k
are real parameters, superscript A denotes the ansatz, and N⌘ is the normalization

factor. The Gaussian distribution ensures that a fermion and an antifermion with a large relative
momentum are penalized. This is reasonable, as otherwise the constituents will eventually move far
away from each other and would not form a bound excitation. µ

A

k
controls the average separation of

the fermion and antifermion in position space. Finally, because of the Kronecker delta in momenta
in Eq. (8), p + q is forced to match the total momentum of the meson excitation, k.

In Ref. [33], b
†

k
|⌦i describes the momentum eigenstate |ki with �

A

k
and µ

A

k
manually tuned

for each k. In this work, optimization on
�
�
A

k
, µ

A

k

�
is explicitly performed by searching for the

lowest-energy state with b
†

k
excitations in each k sector. For small systems, b

†

k
with the optimized

parameters is benchmarked against exact-diagonalization results to ensure that |ki is indeed created
as desired. The optimization strategy and results will be discussed thoroughly in the next section.
For larger systems, one can resort to a variational quantum eigensolver (VQE) to perform energy
minimization in each sector using a quantum computer. Such details will be presented in Sec. III.

Once the optimized b
†

k
in each momentum sector is obtained, the wave-packet creation operator

b
†

 
is just a weighted assembly of them following  (k). Since the simulation is eventually done in

position space, it is useful to express Eq. (8) in terms of position-space mesonic operators when
implemented as quantum circuits:

b
†

 
=
X

m,n2�

Cm,n
fMm,n. (12)

Here, fMm,n is the Jordan-Wigner transformed Mm,n that is obtained by substituting Eq. (3) in
the expression for Mm,n given below Eq. (8). For example, consider m < n and n � m < N/2,
then a forward-wrapped meson creation operator Mm,n leads to

fMm,n =

 
�
�

m�
+

n

n�1Y

l=m+1

�
z
l

!
⌦

 
n�1Y

l=m

Ul

!
. (13)
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FIG. 10. Physical basis-state probabilities of two wave packets in the case of Z2 LGT with mf = 1
and ✏ = 0.3, generated on the Quantinuum H1-1 quantum computer compared with those obtained from
| iexact, | iideal, and | itrunc, as defined in the text, as well as the associated local particle densities, �n.
The physical basis states are listed in Table II in Appendix E. The hardware results shown are after a
symmetry-based error mitigation as discussed in the text. These agree reasonably well with the truncated-
circuit output. The density plots clearly show the change in the shape of wave packets with varying �, i.e.,
larger � results in a narrower wave packet in position space.

bootstrap sample, the events with the ancilla measured to be 0 (due to the residual errors) are
excluded, and the remaining probabilities are normalized and collected. For both wave packets,
104 resamplings are used to ensure bootstrap-sample mean distributions, hence the standard devi-
ations, are stabilized. In Fig. 10, the uncertainties on the probabilities are the standard deviation
of the bootstrap resampling, on which a standard error propagation gives the uncertainties on the
staggered density.

The physical basis-states probabilities show acceptable agreement with the truncated-circuit
results obtained via statevector evolution. Perhaps a more meaningful comparison is with the
result obtained from a classical circuit simulator that uses the same number of measurement
shots as that in the hardware implementation. Such ‘noiseless‘ simulation results are presented in
Appendix D. We further employ the Quantinuum’s emulator to inspect how accurately it agrees
with the hardware results for the circuits implemented in this work, and present the result in
the same Appendix. In both cases, the uncertainty estimation described above using bootstrap

4

FIG. 1. a) Mapping the L = 56 lattice onto the qubits of IBM’s quantum computer ibm_torino (bottom left). The dynamical
re-arrangement of charges in the vacuum screens the interactions between electric charges in the Schwinger model, giving rise to
an exponential decay of correlations between spatial-site charges, hQ̂

n
Q̂

n+d
i (top and bottom right). b) The charge screening

informs an efficient construction of the quantum circuits used to simulate hadron dynamics. SC-ADAPT-VQE is used to
prepare the vacuum and wavepacket, which are time-evolved using Trotterized circuits implementing e�itĤ with a truncated
electric interaction.

hierarchies in length scales to determine low-depth quantum circuits for state preparation. Using a hybrid workflow,
quantum circuits are determined and optimized on a series of small and modest-sized systems using classical computers,
and then systematically scaled to large systems to be executed on a quantum computer. In Sec. III, SC-ADAPT-VQE
is extended to the preparation of localized states, and used to establish a hadron wavepacket on top of the interacting
vacuum; see Fig. 1b). The wavepacket preparation circuits are optimized on a series of a small lattices by maximizing
the overlap with an adiabatically prepared wavepacket. The locality of the target state ensures that these circuits can
be systematically extrapolated to prepare hadron wavepackets on large lattices.

In Sec. VI, the techniques and ideas described in the previous paragraphs are applied to quantum simulations of
hadron dynamics on L = 56 (112 qubit) lattices using IBM’s quantum computer ibm_torino. The initial state is
prepared using SC-ADAPT-VQE, and time evolution is implemented with up to 14 Trotter steps, requiring 13,858
CNOTs (CNOT depth 370). After applying a suite of error mitigation techniques, measurements of the local chiral
condensate show clear signatures of hadron propagation. The results obtained from ibm_torino are compared to
classical simulations using the cuQuantum Matrix Product State (MPS) simulator. In these latter calculations, the
bond dimension in the tensor network simulations grows with the simulation time, requiring increased classical com-
puting overhead. This work points to quantum simulations of more complex processes, such as inelastic collisions,
fragmentation and hadronization, as being strong candidates for a near-term quantum advantage.

II. SYSTEMATIC TRUNCATION OF THE ELECTRIC INTERACTIONS

The Schwinger model is quantum electrodynamics in 1+1D, the theory of electrons and positrons interacting via
photon exchange. In 1+1D, the photon is not a dynamical degree of freedom, as it is completely constrained by
Gauss’s law. As a result, the photon can be removed as an independent field, leaving a system of fermions interacting
through a linear Coulomb potential. In axial gauge with open boundary conditions (OBCs), zero background electric
field, and using the Jordan-Wigner (JW) mapping, the Schwinger model Hamiltonian on a lattice with L spatial sites
(2L staggered sites) is given by [120, 121]

Ĥ = Ĥm + Ĥkin + Ĥel =
m

2

2L�1X

j=0

h
(�1)jẐj + Î

i
+

1

2

2L�2X

j=0

�
�̂+
j �̂�

j+1 + h.c.
�

+
g2

2

2L�2X

j=0

✓X

kj

Q̂k

◆2

,

Q̂k = �
1

2

h
Ẑk + (�1)k Î

i
. (1)

The (bare) mass and coupling are m and g, respectively, and the staggered lattice spacing has been set to one. Due
to the non-perturbative mechanism of confinement, all low-energy states (the vacuum and hadrons) have charge zero.
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t NT # of CNOTs
(per t)

CNOT depth
(per t)

# of distinct
circuits (per t)

# of twirls
(per circuit)

# of shots
(per twirl)

Executed
CNOTs (⇥109)

Total # of
shots (⇥106)

1 & 2 2 2,746 70 4 480 8,000 4 ⇥ 2 ⇥ 10.5 4 ⇥ 2 ⇥ 3.8

3 & 4 4 4,598 120 4 480 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 3.8

5 & 6 6 6,450 170 4 480 8,000 4 ⇥ 2 ⇥ 24.8 4 ⇥ 2 ⇥ 3.8

7 & 8 8 8,302 220 4 480 8,000 4 ⇥ 2 ⇥ 31.9 4 ⇥ 2 ⇥ 3.8

9 & 10 10 10,154 270 4 160 8,000 4 ⇥ 2 ⇥ 13.0 4 ⇥ 2 ⇥ 1.3

11 & 12 12 12,006 320 4 160 8,000 4 ⇥ 2 ⇥ 15.4 4 ⇥ 2 ⇥ 1.3

13 & 14 14 13,858 370 4 160 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 1.3

Totals 1.05 ⇥ 1012 1.54 ⇥ 108

TABLE III. Details of our quantum simulations performed using 112 qubits of IBM’s ibm_torino Heron processor. For a given
simulation time, t (first column), the second column gives the number of employed Trotter steps NT . The third and fourth
columns give the number of CNOTs and corresponding CNOT depth. The CNOT totals given in the third column include the
cancellations that occur during transpilation, and the CNOT depth should be compared to the minimum depth that is equal to
twice the number of CNOTs/qubit (49, 82, 115, 148, 181, 214, 247 for increasing NT ) to assess the sparsity of the circuits. The
fifth column gives the number of distinct circuits per t (this number does not include the circuits needed for readout mitigation)
and the sixth column gives the number of Pauli-twirls executed per distinct circuit. For each twirl, 8,000 shots are performed
(seventh column). The total number of executed CNOT gates are given in the eighth column, and the total number of shots are
given in the ninth column. The total number of CNOT gates applied in this production is one trillion, and the total number
of shots is 154 million.
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FIG. 10. The time evolution of the vacuum subtracted chiral condensate Xj(t), defined in Eq. (18), for a L = 56 (112
qubits) spatial-site lattice. The initial state is prepared using the 2-step SC-ADAPT-VQE vacuum and wavepacket preparation
circuits. Time evolution is implemented using a second-order Trotterization of the Hamiltonian with the � = 1 truncated electric
interaction. The left side shows the results of error-free classical simulations from the cuQuantum MPS simulator, while the right
side shows the CP-averaged results obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino (both
sides show the MPS result for t = 0). Due to CP symmetry, the right and left halves would be mirror images of each other in
the absence of device errors. A more detailed view for each time slice is given in Fig. 11, and discussions of the error-mitigation
techniques are presented in the main text and App. G.

