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Current status of αs(mZ)

Best result from lattice QCD:

αs(mZ) = 0.1184(8)

Step-scaling method: error is
statistics dominated!

Most other results (on and off
the lattice) systematics
dominated (hadronization
models, quark hadron duality
violations, non-perturbative
effects at low energies,...)

Reducing the current error (0.7%) to below half a percent is a challenge!
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ALPHA collaboration project (origins in the 1990’s)

Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:

Nf = 2 + 1 state of the art lattice QCD simulations

nonperturbatively O(a) improved Wilson quarks & Lüscher-Weisz gauge action;

open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.

Fπ,K ,mπ ,mK ⇒ mu = md,ms, g0

⇒ everything else becomes a prediction, for instance

α
(Nf=3)
s (1000× Fπ,K) (in any renormalization scheme)

Final goal: α(Nf=5)
s (mZ) in the MS-scheme

Requires matching to Nf = 5 across the charm and bottom thresholds;

Perturbation theory to 4-loop order satisfactory [Athenodorou et al. ’18]



5/ 24

The QCD Λ-parameter vs. αs(µ) = ḡ2(µ)/4π

The coupling αs(µ) can be traded for its associated Λ-parameter:

Λ = µϕ(ḡ(µ)) = µ
[
b0ḡ

2(µ)
]− b1

2b20 e
− 1

2b0ḡ2(µ) exp
{
−
∫ ḡ(µ)

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]}
exact solution of Callan-Symanzik equation:

(
µ ∂
∂µ

+ β(ḡ) ∂
∂ḡ

)
Λ = 0

Number Nf of massless quarks is fixed.

If the coupling ḡ(µ) non-perturbatively defined so is its β-function!

β(g) has asymptotic expansion β(g) = −b0g3 − b1g5 − b2g7..

b0 = (11− 2
3Nf)/(4π)2, b1 = (102− 38

3 Nf)/(4π)4, . . .

b0,1 are universal, scheme-dependence starts with 3-loop coefficient b2.

Scheme dependence of Λ almost trivial:

g2
X(µ) = g2

Y(µ) + cXYg
4
Y(µ) + ... ⇒

ΛX
ΛY

= ecXY/2b0

⇒ can use ΛMS as reference (even though the MS-scheme is purely perturbative!)
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The QCD Λ-parameter and αs(µ) = ḡ2(µ)/4π

Λ = µϕ(ḡ(µ)) = µ
[
b0ḡ

2(µ)
]− b1

2b20 e
− 1

2b0ḡ2(µ) exp
{
−
∫ ḡ(µ)

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]}
Continuum relation, exact at any scale µ:

require large µ to evaluate integral perturbatively
require small µ to match hadronic scale

⇒ problem of large scale differences:

The scale µ must reach the perturbative regime: µ� Λ
lattice cutoff must still be larger: µ� a−1

spatial volume must be large enough to contain pions: L� 1/mπ

Taken together a naive estimate gives

L/a� µL� mπL� 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a single lattice!



7/ 24

The step scaling solution

Widely different scales cannot be resolved simultaneously on a single lattice

⇒ break calculation up in steps [Lüscher, Weisz, Wolff ’91; Jansen et al. ’95]:
1 define ḡ2(L) that runs with the space-time volume, i.e. µ = 1/L
2 construct the step-scaling function

σ(u) = ḡ
2(2L)

∣∣
u=ḡ2(L)

for a range of values u ∈ [umin, umax]
3 iteratively step up/down in scale by factors of 2:

ḡ
2(Lmax) = umax ≡ u0, uk = σ(uk+1) = ḡ

2(2−kLmax), k = 0, 1, ...

4 match to hadronic input at a hadronic scale Lmax, i.e. FKLmax = O(1)
5 once arrived in the perturbative regime Lpert = 2−nLmax one now knows
un = ḡ2(Lpert); determine LpertΛ and combine to obtain Λ/FK .
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Continuum limit σ(u) = lima/L→0 Σ(u, a/L)
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Non-perturbative running of αs in Nf = 3 QCD
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Result for Λ [ALPHA ’17]

The Λ-parameter can now be evaluated at a very high perturbative scale µPT
with µhad/µPT known (a power of 2 if related by step-scaling).

The remaining uncertainty is parametrically ∝ α2(µPT) if the β-function is

known to 3-loop order

Note: observation of this dependence requires data over a large range of scales,
so that α2 varies significantly!

The result
Λ(3)

MS
= 341(12)MeV

translates to αs(mZ) = 0.11852(84) (with 4-loop matching across charm and
bottom thresholds)
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Decoupling of heavy quarks as a renormalization tool

Perturbative matching across the charm and bottom quark thresholds seems to
be very accurate in MS scheme;
available up to 4-loop order [Bernreuther and Wetzel ’82; Grozin et al. ’11; Chetyrkin
et al.’05; Schröder and Steinhauser ’05; Kniehl et al. ’06; Gerlach, Herren and
Steinhauser ’18]

[ALPHA ’18]: non-perturbative test of decoupling, comparison with perturbative
4-loop description in the MS-scheme.