These ⌘O are used to estimate the expectation values from the physics circuits (using the same relation). For
wavepacket (vacuum) time evolution, we choose a mitigation circuit that creates the wavepacket (vacuum), time
evolves with half of the Trotter steps until t/2 and then evolves for �t/2 with the remaining Trotter steps [41]. This
forwards-backwards time evolution corresponds to the identity operator in the absence of device errors, and restricts
our simulations to an even number of Trotter steps. To determine the ⌘O, the prediction of a desired observable from
the mitigation circuit must be known. In our case, this requires classically computing h�̂ji in both the SC-ADAPT-
VQE vacuum and wavepacket. This can be accomplished even for large systems using the qiskit or cuQuantum
MPS simulator, as was demonstrated in Ref. [108] for the SC-ADAPT-VQE vacuum up to L = 500. Interestingly,
our numerical calculations highlight that it is the time evolution, and not the state preparation, that is difficult for
classical MPS techniques.

We implement time evolution for t = {1, 2, . . . , 14} with 2d
t
2e second-order Trotter steps (a maximum step size of

�t = 1). As shown in the previous section, this step size does not introduce significant Trotter errors. The number of
CNOTs and corresponding CNOT depth for each simulation time are given in Table III, and range from 2,746 CNOTs
(depth 70) for 2 Trotter steps to 13,858 CNOTs (depth 370) for 14 Trotter steps. The results for Xj(t) obtained
from ibm_torino and the MPS simulator are shown in Fig. 10, with a breakdown of each t given in Fig. 11 (the

Hadron wave packet evolution 
in the Schwinger model (112 
staggered sites with IBM with 
noise mitigation):

Hadron wavepacket in the  gauge theory (12 staggered sites with Quantinuum, minimal noise mitigation):Z2
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FIG. 2. The L = 1 lattice qubit layout of one generation of the SM that is used in this paper for quantum simulation. Fermion
(anti-fermion) sites are occupied when spin up (down), and the lepton sites represent occupation in the tilde basis. Specifically,
the example of |dbdgdri (upper lattice) decaying to |dbdgdri |e⌫i (lower lattice) through one application of H̃� in Eq. (9) is
shown.

it is convenient to work with field operators that create and annihilate eigenstates of the free lepton Hamiltonian,
Hleptons. These are denoted by “tilde operators” [158], which create the open-boundary-condition (OBC) analogs of
plane waves. In the tilde basis with the JW mapping, the lepton Hamiltonian becomes

H̃leptons = �⌫(�̃
(⌫)†
0 �̃

(⌫)
0 � �̃

(⌫)†
1 �̃

(⌫)
1 ) + �e(�̃

(e)†
0 �̃

(e)
0 � �̃

(e)†
1 �̃

(e)
1 ) ! �⌫

2
(Z⌫ � Z⌫) +

�e

2
(Ze � Ze) , (7)

where �⌫,e = 1
2

q
1 + 4m2

⌫,e. In our simulations, the initial state of the quark-lepton system is prepared in a strong

eigenstate with baryon number B = +1 in the quark sector and the vacuum, |⌦ilepton, in the lepton sector. The

benefit of working in the tilde basis is that the vacuum satisfies �̃
(e,v)
0 |⌦ilepton = �̃

(e,v)†
1 |⌦ilepton = 0, and therefore

the only terms in the H� of Eq. (4) that contribute to �-decay are

H̃� =
Gp
2


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
0 + �

(u)†
1 �

(d)
1

⌘

� 1 + 4cec⌫

2
p
(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
1 + �

(u)†
1 �

(d)
0

⌘�
�̃
(e)†
0 �̃

(⌫)
1 + h.c. , (8)

where ce = �e�me and c⌫ = m⌫ +�⌫ . The insertion of the charge-conjugation matrix, C, in the continuum operator,
Eq. (2), is necessary for a non-zero �-decay rate on a single lattice site. To minimize the length of the string of Zs
in the JW mapping, the lattice layout in Fig. 2 is used. In this layout, the hopping piece of Hquarks has only 5 Zs
between the quark and antiquark raising and lowering operators and the �-decay operator becomes

H̃� ! Gp
2

⇢
�
�
⌫ �

+
e

X

c=r,g,b


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,cZ

2
�
+
u,c + �

�
d,c

Z
2
�
+
u,c

⌘

� 1 + 4cec⌫

2
p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,c

Z
8
�
+
u,c + �

+
u,cZ

2
�
�
d,c

⌘�
+ h.c.

�
. (9)

In total, the L = 1 system requires 16 (12 quark and 4 lepton) qubits.2 See App. A for the complete L = 1 Hamiltonian
in terms of qubits.

B. A Majorana Mass for the Neutrino

Although not relevant to the simulation performed in Sec. III, it is of current interest to consider the inclusion of a
Majorana mass term for the neutrinos. A Majorana mass requires and induces the violation of lepton number by

2 The e+ and ⌫ qubits do not participate in this process, which could be simulated with only 14 (12 quark and 2 lepton) qubits.
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FIG. 6. The probability of �-decay, �� ! �0 + e+ ⌫, with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2 and G = 0.5, using one (left
panel) and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black
curve shows the expected result found from the exact diagonalization of the Hamiltonian. The blue circles correspond to the
data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each obtained from 200 shots (400
shots). The points have been shifted slightly along the t-axis for clarity. Error mitigation beyond physical-state post-selection
has not been performed. The weak Hamiltonian in the time-evolution responsible for the decay is given in Eq. (14).

Single-Baryon Decay Probabilities using Quantinuum’s H1-1 and H1-1E

1 Trotter step 2 Trotter steps

t H1-1 H1-1E
H1-1E

(⇥2 stats)
Theory H1-1 H1-1E

H1-1E

(⇥2 stats)
Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088

1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270

1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391

2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547

2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792

TABLE II. The probability of �-decay, �� ! �0 + e+ ⌫, on L = 1 spatial lattice with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2
and G = 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation
and subsequent time evolution under 1 and 2 Trotter steps. The results are displayed in Fig. 6. The columns labeled (⇥2
stats) were obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming
the results follow a binomial distribution.

grows linearly with its distance from the boundary, leading to a force on colored objects. This will cause colored
errors in the bulk to migrate to the edge of the lattice where they could be detected and possibly removed. This is one
benefit of using axial gauge, where Gauss’s law is automatically enforced, and a colored “error” in the bulk generates
a color flux tube that extends to the boundary.

Localized two-bit-flip errors can create color-singlet excitations that do not experience a force towards the boundary,
but which are vulnerable to weak decay. For su�ciently large lattices, color singlet excitations will decay weakly down
to stable states enabled by the near continuum of lepton states. In many ways, this resembles the quantum imaginary-
time evolution (QITE) [184–186] algorithm, which is a special case of coupling to open systems, where quantum
systems are driven into their ground state by embedding them in a larger system that acts as a heat reservoir. One
can speculate that, in the future, quantum simulations of QCD will benefit from also including electroweak interactions
as a mechanism to cool the strongly-interacting sector from particular classes of errors.

This particular line of investigation is currently at a “schematic” level, and significantly more work is required to
quantify it’s utility. Given the quantum resource requirements, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.

Fermion-antifermion scattering in the Thirring model in (1+1)D
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A polynomial-time quantum final-state shower 
algorithm that models the effects of intermediate spin 
states similar to those present in electroweak showers.
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notoriously di�cult sign problem in classical lattice QCD
calculations of real time observables [14, 85–87] (the same
problem can also appear in open QCD systems).

In this letter, we outline a formulation of the evolu-
tion of hard probes in the QGP as a Lindblad equation
and explore how simulations on Noisy Intermediate Scale
Quantum (NISQ [13]) devices can be used to advance the-
oretical studies of hard probes in the QGP. Using a quan-
tum algorithm for simulating the Lindblad equation, we
study a toy model on IBM Q simulators and quantum de-
vices, and implement error mitigation for measurement
and two-qubit gate noise. We demonstrate that quan-
tum algorithms simulating simple Lindblad evolution are
tractable on current and near-term devices, in terms of
available number of qubits, gate depth, and error rates.
Open quantum system formulation of hard probes in

heavy-ion collisions. The Hamiltonian of the full system
consisting of the hard probe (subsystem) and the QGP
(environment) can be written as

H = HS + HE + HI (1)

HS = HS0 + HS1 . (2)

Here HS , HE and HI are the Hamiltonians of the subsys-
tem, the environment and their interaction, respectively.
A schematic diagram of the setup is shown in Fig. 1. We
further split HS into the free HS0 and the interacting part
of the subsystem HS1. In quantum field theories, Hamil-
tonians are functionals of fields, which require discretiza-
tion in position space [16]. Here, instead of simulating the
dynamics of fields, we focus on simulating the dynamics
of particle states, which is valid for hard probes. If we use
multi-particle states |p1, A1i ⌦ · · · ⌦ |pn, Ani as the basis
where pi is the four-momentum, Ai represents all dis-
crete quantum numbers, and i = 1, 2, . . . , n, then both
HS0 and HS1 are matrices and HS0 is diagonal. Note
that HS1 is di↵erent from HI : The former is the interac-
tion within the subsystem itself and independent of the
environment, while the latter represents the interaction
between the subsystem and the environment. For exam-
ple, for jets in HICs, HS1 can be collinear radiation of
collinear particles while HI can describe the Glauber ex-
change between collinear particles (subsystem) and soft
fields from the QGP environment [81].

The total density matrix of the subsystem and the en-
vironment evolves under the von Neumann equation. In
the interaction picture, this is given by

d

dt
⇢(int)(t) = �i[H(int)

I
(t), ⇢(int)(t)] . (3)

The operators are defined by

⇢(int)(t) ⌘ ei(HS0+HE)t⇢(t)e�i(HS0+HE)t (4)

H(int)
S1 (t) ⌘ eiHS0tHS1e

�iHS0t (5)

H(int)
I

(t) ⌘ ei(HS0+HE)tHIe
�i(HS0+HE)t . (6)
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FIG. 1. A schematic illustration of a multi-level open quan-
tum system S interacting with a thermal environment E.
The levels in S can represent for example: (1) heavy quark-
antiquark (QQ̄) bound states |p, Aii with center-of-mass mo-
mentum p and quantum numbers Ai, and (2) unbound QQ̄
pairs |p1,p2i with momenta p1,p2. For jets the levels of
S can represent multi-parton states labeled by momenta
|p1, · · · , pni.

The interaction picture used here is special: it is the
standard interaction picture for the subsystem but it is
the Heisenberg picture for the environment. We will drop
the superscript (int) from now on for simplicity but the
reader should be reminded that we use the interaction
picture throughout. We assume that the initial density
matrix factorizes and the environment density matrix is
a thermal state1

⇢(0) = ⇢S(0) ⌦ ⇢E (7)

⇢E =
e��HE

Tr(e��HE )
, (8)

where � = 1/T is the inverse of the QGP temperature.
After the environment is traced out, the reduced evo-

lution of the subsystem density matrix is generally time-
irreversible and non-unitary. If the coupling between the
subsystem and the environment is weak, the reduced evo-
lution equation can be cast as a Markovian Lindblad
equation [38–40]:

d

dt
⇢S(t) = � i

⇥
HS1(t) + HL, ⇢S(t)

⇤

+
mX

j=1

⇣
Lj⇢S(t)L†

j
� 1

2

�
L†
j
Lj , ⇢S(t)

 ⌘
, (9)

where HL denotes a thermal correction to HS generated
by loop e↵ects of HI , and the Lj are called Lindblad op-
erators, whose explicit expressions will be given for a toy

1 The backreaction of the QGP medium to jet energy loss [88–97],
which may further modify jet observables is beyond the scope of
our considerations here. For a recent review, see Ref. [98].
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Eq. (46) gives T̂µµ up to O(a). To improve the T̂µµ

operators up to O(a2), we use Eq. (12) and Eq. (13) and
take the average around the site n0:

Tr
Ë
F̂0i(n0)2

È
=

ÿ

x=0,1

g2

s

2a4
Tr

Ë
fî2

n0≠xî,i

È
(48)

Tr
Ë
F̂ij(n0)2

È
=

ÿ

x=0,1

ÿ

y=0,1

1
2g2

s
a4

ReTr
Ë
1 ≠ P̂ij(n0 ≠ xî ≠ yĵ)

È
. (49)

These operators enable us to construct T̂µµ up to dis-
cretization errors that are O(a2, a0).

III.4. Tij in the Hamiltonian formulation

Let us now move to deriving the operators T̂ij , that is,
the o�-diagonal spatial parts of the EMT:

Tij = Tr [≠Fi0Fj0 + FikFjk] . (50)

This definition holds both on the spacetime lattice and
as an operator equation on the Hamiltonian lattice. We
first work with the naive discretization, and then with
the clover discretization. Without loss of generality, let
us take T12 as an example and perturb the Wilson action
with terms in Eq. (50). We find that T̂‘ is given by Eq. (36)
with:

K‘ = K + ‘a0a3Tr
#
F N

10
F N

20

$
(51)

V‘ = V + ‘a0a3Tr
#
F N

13
F N

23

$
. (52)

As before, the spatial plaquettes in Eq. (52) can be di-
rectly converted to operators. The time-like plaquettes in
Eq. (51) will ultimately appear as various fî. Using R̂(g)
operators, T̂‘ can be written

T̂‘ =
⁄

Dg e
iK(g)≠i‘

a
4g2

s a0
Tr[(g

†
n0,1≠gn0,1)(g

†
n0,2≠gn0,2)]+iV̂‘ .

(53)
Evaluating the integral via the saddle point x = 0 (exact
in the limit a0 æ 0) gives:

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂‘ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂‘

Mfl‡ = ≠ia

2g2
s
a0

”fl‡ + ‘
ia

g4
s
a0

”nn0”mn0”i1”j2”ab (54)

which at O(‘) yields Ĥ‘:

Ĥ‘ = ĤKS ≠ ‘
g2

s

a
Tr[fîn0,1fîn0,2] ≠ ‘a3Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È

(55)
where the second term in RHS correspond to a0a3F10F20.
More generally, operators for Fi0Fj0 are

Tr
Ë
F̂ N

i0
F̂ N

j0
(n0)

È
= g2

s

a4
Tr[fîn0,ifîn0,j ] (56)

Thus the naive T̂ij(n0) in the Hamiltonian formulation is

T̂ N

ij
(n0) = ≠

g2

s

a4
Tr [fîn0,ifîn0,j ] + Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È
.

(57)

The clover approximations are obtained from F C

ij
in

Eq. (16) and F B

i0
in Eq. (18). As before, the transition

from the action formalism to the Hamiltonian is straight-
forward for Fij , so we focus only on the F10F20 term. For
these,

K‘(U Õ, U) = K + ‘a0a3Tr
#
F B

10
(n0)F B

20
(n0)

$
. (58)

We use the definitions of Fig. 2 for the links around n0. For
the example of Un0,1, we denote operators and functions
on them as U1, Û1, fî1, and g1 = eix

a
1 ⁄

2 . Then T̂‘ is

FIG. 2. Half-clovers B10(n0) and B20(n0) at site n0.

T̂‘ =
⁄

Dg e
iK(g)≠i

‘a
16g2

s a0
Tr[(g

†
1≠g1+Û

†
0 (g

†
0≠g0)Û0)(g

†
3≠g3+Û

†
2 (g

†
2≠g2)Û2)]+iV̂ (59)

After the saddle-point approximation around x = 0, T̂‘ simplifies and becomes

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂

with Mfl‡ = ≠
ia

2g2
s
a0

”fl‡ ≠
i‘a

4g2
s
a0

(M1)fl‡ (60)
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ag
2 set for the fitting c0 c1 c2

⌘

s
(ag2 = 0)

{0.5, 0.55, 0.6, 0.65} 0.07(2) 14(12)·10�4 81(12)·10�1 0.07(2)

{0.4, 0.5, 0.55, 0.6, 0.65} 0.068(16) 14(9)·10�4 80(8)·10�1 0.070(16)

{0.4, 0.5, 0.55, 0.6, 0.65, 0.7} 0.118(14) 9(6)·10�5 12(1) 0.118(14)

TABLE II. Obtained parameter values from fitting the ag
2 dependence of ⌘

s
on a 4⇥ 4 lattice with jmax = 1

2 for �0 = 0.2 using
the exponential function in Eq. (44). The last column lists the obtained values in the continuum limit.

column of Tab. II for the three di↵erent fitting ranges of
ag2. The three values are compatible within two-sigma
error bars. However, we observe a change in the contin-
uum limit value, when the data point at ag2 = 0.7 is
included in the fitting. We attribute this to the poten-
tially larger lattice discretization e↵ect at bigger lattice
spacing.

Iterating this procedure for di↵erent “physical” tem-
peratures T0, we obtain the temperature dependence of
⌘

s
in the continuum. We shown in Fig. 12 results from

all the three fitting data sets. The green and orange dots
are slightly shifted horizontally for better visualization.
We do not study temperatures higher than �0 = 0.15
since higher jmax truncation is needed to accurately de-
scribe highly excited states, as discussed in Sec. VB. The
uncertainty grows rapidly at lower temperatures (e.g.
�0 = 0.225), since not many states of the theory are
e↵ectively contributing to the retarded Green’s function
(suppressed by e��0E) and then the density of contribut-
ing states is not large enough to suppress the real time
fluctuation in ⌘̃(tf ) due to our small lattice and local
Hilbert space truncation, as seen in Sec. V C.

Our results of ⌘

s
are consistent with the holographic

result 1
4⇡ within uncertainties, which is shown as the

dashed line in Fig. 12. We also observe a trend of de-
crease in ⌘

s
as temperature increases from the blue dots.

However, this trend is not obvious from the green and or-
ange dots. All these should be further studied on bigger
lattices with higher jmax truncation in the future, to bet-
ter understand the finite volume and local Hilbert space
truncation e↵ects.

2. Structure of Spectral Function

We also study the o↵-diagonal matrix elements of eT xy

in small frequency ! ranges, which are related to the
spectral function that is defined as

⇢xy(!) ⌘
1

A

Z
dt ei!tTr

�
[ eT xy(t), eT xy(0)]⇢T

�

=
1

AZ

X

n

X

m

2⇡�(! + En � Em)|hn| eT xy
|mi|

2

⇥ (e��En � e��Em) . (45)

FIG. 11. Results of the coupling dependence of ⌘

s
for �0 = 0.2

on a 4 ⇥ 4 lattice with jmax = 1
2 . Black points represent the

calculated ⌘

s
at di↵erent couplings, lines indicate the fitting

results and bands describe one sigma uncertainty of each fit-
ting.
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[ �
/s

] (
�

0)

1/(4�)

(ag2)min=0.50, (ag2)max=0.65

(ag2)min=0.40, (ag2)max=0.65
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FIG. 12. Obtained ⌘

s
results as a function of �0 on a 4 ⇥ 4

lattice with jmax = 1
2 . We slightly shift the data horizontally

for better visualization of the three fittings using di↵erent
data sets.