⇒ suggests that perturbative decoupling yields very high precision for quarks
around the charm mass and above!

Idea: match QCD with Nf = 3 heavy quarks non-perturbatively to QCD with
Nf = 0 by taking the infinite mass limit.

Potential gain: Non-perturbative running could be done in the Nf = 0 theory
(computationally cheaper and much more precise).
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Decoupling of heavy quarks

Consider QCD with Nf = 3 heavy quarks of RGI mass M

M = ms(µ)
[
2b0ḡ2

s(µ)
]− d0

2b0 exp

−
ḡs(µ)∫
0

[
τs(x)
βs(x) −

d0
b0x

]
dx

 ,

with ms(µ) the running mass in scheme s.

At scales µ�M , the fundamental theory (Nf = 3-flavour QCD) can be
described by an effective theory, Nf = 0 QCD (i.e. pure Yang-Mills theory):

ḡ
(3)
s (µ/Λ(3)

s ,M) = ḡ
(0)
s (µ/Λ(0)) + O(µ2/M2) , (1)

in PT this leads to

[ḡ(0)
MS

(µ)]2 = C

(
ḡ

(3)
MS

(m?)
)

[ḡ(3)
MS

(m?)]2, m? = m
MS

(m?),

and for µ = m? one finds C(x) = 1 + c2x4 + c3x6 + c4x8 + . . . .

Reformulation with P = ϕ
(0)
MS

(
g?
√
C(g?)

)
/ϕ

(3)
MS

(g?), g? = g
(3)
MS

(m?):

Λ(3)
MS
µdec

=
Λ(0)

MS

Λ(0)
s

× lim
M/µdec→∞

ϕ
(0)
s

(
ḡ

(3)
s (µdec,M)

)
P

(
M
µdec

/
Λ(3)

MS
µdec

)

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Coupling definitions

Set-up such that it benefits from various previous projects: running quark mass
[Campos et al ’18], Nf = 3 coupling [ALPHA’17]

Definition of massless renormalized couplings: use gradient flow GF scheme in
finite volume

ḡ2
GF(µ) = N−1

3∑
k,l=1

t2〈tr {Gkl(t, x)Gkl(t, x)} δQ,0〉
〈δQ,0〉

∣∣∣∣∣
x0=T/2, c=

√
8t/L

µ=1/L,T=L,M=0

use both T = L (GF scheme) and T = 2L (GFT scheme) with projection to
topological charge Q = 0 sector (part of scheme definition)

1-parameter families of schemes, parameter c =
√

8t/L

T = 2L chosen to suppress both cutoff effects linear in a and large mass effects
linear in 1/M from Euclidean time boundaries.
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Numerical set-up

Lines of constant physics:

ḡGF(µdec) = 3.949 ⇒ µdec = 789(15)MeV
Varying L/a = 1/(aµdec) between L/a = 12− 48 defines a sequence of values
β = 6/g2

0 ∈ [4.3, 5.2]

Define range of values z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} up to O(a2) effects
(non-trivial!) and find corresponding bare mass values.

At these values of the bare parameters choose T = 2L and compute the
couplings in a massive scheme

ḡ
(3)
GFT,c(µdec, z)

require aM to be small and z = ML = M/µdec � 1

⇒ potentially a difficult multiscale problem; using µ = 1/L alleviates part of it.
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O(a) improvement, rôle of bg

Lattice QCD with Wilson quarks is affected by lattice artefacts of O(a), due to
explicit chiral symmetry breaking.

⇒ can be restored by tuning the corresponding counterterms in the action and
composite fields

Not all counterterms are known non-perturbatively! With mq = m0 −mcr(g2
0),

the O(a) improved bare coupling is

g̃2
0 = g2

0(1 + bg(g2
0)amq),

and the O(a) improved RGI mass can be written as

M = ZM (g̃2
0 , aµ)mq(1 + bm(g2

0)amq), ZM =
M

m(µ)︸ ︷︷ ︸
RG running

×Zm(g̃2
0 , aµ)

If one wants to vary the quark mass at fixed lattice spacing one needs to fix g̃2
0 .