When ! is small, |hn| eT xy
|mi|

2 is closely related to ⇢
xy(!)
!

:

⇢xy(!) =
1

AZ

X

n

X

m

2⇡�(! + En � Em)|hn| eT xy
|mi|

2

⇥ e��En [�! + O(!2)] . (46)

Our results of |hn| eT xy
|mi| on a 4 ⇥ 4 lattice with

j = 1
2 are shown in Fig. 13 for two values of ag2:

0.6 and 1.0, where we use eigenstates in the energy
windows 15 < En, Em < 17 and 26 < En, Em < 28
respectively. Previous calculations showed no structure

3

�e1
�e3 �e2

j

i
K = 1K = 2

K = 3

K = 5K = 4

K = 0

FIG. 1. Hexagonal lattice on which the position of each pla-
quette is labeled by (i, j) along the two axes shown. The red
dots represent the positions at which the stress-energy tensors
are evaluated. The K values show the periodic chain used for
the magnetic term at (i = 1, j = 2).

III. LATTICE HAMILTONIAN FORMULATION

A. General Setup

The Kogut-Susskind Hamiltonian [28] of the 2+1D
SU(2) gauge theory can be discretized on a hexagonal
lattice as shown in Fig. 1

H =
3
p

3g2

4

X

links

Ea

i
Ea

i
�

8
p

3

9g2a2

X

plaqs

9

9 ⌘ Tr

✓ Y

(x,̂i)2plaq

U(x, î)

◆
, (9)

where a in the denominator is the side length of the hon-
eycomb and we have shifted the energy reference point.
The honeycomb plaquette operator 9 is defined as the
trace of the product of the six Wilson lines U(x, î) on
the edges of one honeycomb. The two-vector x = (i, j)
labels the position of a honeycomb lattice on the plane
along the directions specified as in Fig. 1. The electric
field

Ea = (Ea

x
, Ea

y
) ⌘

a

g2
(F a

0x, F
a

0y) , (10)

is projected along three unit directions Ea

i
⌘ êi·E

a where
the three unit vectors are defined as in Fig. 1. On each
link, only one type of projected electric field lives, i.e.,
i is 1, 2 or 3. More details can be found in Ref. [29].
Physical states satisfy Gauss’s law

3X

i=1

Ea

i
| phyi = 0 , (11)

at each vertex for every a.
We use the electric basis that labels each link by the

quantum number j. In this basis, the electric energy is
diagonal [30–32]

hJ |Ea

i
Ea

i
|ji = j(j + 1)�Jj . (12)

The matrix element of the plaquette term (magnetic en-
ergy) has been worked out to be [29, 33, 34] (see Refs. [35–
39] for the square plaquette case):

h{J}|9|{j}i = (13)
6Y

V=1

(�1)ja+Jb+jx
p

(2Ja + 1)(2jb + 1)

⇢
jx ja jb
1
2 Jb Ja

�
,

where {j} ({J}) labels the states on the six links of the
honeycomb plaquette before (after) the action of the 9
operator. The product is over all the vertices V of the
honeycomb plaquette, attached to which are two internal
links labeled by the subscripts a and b and an external
link labeled by x.

From Eqs. (2) and (10), we find

T xy = �
g2

a2
Ea

x
Ea

y
. (14)

Using the electric field projection, we find Ea

1 � Ea

3 =
p

3Ea

x
and Ea

2 = �Ea

y
. Combining with Gauss’s law

Ea

1 + Ea

2 + Ea

3 = 0, we can express T xy as

T xy = �
g2

p
3a2

�
(Ea

1 )2 � (Ea

3 )2
�
. (15)

In this expression, we need to specify the position where
T xy is defined, since the two electric fields Ea

1 and Ea

3 are
defined on di↵erent links. We use the convention that
the vertex joining the two electric fields represents the
position of T xy. On a 3⇥4 lattice as shown in Fig. 1, we
should specify 12 positions for di↵erent T xy’s. We choose
the 12 red points in Fig. 1 as our convention, which can
be easily generalized to bigger lattices. Summing over all
red points gives

eT xy =
3
p

3

2
a2T xy

sum ⌘
3
p

3

2
a2

X

red dots

T xy

A =
3
p

3

2
a2Nplaq , (16)

where Nplaq is the total number of honeycomb plaquettes
on the lattice and is equal to the number of red dots, as
shown in Fig. 1. Using Eqs. (4) and (6) leads to

Gxy

r
(t) =

3
p

3a2

2Nplaq
✓(t)Tr

�
[T xy

sum(t), T xy

sum(0)]⇢T
�
. (17)

B. Truncation at jmax = 1
2

For quantum computation discussed later, we need to
decompose the Hamiltonian and T xy in terms of tensor
products of Pauli matrices, for which quantum circuits of
implementation are known. This decomposition has been
done for the case with the local Hilbert space truncation
at jmax = 1

2 .

Shear viscosity in SU(2) LGT in 2+1 D with jmax = 1/2
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

Four fermion sites

Martinez et al, Nature 
534, 516 EP (2016).

REAL-TIME EVOLUTION AND QUENCH DYNAMICS IN ABELIAN LGTs

Not the spin formulation: a 2-qubit reduction of 4-qubit simulation.

4

FIG. 2. The H
⇤̃=3
k=0,+ ground state energy and chiral conden-

sate (purple, blue extrapolated to -1.000(65) and -0.296(13),
respectively) expectation values as a function of r, the noise
parameter. r � 1 is the number of additional CNOT gates
inserted at each location of a CNOT gate in the original VQE
circuit. (1200 IBM allocation units and ⇠ 6.4 QPU·s)

k = 0 and ⇤̃ = 1, 2, 3 spaces as hHi = �0.91(1) MeV,
�1.01(4) MeV, and �1.01(2) MeV respectively (see Ap-
pendix E, H, and I)1. To manage inherent noise on the
chip, we have performed computations with a large num-
ber of measurement shots (8192 shots for ibmqx2 [52]
and ibmqx5 [53]). For these variational calculations, the
systematic measurement errors have been corrected via
the readout-error mitigation strategy [33, 54]. Further,
a zero-noise extrapolation error mitigation technique in-
spired by Refs. [55, 56] has been implemented. Examples
of this zero-noise extrapolation technique are shown in
Fig. 2, where the noise parameter r controls the accrual
of systematic errors by inserting r� 1 additional 2-qubit
gates (CNOT2) at every instance of a CNOT gate. In
the limit of zero noise, this modifies CNOT simply by an
identity.

For the results obtained on IBM quantum hardware,
an estimate of the length of time the quantum processing
unit (QPU) spent executing instructions based upon IBM
benchmarking is provided [52, 53, 57]. This VQE calcu-
lation required 6.4 QPU-seconds and 2.4 CPU-seconds
with a total run time of 4 hours. Clearly, a majority of
the time was spent in communications.

IV. DYNAMICAL PROPERTIES

Time evolving quantum systems is a key capabil-
ity of quantum computers. Working with the k = 0
P = +1 sector, we evolve the unoccupied state |�1ik=0,+

1 Example code snippets for calculation on IBM hardware and ta-
bles of data appearing in figures can be found in the supplemental
material [51]

FIG. 3. The probability of finding an e
+
e
� pair (blue,

lower line) and the expectation value of the energy of the elec-
tric field (purple, upper line) in the two-spatial-site Schwinger
model following time evolution with U(✓i(t)) from the initial
empty state. The solid curves are exact results while the the
data points are quadratic extrapolations obtained with the
ibmqx2 quantum computer using a circuit involving 3 CNOT
gates [60]. (1000 IBM allocation units and ⇠ 12.3 QPU·s)

(see Fig. 1 and Appendix A) forward in time with two
techniques. The first is through SU(4) parameteriza-
tion of the evolution operator and the second is us-
ing a Trotter discretization of time. The former uses
a classical computer to determine the 9 angles describ-
ing the time evolution over an arbitrary time inter-
val, which is induced by the symmetric SU(4) matrix
U(✓i(t)) = e�iHt, leading to the state |�ik=0,+(t) =
U(✓i; t)|�1ik=0,+ (see Appendix C). The most gen-
eral form of the symmetric SU(4) matrix through its
Cartan decomposition is U = KTCK where C =
e�i�x⌦�x✓7/2e�i�y⌦�y✓8/2e�i�z⌦�z✓9/2 is generated by the
Cartan subalgebra and K is a SU(2) ⌦ SU(2) transfor-
mation defined by the 6 angles, ✓1,..6 [58, 59]. Fig. 3
shows the “zero-noise” extrapolated pair probability and
expectation value of the energy in the electric field as a
function of time calculated on ibmqx2 with the Cartan
subalgebra circuit of Ref. [60].
The time evolution of this system has also been stud-

ied using a Trotterized operator (see Appendix D).
It is discretized such that e�iHt

! UT (t, �t) =

lim
N!1

 
Q
j

e�iHj�t

!N

, where �t = t

N
and the Hamilto-

nian decomposition H =
P
j

Hj (for the k = 0 P = +1

⇤̃ = 3 sector) is given by,

H =
x
p
2
�x ⌦ �x +

x
p
2
�y ⌦ �y � µ �z ⌦ �z

+ x

✓
1 +

1
p
2

◆
I ⌦ �x �

1

2
I ⌦ �z

� (1 + µ) �z ⌦ I + x

✓
1�

1
p
2

◆
�z ⌦ �x .(5)
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mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is

|�i = N

X

{m}

LY

i=1

hj
t
i ,m

t
i,R, j

t
i+1,m

t
i+1,L|qi,m

t
qii (4)

hj
b
i ,m

b
i,R, j

b
i+1,m

b
i+1,L|qi,m

b
qii

|j
t
i ,m

t
i,L,m

t
i,Ri ⌦ |j

b
i ,m

b
i,L,m

b
i,Ri ⌦ |qi,m

t
qi ,m

b
qii

with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are

h�··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|⇤̂|�··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···i =

q
dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

⇥

q
dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

⇥ (�1)j
t
`+jb`+jtr+jbr+2(jtaf+jbaf�q`i�qri)

⇥

⇢
j
t
` j

t
ai q`i

1
2 q`f j

t
af

�⇢
j
b
` j

b
ai q`i

1
2 q`f j

b
af

�⇢
j
t
r j

t
ai qri

1
2 qrf j

t
af

�⇢
j
b
r j

b
ai qri

1
2 qrf j

b
af

�

where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local

Real-time dynamic of pure SU(2) with 
global irreps on IBM

Klco, Savage, and Stryker, Phys. 
Rev. D 101, 074512 (2020).

See also studies on D-wave annealers:
Rahman et al, Phys. Rev. D 104, 
034501 (2021), Illa and Savage, 
arXiv:2202.12340 [quant-ph], Farrel 
et al, arXiv:2207.01731 [quant-ph].
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FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

24

circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

Ciavarella, Klco, and Savage, 
Phys. Rev. D 103, 094501 (2021).
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REAL-TIME EVOLUTION AND QUENCH DYNAMICS IN NON-ABELIAN LGTs
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FIG. 3. Time evolution by self-mitigation on a two-plaquette lattice from the initial state of Fig. 1 with gauge coupling
x = 2.0 and time step dt = 0.08. In both panels, the red solid (blue dashed) curve is the exact probability of the left (right)
plaquette being measured to have j = 1

2 . Upper panel: The red left-pointing (blue right-pointing) triangles are the physics
data computed from the ibm lagos quantum processor. The red (blue) error bars without symbols are the mitigation data
computed on ibm lagos from the same circuit but with half the steps forward in time and then half backward in time. Lower
panel: The triangles are the physics results obtained by applying Eq. (8) to the data from the upper panel.

II. RESULTS

A. Time evolution on a two-plaquette lattice

One way to obtain the chromoelectric eigenstates for a
row of N plaquettes is to start with j = 0 at each gauge
link and then apply various sequences of plaquette oper-
ators. Retaining only j = 0 and j = 1

2 gives 2N basis
states in total, and they can be coded into a qubit reg-
ister by assigning one qubit to each plaquette. The top
and bottom links of the nth plaquette are always equal to
each other, either both j = 0 or both j = 1

2 . The qubit
encodes that pair of options. Each vertical link in the
lattice is completely specified by its neighboring plaque-
tte values, being j = 0 if the neighboring plaquettes are
equal to each other and j = 1

2 otherwise. The two-qubit
expression for a two-plaquette lattice that emerges from
Eq. (1) is

2

g2
H =

3

8
(7� 3Z0 � Z0Z1 � 3Z1)

�x

2
(3 + Z1)X0 �

x

2
(3 + Z0)X1 (2)

where Xn and Zn denote Pauli gates acting on the nth
qubit.
The time evolution operator is obtained from exponen-

tiation of the Hamiltonian, and any term involving two
plaquettes will require entangling gates. For IBM hard-
ware, the native entangling gate is the CNOT gate which
is a controlled Pauli X gate, and because of this we pre-
fer to first express the Hamiltonian in terms of Y and
Z gates by applying a

p
Z rotation to each qubit in the

register. The result is

2

g2
H =

3

8
(7� 3Z0 � Z0Z1 � 3Z1)

�x

2
(3 + Z1)Y0 �

x

2
(3 + Z0)Y1 . (3)

For this form of the Hamiltonian, just a few basic iden-
tities,

e
�i✓Zj = RZj(2✓) , (4)

e
�i✓Yj = RYj(2✓) , (5)

Self-mitigating Trotter 
circuits for pure SU(2) 
LGT in 2+1 D on IBM

Rahman, Lewis, Mendicelli, 
Powell, Phys. Rev. D 106, 
074502 (2022).



THERMALIZATION AND NON-EQUILIBRIUM PROPERTIES

A dynamical phase transition 
and topological order in lattice 
Schwinger model with IonQ 
quantum computer:
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Figure 4. E↵ective loss of initial-state information. (A) State preparation. Evolution of the matter density from the
“fully matter-filled” state (hn̂matteri = 1, blue box left) to almost “matter-empty” state (hn̂matteri ⇡ 0.21, yellow box right) for
the adiabatic ramp with preparation time ⌧ and corresponding mass parameter mPre/ as shown in the inset. (B) Schematic
of the evolution towards thermal equilibrium. For each of two sets of quench parameters (m = 0 and m = �0.8) we choose
two initial states with equal energy density. The resulting steady states in the wake of the quenches starting in these two
initial states are then compared to a canonical thermal ensemble whose temperature is determined from the energy density [22].
Here, all energy densities are plotted with respect to the ground state of the evolution Hamiltonian. (C, D) Relaxation. We
show the thermalization dynamics for the chosen quench parameters and initial states (shown in (B)). Experimental data are
compared to predictions from corresponding gauge theory thermal ensembles (dashed lines) at temperatures kBT = 1 (top)
and kBT = 4.6 (bottom). The insets show the energy density evolution during state preparation, the circles mark the chosen
initial states.

dations for the exploration of more complex higher-
dimensional gauge theories using state-of-the-art quan-
tum technology [38]. An important next step towards
applications for gauge theories such as quantum electro-
dynamics, or maybe even quantum chromodynamics, is
a faithful extension of the discrete quantum-link repre-
sentation towards continuous variables [9, 39, 40]. To
this end, current implementation schemes should be ex-
tended to higher spin representations and scalable higher-
dimensional set-ups [41].
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Figure 1. Quantum simulation of gauge-theory quench

dynamics. (A) Schematic nonequilibrium evolution to the
steady state. Under the constrained (gauge) condition, we
find that di↵erent initial states with the same energy density
evolve towards a common thermal state of the gauge the-
ory. (B) Quantum simulator for the gauge theory. Matter
and gauge fields are represented by occupations of bosonic
atoms in an optical superlattice. Charges are illustrated as
red (positive) and blue (negative) circles and electric flux is
shown as yellow arrows. On matter sites, the presence of
an atom signals a corresponding charge in the gauge theory.
To illustrate Gauss’s law, we indicate locally gauge-invariant
configurations around even (green boxes) and odd matter sites
(blue boxes), see also Fig. S1. (C) Evolution of the matter
density measured by in-situ imaging. Top: Starting from the
initial state with unity-filled matter sites hn̂matteri = 1 (see
inset), we observe a fast decay of the matter density hn̂matteri
for “violent” quenches (m/ = 0) in our 71-site quantum sim-
ulator. Bottom: Evolution of matter density (averaged over
36 matter sites of the superlattice). Error bars denote the
standard deviations.

sites l and l + 1. The interaction ⇠  represents the an-
nihilation (or creation) of a pair of fermionic charges on
neighboring sites with a concomitant change of electric
flux Êl,l+1 = (�1)l+1Ŝz

l,l+1 on the gauge link in-between,
such that gauge invariance is retained. The model is real-

ized within a subspace of our quantum simulator, which is
described by a tilted Bose–Hubbard Hamiltonian with a
staggered potential; see Eq. S5 for details. It is character-
ized by direct tunneling strength J , staggering potential
parameter �, linear potential �, and on-site interaction
U , as indicated in Fig. 1B. We employ a Jordan–Wigner
transformation to replace the fermionic fields in Eq. 1
with bosonic atoms (see [22] for derivational details).
We keep matter and gauge fields as dynamical degrees

of freedom each represented by appropriate site occupa-
tions of atoms in an optical superlattice. Gauge symme-
try is enforced by suitable energy penalties constraining
the system to a gauge-invariant subspace of the quan-
tum simulator [24–26]. For J ⌧ �, U , and a linear po-
tential � = 57Hz we suppress both direct and long-range
tunneling and realize the gauge theory at second-order in
perturbation theory [22]. We identify the gauge-invariant
interaction with a correlated annihilation of two atoms on
neighboring matter sites to form a doublon on the gauge
link in between (and reverse), see Fig. 1B. The mass of
the fermion pair is set by the energy balance of this pro-
cess as 2m = 2��U and the interaction strength is given
by  ⇡ 8

p
2J2/U close to resonance (m ⇠ 0).