This requires bg, given to 1-loop order by,

bg(g2
0) = 0.01200×Nfg

2
0 + O(g4

0)

⇒ in ALPHA ’22 we assumed an uncertainty of bg of the same size as the one-loop
term.
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Continuum extrapolations
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Data for z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} (here with c = 0.36), extrapolated to
a = 0 using

individual fits for each z-value (bg-uncertainty not included in error bars):

ḡ2(zi, a) = Ci + pi [αMS(a−1)]Γ̂(aµdec)2

fit form motivated by Symanzik expansion with RG improvement
[Balog et al. ’09; Husung et al.’19]

2 cuts in (aM)2 < 0.16, 0.25, fits are carried out for various Γ̂ ∈ [−1, 1] (lines in
plot for Γ̂ = 0.
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Continuum extrapolations
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Data for z = M/µdec ∈ {1.972, 4, 6, 8, 10, 12} (here with c = 0.36), extrapolated to
a = 0 using

global fits (bands in plot, contain bg-uncertainty);

ḡ2(zi, a) = Ci + p1[αMS(a−1)]Γ̂(aµdec)2 + p2[αMS(a−1)]Γ̂
′
(aMi)2 .

fit form motivated by Symanzik and large mass expansions.

2 cuts in (aM)2 < 0.16, 0.25, with fixed Γ̂ ∈ [−1, 1] and Γ̂′ ∈ [−1/9, 1]

z = 1.972 seems to be at the edge of large mass regime; precautioniary
measure: cut z > 2 and include z = 1.972 with different slope parameter
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Combining with pure gauge theory results [Dalla Brida & Ramos ’19]

The continuum values of the massive couplings g(3)
GFT(µdec,M) can now be

matched with the corresponding g(0)
GFT(µdec), up to power corrections 1/M .

The step-scaling procedure in pure gauge theory gives us the function ϕ(0)
GF(g)

Λ(0)
MS
µdec

=
Λ(0)

MS

Λ(0)
GF

× ϕ(0)
GF

(
ḡ

(0)
GF (µdec)

)
.

⇒ requires matching GFT,c with the T = L, c = 0.3 scheme GF

ḡ
(0)
GF(µ) = χc

(
ḡ

(0)
GFT,c(µ)

)
⇒ define g = χc

(
ḡ

(3)
GFT,c(µ,M)

)
as input to ϕ(0)

GF(g)

Combining all this at µ = µdec, solve equation for target ρ,

ρ× P (z/ρ)︸ ︷︷ ︸
PT + O

(
α4

MS
(m?)

) =
Λ(0)

MS
µdec

, ρ =
Λ(3)

MS,eff

µdec
=

Λ(3)
MS
µdec

+ O(1/z2)

Corrections O(1/z) from boundaries strongly suppressed due to T = 2L.
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Decoupling limit extrapolation
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Extrapolate continuum results for z →∞:

Λ3
MS, eff

= Λ3
MS

+
B

z2

[
αMS(m?)

]Γ̂m
Extrapolation at

fixed c ∈ [0.3, 0.42] (here c = 0.36)

fixed Γ̂m ∈ [0, 1] (here Γ̂m = 0, variation with Γ̂m is used as error estimate)
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Result from decoupling, ALPHA ’22
Our best estimate:

Λ(3)
MS

= 336(10)(6)bg (3)Γ̂mMeV = 336(12)MeV ⇒ αs(mZ) = 0.11823(84)

Total error is of the same size as in ALPHA ’17 (341(12)MeV)

only 28% common (squared) error with ALPHA ’17 ⇒ combine:
Λ(3)

MS
= 339.5(9.6) ⇒ αs(mZ) = 0.1184(7) (statistics dominated!)

Clear path to further error reduction:

Improve determination of Λ(0)
MS
/µdec

Improve physical scale setting from CLS ensembles
Improve continuum extrapolation of SSF at low energies
Non-perturbative determination of bg

⇒ all these improvements are underway.
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Improvement 1: ALPHA 17 SSF for GF coupling

old data: significant cutoff effects, small lattices (L/a = 8) given smaller weight:
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ALPHA 17 SSF for GF coupling

with new data from ALPHA coll. HQET project (courtesy Fritzsch, Kuberski,
Heitger): very nice confirmation & improvement of old continuum extrapolations!
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Nonperturbative result for bg, ALPHA ’24
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Improvement 2. The continuum extrapolation of massive couplings
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Previous determination, ALPHA ’22

Most of error from estimate of
bg − b1−loop

g

This is a systematic!

But error in ḡ2(µ,M)
subdominant (assuming 100
percent error on 1-loop bg)

NP determination of bg (ALPHA ’24)

Much more precise continuum
values

Completely removes largest
systematic effect in αs
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Conclusions

Current re-analysis with improvements by the ALPHA collaboration will achieve
a 0.5 percent statistics dominated error on αs(mZ).

Low energy scale setting with
√
t0 shows inconsistencies at the level of quoted

errors, however, these are not relevant for αs!

The decoupling result rests on Nf = 0 step-scaling study by Dalla Brida &
Ramos ’19.

Change of perspective: Rather than a test-bed for QCD methods, Nf = 0
results can contribute to physics results via decoupling!

⇒ Several new Nf = 0 results, assessed & discussed in FLAG 24 report
(publication imminent)

Use the precise lattice result for αs as input for phenomenological analyses at
colliders!

STAY TUNED!