To describe the nonequilibrium evolution of a gauge
theory, it is essential to also respect the gauge symmetry
in the initial state. In Fig. 1, we show examples of such
initial states, which can be prepared in the present ap-
paratus [8]. We start the experiment with an array of 36
near unity-filling chains of 87Rb atoms in the hyperfine
state |F = 1,mF = �1i. The individual chains extend
over 71 sites of an optical superlattice, which is formed
by the superposition of a short lattice (spacing as = 383.5
nm) and a long lattice (spacing al = 767 nm). Employ-
ing the full tunability of superlattice configurations and
the recently developed spin-dependent addressing tech-
nique [27], we remove all atoms on odd (gauge) sites,
rendering only the even (matter) sites singly occupied in
the initial state. The resulting state corresponds to the
ground state of Eq. 1 for  = 0 and m < 0, and is charac-
terized by empty gauge sites and unity filling on the mat-
ter sites hn̂matteri = 1, where hn̂matteri =

P
j2m

hn̂ji/Lm

is the average number of bosonic atoms over the Lm even
sites.
After the initial-state preparation, the atoms are iso-

lated in deep lattice wells (J, ⇡ 0). To initiate the dy-
namics, we first tune the superlattice configuration such
that potential minima of the two lattices are aligned, cre-
ating the staggered potential. The quench is then ini-
tiated by tuning the laser intensities to realize the de-
sired values of  and m, which can be chosen from a
broad range. Subsequently, the system undergoes co-
herent many-body oscillations. After a certain evolu-
tion time, we rapidly ramp up the lattice depth along
the x-axis to 60Er within 0.1 ms to freeze the dynam-
ics, where Er = h2/(8mRba2s) is the recoil energy with
mRb the atom mass and h Planck’s constant. We then
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lation operators as follows

 q = Uq

✓
aq

b
†
�q

◆
, (17)

with

Uq =

✓
cos(�) �e

i↵ sin(�)
e
�i↵ sin(�) cos(�)

◆
, (18)

with ↵ ⌘ 2⇡q
N

and � ⌘ arctan
�⇥

!q�m

!q+m

⇤1/2�
. Details and

the corresponding circuits are discussed in Appendices A
and B. A detailed gate and qubit count, as well as a
summary of all data taken, is presented in Sec. B 4 of the
Appendix.

A. Non-equal time correlation functions

To uncover the DQPT, we study the non-equilibrium
dynamics after a quench of the topological angle by �✓ =
⇡, i.e., from +m to �m, by quantum computing non-
equal time observables, focusing first on the Loschmidt
echo L(t) and the rate function �(t), defined in Eqs. (5-
6). Our general approach is summarized in Fig. 1 (a) and
the schemes to measure non-equal time observables are
shown in (b).

To do so, first the (non-interacting) ground state of

H0(m), |GS(m)i =
QN/4�1

q=�N/4 |0̄a
q
i|0̄b

q
i, where |0̄a/bq i are

zero-fermion number eigenstates of H0(+m), is prepared
in a computational-basis state in the (prequenched)
momentum-space representation (a bar distinguishes
them from eigenstates of the postquench H0(�m)). Then
a Ramsey interferometry scheme is applied, depicted in
Fig. 1(b) and discussed in greater detail in App. B 2,
with an ancilla in Hadamard superposition representing
the two interferometric paths of the qubits encoding the
fermions. We begin with the non-interacting case, e = 0,
where the initial state is time evolved in momentum space

U(t) = e
�iH0(�m)t

, (19)

with no Trotter error. Since the system is prepared in
the ground state of H0(+m) with positive mass, +m

(Eq. (15)), but is evolved with H0(�m) with negative
mass, �m, and the dispersion !q is independent of the
sign of the mass, H0(+m) and H0(�m) are formally iden-
tical in momentum space and the quench is not realized
by simply changing a parameter in H0. Instead, a change
of basis, from H0(+m) to H0(�m), is performed, see Ap-
pendix A for details. At e/|m| > 0, a Trotter scheme is
applied, where the time-evolution operator is split into a
free part (H0 in Eq. (15)) realized in momentum space,
and an interacting part (HI in Eq. (11)) realized in po-
sition space,

U(t) ⌘
�
V

†
e
�iHI�tV e

�iH0(�m)�t
�NT

, (20)

where �t ⌘ t/NT , with NT being the number of Trot-
ter steps. V ⌘ FB contains the fermionic Fourier, F ,
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FIG. 2. (a) Real (solid line, dark-colored symbols) and
imaginary (dashed line, light-colored symbols) parts of the
Loschmidt echo L(t) from an ideal-simulator (blue circles) ver-
sus error-mitigated results from IonQ Harmony (red squares),
for N = 4 sites, e = 0 and |m|a = 0.9. (b) Rate function �(t)
reconstructed from the same data. The bottom panels shows
the number of shots resulting in a physical, i.e., occupation-
number symmetry-preserving result (red bars) versus all re-
sults (gray bars).

and Bogoliubov, B, transforms defined in Eqs. (16-18).
In their respective bases, the time-evolution operators
e
�iHI�t and e

�iH0(�m)�t are diagonal and their control
by the ancilla is easy to implement, see Appendix B for
details. The basis transformations V and V

† need not
be controlled. The quench in the mass parameter is still
performed via a basis transformation [203]

Figure 2 shows the quantum-computational results for
N = 4 sites and e = 0, where panel (a) contains real and
imaginary parts of L(t) defined in Eq. (5) simulated on
ideal quantum hardware (blue circles) versus IonQ’s 11-
qubit machine (red squares), all with nshots=1000 shots
per data point. Black dotted and dashed line are results
from exact numerical diagonalization. Panel (b) displays
�(t) obtained from L(t) according to Eq. (6). The peak
(non-analyticity) of the rate function at t|m| ⇡ 1.1 (gray
dashed-dotted vertical line) marking the DQPT is well re-

For other quantum PTs 
see: Thompson and 
Siopsis, Quant. Inf. 
Proc. 22 (2023) 11, 396, 
and Quant. Sci. 
Tech. 7 (2022) 3, 035001.
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FIG. 4. Statistics of the gap ratios of the spectrum of the entanglement Hamiltonian. (a) Time evolution of the average gap
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non-repulsive (Poisson, blue dotted) and repulsive (GUE, red dashed) distributions. Error bars indicate standard deviation over
initial states and symmetry sectors. (b) Distribution of the entanglement-spectrum gap ratios, combined across 6 randomly-
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336 gaps are quantum-computed, and the average is shown in orange, along with simulated Bisognano-Wichmann results in
the limit of infinite measurements in cyan, and the exact distributions in black. Blue-dotted and red-dashed curves represent
Poisson and GUE distributions.

discernible as the observed average gap ratio hri evolves
from ⇡ 0.4 predicted for a non-repulsive Poisson distri-
bution (blue dashed line) towards ⇡ 0.6 characteristic of
repulsive level statistics of a Gaussian Unitary Ensemble
(GUE) [38]. Three time regimes (I), (II), and (III) are
identified that correspond, respectively, to the evolution
of the predicted average gap-ratio toward the Poisson dis-
tribution value, toward the GUE value, and to saturation
at the GUE value.

In Fig. 4(b) we plot, for the three ranges of evolution
times, the corresponding normalized distribution of the
gap ratios, P̄ (r), combined over 6 random initial states
and 4 symmetry sectors. We observe a clear transition
from early-time non-repulsion (Poisson distribution, blue
dotted line) in regime (I) to level repulsion (Gaussian
Unitary Ensemble, red) in regime (III). At intermediate
times, a distribution is observed between the initial ab-
sence of level repulsion and the subsequent emergence of
level repulsion. Error bars and bands denote the vari-
ance resulting from averaging over symmetry sectors and
initial states. The predicted exact distribution (black
line) exhibits a sharper peak around zero at the ear-
liest times due to the reduced density matrix not be-
ing full rank. Conversely, the BW-inspired ansatz (cyan
line) generally parametrizes a full-rank matrix unless cou-
plings are very finely tuned, resulting in an overestima-
tion of level repulsion in the initial stages. Calculations
indicate that the onset of the three regimes remains con-
sistent for any randomly chosen initial condition and de-
pends only on the (subsystem-)size when measured in
coupling-independent units gt.

In Fig. 5 we plot the ESSF reconstructed from the data
used in Fig. 4. The three panels of the plot correspond
to the the three time regimes discussed in relation to the
EGRD evolution. The displayed theory curves are aver-
aged over initial states, symmetry sectors, and each of
the three time ranges. Starting from an initial flat be-
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FIG. 5. Entanglement spectral form factor. The average en-
tanglement spectral form factor across various initial states,
symmetry sectors, and three distinct regimes (I), (II), and
(III) identified in Fig. 4. The figures display exact results
(black curves), infinite-measurement outcomes (cyan), and
quantum-computed experimental data (orange). In panel
(III), a purple dotted line indicates a fit of the ramp observed
in the quantum-computed data. Our normalization ensures
hF(0)i = 1, with the plateau occurring at hF(1)i = 1/ds,
where ds denotes the dimension of a symmetry block, see
Appendix B for details. Shaded areas indicate the standard
deviation over initial states, symmetry sectors and times.

havior of the ESSR as a function of ✓ in panel (I), our
data in panels (II) and (III) clearly show the buildup
of a ramp-plateau structure, indicating ergodic behav-
ior. In panel (III), we show a fit (purple dotted line) to
the observed ramp, indicating a power-law behavior ✓

where  = 0.6 ± 0.2, where the fit error is determined
by changing the fit regime. This exponent is consistent
with the results obtained from the numerical analysis of
a significantly larger system in Appendix B.

Our results demonstrate that, using observables that
reveal universal statistical or global features of entangle-
ment spectrum, the onset of chaotic behavior can be ro-
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discernible as the observed average gap ratio hri evolves
from ⇡ 0.4 predicted for a non-repulsive Poisson distri-
bution (blue dashed line) towards ⇡ 0.6 characteristic of
repulsive level statistics of a Gaussian Unitary Ensemble
(GUE) [38]. Three time regimes (I), (II), and (III) are
identified that correspond, respectively, to the evolution
of the predicted average gap-ratio toward the Poisson dis-
tribution value, toward the GUE value, and to saturation
at the GUE value.

In Fig. 4(b) we plot, for the three ranges of evolution
times, the corresponding normalized distribution of the
gap ratios, P̄ (r), combined over 6 random initial states
and 4 symmetry sectors. We observe a clear transition
from early-time non-repulsion (Poisson distribution, blue
dotted line) in regime (I) to level repulsion (Gaussian
Unitary Ensemble, red) in regime (III). At intermediate
times, a distribution is observed between the initial ab-
sence of level repulsion and the subsequent emergence of
level repulsion. Error bars and bands denote the vari-
ance resulting from averaging over symmetry sectors and
initial states. The predicted exact distribution (black
line) exhibits a sharper peak around zero at the ear-
liest times due to the reduced density matrix not be-
ing full rank. Conversely, the BW-inspired ansatz (cyan
line) generally parametrizes a full-rank matrix unless cou-
plings are very finely tuned, resulting in an overestima-
tion of level repulsion in the initial stages. Calculations
indicate that the onset of the three regimes remains con-
sistent for any randomly chosen initial condition and de-
pends only on the (subsystem-)size when measured in
coupling-independent units gt.

In Fig. 5 we plot the ESSF reconstructed from the data
used in Fig. 4. The three panels of the plot correspond
to the the three time regimes discussed in relation to the
EGRD evolution. The displayed theory curves are aver-
aged over initial states, symmetry sectors, and each of
the three time ranges. Starting from an initial flat be-
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havior of the ESSR as a function of ✓ in panel (I), our
data in panels (II) and (III) clearly show the buildup
of a ramp-plateau structure, indicating ergodic behav-
ior. In panel (III), we show a fit (purple dotted line) to
the observed ramp, indicating a power-law behavior ✓

where  = 0.6 ± 0.2, where the fit error is determined
by changing the fit regime. This exponent is consistent
with the results obtained from the numerical analysis of
a significantly larger system in Appendix B.

Our results demonstrate that, using observables that
reveal universal statistical or global features of entangle-
ment spectrum, the onset of chaotic behavior can be ro-
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Experimental demonstration with trapped ions:

Quantum thermalization of gauge theories:
chaos, turbulence and universality Niklas Mueller
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Figure 1: Overview of the stages of quantum thermalization of Z
2+1
2 , including (exponential) growth of

Schmidt values and build-up of level repulsion at earliest time, and saturation of the von-Neumann entropy
at a parametrically later stage. An intermediate regime is characterized by self-similar evolution, typical for
(classical) wave turbulence.

1. Introduction

Recent advances in simulating quantum many-body systems with digital quantum computers
and analog devices, based on atomic, molecular and optical (AMO) systems, have opened new
avenues to address old problems [2–9]. One such question is the thermalization of gauge theories,
relevant e.g. for Quantum Chromodynamics (QCD) in ultra-relativistic heavy ion collisions [10],
and in many other fields ranging from atomic gases [11], to condensed matter physics [12], and
cosmology [13].

Much understanding has been derived from the Eigenstate Thermalization Hypothesis [14, 15]
and it has become clear that entanglement is an important ingredient in thermalization, yet the
latter is barely explored for gauge theories because of its ambiguous definition [17–20]. In this
work, we overcome this issue for Z2 LGT in (2+1) spacetime dimensions (Z2+1

2 ), by developing
dual formulations ‘with entanglement cuts’, allowing us to compute the Entanglement Structure of
non-equilibrium states. Focusing on quench dynamics of an initial unentangled state, we investi-
gate the ‘Entanglement Spectrum’ (ES), a representation of a state in terms of an ‘Entanglement
Hamiltonian’ (EH), analogous to energy levels, first suggested by Li and Haldane as an indicator of
topological order in non-Abelian fractional Quantum Hall e�ect systems [21].

We find that thermalization proceeds in clearly separated stages, c.f. Fig. 1: Exponentially-fast
growth of Schmidt values and maximization of the rank of the reduced density matrix at earliest
times, followed by spreading of ES level repulsion, and saturation of entanglement entropy at
parametrically later times. An intermediate regime is characterized by self-similar evolution of the
Schmidt spectrum, with scaling coe�cients U = 0.8 ± 0.1 and V = 0.05 ± 0.03, reminiscent of
classical wave turbulence and universality.

2. Hamiltonian Formulation of Z
2+1
2 Lattice Gauge Theory

The Hamiltonian of Z
2+1
2 LGT is [1, 22]

� = �
’

n

fI

n,G
fI

n+Ĝ,Hf
I

n+Ĥ,Gf
I

n,H
� n

’
n,8=G,H

fG

n,8
, (1)

where fG/I
n,8

are Pauli operators positioned along the links of a two-dimensional spatial lattice
n ⌘ (=G , =H) with =8 2 [0, #8 � 1]. Gauss law ⌧n ⌘ Œ

8
fG

n
fG

n�8̂ specifies the physical sector
⌧n |kphysi = |kphysi. Z

2+1
2 LGT was first proposed by Wegner [22] as a model containing a phase

transition without a local order parameter, a deconfinement (n < n2) versus confinement (n > n2)

2
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Hardware e�cient quantum simulation of non-abelian gauge theories

with qudits on Rydberg platforms

Daniel González-Cuadra,1, 2, ⇤ Torsten V. Zache,1, 2, ⇤ Jose Carrasco,1 Barbara Kraus,1 and Peter Zoller1, 2

1Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

Non-abelian gauge theories underlie our understanding of fundamental forces in nature, and de-
veloping tailored quantum hardware and algorithms to simulate them is an outstanding challenge
in the rapidly evolving field of quantum simulation. Here we take an approach where gauge fields,
discretized in spacetime, are represented by qudits and are time-evolved in Trotter steps with multi-
qudit quantum gates. This maps naturally and hardware-e�ciently to an architecture based on
Rydberg tweezer arrays, where long-lived internal atomic states represent qudits, and the required
quantum gates are performed as error-tolerant holonomic operations supported by a Rydberg block-
ade mechanism. We illustrate our proposal for a minimal digitization of SU(2) gauge fields.

Introduction.– Quantum field theories form the back-
bone of the Standard Model of particle physics, where
quantized gauge fields mediate the interactions be-
tween fundamental particles [1]. Lattice gauge theories
(LGTs), where fields are discretized on a space-time lat-
tice [2], provide a convenient framework to study non-
perturbative high-energy phenomena, and have been ex-
tensively used to extract numerous experimentally rele-
vant predictions [3]. Despite this success, standard ap-
proaches based on Monte Carlo methods are severely lim-
ited by the sign problem [4], preventing the study of real-
time gauge theory dynamics, among other drawbacks.
The latter are essential to analyze experimental results
in heavy-ion colliders, where open problems in particle
physics are currently being addressed [5, 6], including
the search of new physics beyond the Standard Model.

In the recent years, quantum simulators (QS) [7] have
emerged as a promising pathway to circumvent these
problems [8–13], leading to several experimental demon-
strations where simple LGTs were investigated using dig-
ital, analog and variational methods [14–20]. For dig-
ital QS [21], in particular, di↵erent schemes have been
proposed to address high-dimensional non-abelian gauge
theories using di↵erent platforms, including trapped
ions [22–24], ultracold atoms [25–29], superconducting
circuits [30–32] and cavities [33]. Despite their higher
flexibility to simulate complex many-body Hamiltonians
compared to the analog approach, crucial in particular
for non-abelian theories, a full digital quantum simu-
lation requires access to gate-based quantum comput-
ers, which are currently restricted to Noisy Intermedi-
ate Scale Quantum (NISQ) devices [34], limited in qubit
number and circuit depths. Although an impressive ef-
fort is currently taking place to reduce the computa-
tional complexity using improved quantum software [35–
49], simulating relevant LGTs in the NISQ era must be

⇤ These authors contributed equally.

daniel.gonzalez-cuadra@uibk.ac.at
torsten.zache@uibk.ac.at

complemented by the development of e�cient quantum
hardware tailored to the specific algorithmic demands.

FIG. 1. Gauge field dynamics on a qudit quantum sim-
ulator: (a) Our proposal employs Rydberg atoms trapped in
optical tweezers, arranged on the links ` of a hypercubic lat-
tice. Each atom encodes a qudit using d internal levels, where
single-qudit gates are realized holonomically. To implement
the entangling two-qudit gate⇥`|`0 , tweezers are rearranged to
bring pairs of atoms within the Rydberg blockade radius Rb.
(b) First order decomposition of a Trotter step, including the
four-qudit plaquette interaction, into the native atomic gates
U

(E/B)
` and ⇥`|`0 (see main text). (c) Trotterized quench dy-

namics of a non-abelian Q8 LGT on a single plaquette for
�E/�B = 2.88.

In this Letter, we introduce a qudit architecture based
on atoms trapped in optical tweezer arrays and laser ex-
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SOME CO-DESIGN EXAMPLES: LEVERAGING MULTI-DIMENSIONAL 
LOCAL HILBERT SPACES AND MULTI-MODE INTERACTIONS
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II. THE KOGUT-SUSSKIND HAMILTONIAN FOR QCD AND MAPPING TO QUBITS

The 1+1D SU(3) KS Hamiltonian [85, 86] with Nf flavors formulated in A
(a)
x = 0 gauge [36, 87] takes the form

H =
X

f

"
1

2

2L�2X

n=0

⇣
�
(f)
n

†
�
(f)
n+1 + h.c.

⌘
+ mf

2L�1X

n=0

(�1)n�(f)
n

†
�
(f)
n

#
+

g
2

2

2L�2X

n=0

8X

a=1

0

@
X

mn

Q
(a)
m

1

A
2

, (1)

where �
(f)
n correspond to annihilation operators for fermions of flavor f . They are color triplets, with their color

indices are suppressed in Eq. (1). The color-charge operators on each lattice site are the sum of contributions from
each flavor. For example, for Nf = 2 (up and down quarks), the color-charge operators are

Q
(a)
m = �

(u)†
m T

a
�
(u)
m + �

(d)†
m T

a
�
(d)
m , (2)

where the generators of SU(3), T a, are given in App. A. With open boundary conditions (OBC) and vanishing fields
at spatial infinity, corresponding to vanishing net color charge on the lattice (enforced by additional terms in the
Hamiltonian [36]), Gauss’s law is sufficient to determine the chromo-electric field at all lattice sites,

E(a)
n =

X

mn

Q
(a)
m . (3)

There are a number of ways that this system, with the Hamiltonian given in Eq. (1), can be mapped onto qubit
registers. In our previous works [36, 38], the KS Hamiltonian for an arbitrary number of colors Nc and flavors Nf was
mapped to qubits using the Jordan-Wigner (JW) transformation [89]. For the Nc = 3 and Nf = 2 case, each staggered
site requires six qubits, with ordering db, dg, dr, ub, ug, ur, and the antiquarks associated with the same spatial site
adjacent with ordering db, dg, dr, ub, ug, ur. This is shown in the left panel of Fig. 1. The resulting JW-mapped

FIG. 1. Mapping QCD with Nf quark flavors onto a lattice of qubits (left) or qu8its (right) describing a spatial site. Kogut-
Susskind (staggered) fermions are used for the quark fields, with (anti)quarks on (odd) even sites. Using qubits, color and
flavor degrees of freedom of each quark and antiquark site are distributed over six qubits with a JW mapping. Using qu8its,
with the quark (and anti-quark) degrees of freedom being mapped to the internal states, only two qu8its are required per each
quark flavor.

Hamiltonian is the sum of three terms [36, 38], neglecting the possible presence of chemical potentials,

H = Hkin + Hm + Hel ,

Hkin = �1

2

2L�2X

n=0

1X

f=0

2X

c=0

"
�
+
6n+3f+c

 
5O

i=1

�
z
6n+3f+c+i

!
�
�
6(n+1)+3f+c + h.c.

#
,

Hm =
1

2

2L�1X

n=0

1X

f=0

2X

c=0

mf

⇥
(�1)n�z

6n+3f+c + 1
⇤
,

Hel =
g
2

2

2L�2X

n=0

(2L� 1� n)

0

@
1X

f=0

Q
(a)
n,f Q

(a)
n,f + 2Q(a)

n,0 Q
(a)
n,1

1

A+ g
2
2L�3X

n=0

2L�2X

m=n+1

(2L� 1�m)
1X

f=0

1X

f 0=0

Q
(a)
n,f Q

(a)
m,f 0 ,(4)

where repeated adjoint color indices, (a), are summed over, the flavor indices, f = {0, 1}, correspond to u- and d-quark

8

FIG. 3. A connectivity map among the eight qu8it states that is required by the Hamiltonian in Eq. (16). Colored connections
are for the kinetic term, while black ones are for the color charge-charge interactions (different line styles correspond to different
charge combinations).

A. QCD with Nf = 1 on L = 1 Spatial Site with OBCs

It is helpful to explore examples of mappings to qu8its. Consider L = 1, with lattice sites n = 0, 1, with one flavor
Nf = 1, which maps to two qu8its (one for the quarks and one for the anti-quarks), a system that we have studied
previously [36]. The matrix representation of the Hamiltonian, as given in Eq. (16), reduces to

H1 =
1

2

⇣
ecr† eP ⌦ ecr† + ecg† eP ⌦ ecg† + ecb† eP ⌦ ecb† � ecr eP ⌦ ecr � ecg eP ⌦ ecg � ecb eP ⌦ ecb

⌘

+ 3m
⇣
eB ⌦ eI + eI ⌦ eB

⌘
+

g
2

2

X

a

⇣
eQ(a) ⌦ eI

⌘2
+

h
2

2

X

a

✓
eQ(a) ⌦ eI + eI ⌦ ē

Q

(a)
◆2

,

= H1kin + H1m + H1el + H1h , (18)

where eI is the identity operator. The term with coefficient h has been included to enforce color-neutrality across the
lattice as h ! 1, as we implemented in previous work [36]. This generates a significant penalty for chromo-electric-
energy density beyond the end of the spatial lattice, and without this term color-edge states appear as low-lying states
in the spectrum due to OBCs [36]. In the large-h limit, only color-singlet states remain at low energies.

This system is sufficiently simple and of small dimensionality, involving a 64⇥ 64 Hamiltonian matrix, that it can
be exactly diagonalized with classical computers. Projecting to states with good baryon number further reduces the
size of the matrix. For example, in the B = 0 sector, the contributing configurations correspond to i) both qu8its
in the vacuum (a 1); ii) the qu8its are in the one-quark one-anti-quark sector (3 ⌦ 3 = 8 � 1); iii) the qu8its are in
the two-quark two-anti-quark sector, (3 ⌦ 3 = 8 � 1); and, iv) both qu8its are in the completely occupied state, a
baryon-anti-baryon pair (a 1). Consequently, the total number of B = 0 basis states is nB=0 = 1 + 9 + 9 + 1 = 20.
However, a large value of h propels the 8’s high in the spectrum, leaving only four color-singlet states in the low-lying
spectrum. These are formed from linear combinations of the eight pairings of states in the qu8its.7

As this is a system we have analyzed previously using the JW mapping to qubits [36], the low-lying spectra and
time-evolution from arbitrary initial states are known. The (exact) time evolution found from matrix exponentiation
of the Hamiltonian in Eq. (18), is found to furnish results that agree with our previous analyses.

As shown in Eq. (21) below, the chromo-electric term Ĥ1el is diagonal in the qu8it computational basis for L = 1.
Thus, in the case of an ideal quantum computer, with an initial state that is a color-singlet, exact time evolution will
leave the system in a color-singlet state at all subsequent times, even without the “h-term” in Eq. (18). As such, that
term can be omitted in the time-evolution operator in the case of L = 1. For systems with L > 1, however, color-
charge is violated by Trotterized time evolution (in particular, due to Trotterization of the eight contributions to the
color sum in the chromo-electric field term, when the color-charge operators act on different sites), and consequently,
including the “h-term” is a means to mitigate this violation.

7 If we were working in U(1) lattice gauge theory describing quantum electrodynamics, the situation would be somewhat less complex
because each (tensor-product) basis state is an eigenstates of the electric-charge operator. This is not the situation for non-Abelian
theories, where the color-charge operator generally mixes basis states.
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FIG. 2. Refining the gauge field discretization a, We consider pure gauge QED in two spatial dimensions with periodic
boundary conditions, i.e. on a lattice on the surface of a torus. As before, the gauge field resides on the links of the lattice,
while here the vertices remain empty. b, We consider the smallest instance of such a torus, containing four empty sites and
eight gauge field links. The ground state of this particular system can be described via three separate circulation-paths of the
gauge field, called rotators as discussed in App. C 2. Each rotator fulfills an eigenvalue equation equivalent to a single link gauge
field and can thus be subject to the same truncation rules as discussed in the main text by employing a d-level qudit. Here,
we demonstrate the di↵erence between a realization employing qutrits and ququints. c, The variational circuit in the electric
representation (see main text) for the qutrit (solid lines) and the ququint (all, except shaded box marked with qutrit symbol)
truncation. The explicit form of the gates employed is given in App. D 1. d, Experimentally measured expectation values of the
plaquette operator ⇤̂ in the VQE-optimized ground states using qutrits (light shaded data), compared to ququints (dark shaded
data). The error bars indicate one sigma statistical uncertainty. The black line represents numerical results obtained for d = 21,
using the electric (magnetic) representation for small (large) values of g�2. e, The duality between the electric (all orange bars)
and magnetic (all blue bars) representations is clearly seen in the experimentally measured populations of the eigenvectors of
the yellow rotator from panel b for the qutrit VQE experiment and ququint experiment. The grey bars are results obtained via
exact diagonalization. In the regime dominated by the electric Hamiltonian (small g�2) a qutrit (light orange) representation
is enough to approximate the correct ground state, while for larger g�2 truncation errors become more relevant and a ququint
representation (dark orange) becomes advantageous. A complementary argument applies to the magnetic qutrit (light blue)
and ququint (dark blue) representation.

So far, we truncated the gauge field directly in the
electric field eigenbasis, i.e. in our first experiment we
included eigenstates |Ei of the electric field operator Ê
with Ê|Ei = E|Ei and E = 0,±1. However, to deter-
mine the plaquette expectation value resource-e�ciently
across all values of the coupling, we now employ a
more suitable truncation scheme that we introduced in
Ref. [38]. Our method is based on a Fourier transforma-
tion: for large couplings (where g�2

⌧ 1), the Hamilto-
nian is dominated by the electric field contribution ĤE ,
and a gauge field truncation in the electric (E-) field basis
is suitable, which we refer to as the electric representa-
tion. For small couplings (where g�2

� 1), the magnetic
field term dominates, and accordingly, a magnetic (B-)
field basis (using B-field eigenstates) is more e�cient.
The VQE circuits for the E- and B- representations are

shown in App. F and in Fig. 2c respectively. As explained
in more detail in the Appendix, their construction is in-
spired by the form of the Hamiltonian.

Figure 2d shows the resulting ground-state plaquette
expectation values versus g�2, along with our theoreti-
cal predictions that include a simple noise model, as de-
scribed in App. H. For qutrits and ququints, we perform
the full VQE as in Fig. 1. Note that we show the results
for both representations across all values of the coupling
g�2, even though the validity of the electric (magnetic)
representation is restricted to the large (small) coupling
regime, where g�2

⌧ 1 (g�2
� 1). The gap between the

curves in the intermediate region g�2
⇡ 1, where the elec-

tric and magnetic representations perform equally, stems
from the truncation of the gauge fields, see Ref. [38]. As
the truncation is increased, the two curves rapidly ap-
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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