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Current status of as(my)
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Best result from lattice QCD:

as(mz) =0.1184(8)

Step-scaling method: error is
statistics dominated!

Most other results (on and off
the lattice) systematics
dominated (hadronization
models, quark hadron duality
violations, non-perturbative
effects at low energies,...)

Reducing the current error (0.7%) to below half a percent is a challenge!



ALPHA collaboration project (origins in the 1990's)

Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:
o N; =2+ 1 state of the art lattice QCD simulations
@ nonperturbatively O(a) improved Wilson quarks & Liischer-Weisz gauge action;
@ open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.

Fr k,mn, Mg = My = Mg, Ms, g0
= everything else becomes a prediction, for instance

ang::)’)(lOOO X Fr k) (in any renormalization scheme)

Final goal: o\~ (my) in the MS-scheme
o Requires matching to Ny = 5 across the charm and bottom thresholds;

o Perturbation theory to 4-loop order satisfactory [Athenodorou et al. '18]



The QCD A-parameter vs. a, () = g%(p) /4w

The coupling ais () can be traded for its associated A-parameter:
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@ exact solution of Callan-Symanzik equation: (u% + ﬁ(g)@) A=0
o Number N¢ of massless quarks is fixed.
o If the coupling g(u) non-perturbatively defined so is its S-function!
e f3(g) has asymptotic expansion 8(g) = —bog® — b1g® — bag” ..
bo = (11 — 2Ny)/(4m)?, by = (102 — 38 Ng)/(4m)*,
bo,1 are universal, scheme-dependence starts with 3-loop coefficient b2.

@ Scheme dependence of A almost trivial:

A
g% (1) = g% () + exyoy () + ... = ﬁ = e“xy/2b0

= can use Ayg as reference (even though the MS-scheme is purely perturbative!)



The QCD A-parameter and a(p) = g%(u)/4m
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o Continuum relation, exact at any scale u:

e require large p to evaluate integral perturbatively

o require small ;1 to match hadronic scale
= problem of large scale differences:

o The scale u must reach the perturbative regime: p > A
o lattice cutoff must still be larger: © < a~!
o spatial volume must be large enough to contain pions: L > 1/m,

o Taken together a naive estimate gives

L/a> puL > m.L>1 = L/a~ O(10%)

= widely different scales cannot be resolved simultaneously on a single lattice!



The step scaling solution

o Widely different scales cannot be resolved simultaneously on a single lattice

= break calculation up in steps [Liischer, Weisz, Wolff '91; Jansen et al. '95]:
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(>]

define g2(L) that runs with the space-time volume, i.e. = 1/L
construct the step-scaling function
o(u) = L)
u=g2(L)
for a range of values u € [Umin, Umax)
iteratively step up/down in scale by factors of 2:

gQ(Lmax) = Umax = U0, Uk = U(uk«i»l) = g2(27kLmax)7 k=0, 1,...

match to hadronic input at a hadronic scale Ly, i.e. Fx Limax = O(1)

once arrived in the perturbative regime Lper = 27" Limax one now knows
Uy = §2(Lpen); determine Ly A and combine to obtain A/ Fk.



Continuum limit o(u) = lim, /7,0 X(u,a/L)

S(u,a/L)/u

N e e e e s s s s s e s e e

3 3

[ x
Fo [) o
T |
§*§ 3 (3 ]
L = Y
Lo*x ™ = 9
Fa £ s
,*TE L3 3
e 3 . = ]
Lo b e b e b b
0 0.005 001 0015 002 0025 (q/)



Non-perturbative running of a, in Ny = 3 QCD
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Result for A | ]

@ The A-parameter can now be evaluated at a very high perturbative scale upr
with ppaq/ppT known (a power of 2 if related by step-scaling).

e The remaining uncertainty is parametrically oc o (upr) if the S-function is
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known to 3-loop order
o Note: observation of this dependence requires data over a large range of scales,
so that o? varies significantly!

o The result
A = 341(12)MeV
MS

translates to as(mz) = 0.11852(84) (with 4-loop matching across charm and
bottom thresholds)



Decoupling of heavy quarks as a renormalization tool

@ Perturbative matching across the charm and bottom quark thresholds seems to
be very accurate in MS scheme;

available up to 4-loop order [Bernreuther and Wetzel '82; Grozin et al. '11; Chetyrkin
et al’05; Schroder and Steinhauser '05; Kniehl et al. '06; Gerlach, Herren and
Steinhauser '18]

@ [ALPHA '18]: non-perturbative test of decoupling, comparison with perturbative
4-loop description in the MS-scheme.

= suggests that perturbative decoupling yields very high precision for quarks
around the charm mass and above!

o Idea: match QCD with Ny = 3 heavy quarks non-perturbatively to QCD with
Nr = 0 by taking the infinite mass limit.

@ Potential gain: Non-perturbative running could be done in the Ny = 0 theory
(computationally cheaper and much more precise).



Decoupling of heavy quarks

o Consider QCD with Ny = 3 heavy quarks of RGI mass M

a Gs (k)

_ 4o

=) [amaZ] o) = [ [ - ]
0

with 75 (p) the running mass in scheme s.

o At scales u < M, the fundamental theory (N; = 3-flavour QCD) can be
described by an effective theory, Ny = 0 QCD (i.e. pure Yang-Mills theory):

9. (u/ A, M) = g (u/A) + O(u? /M), (1)
@ in PT this leads to

B =C (8 m0) G maP,  me = (m.),

MS
and for pr = m, one finds C(z) = 1 4 cox? + c32% +cqa® + .. ..

@ Reformulation with P = gp% (gﬂ/ (g )) /go (g*) = gQ( %)t

(3) (O) 50590) ( @ (HdecvM))
MS _ MS ~ li

Mdec Ago) M/ pgec—>00 p M A%
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Coupling definitions

Set-up such that it benefits from various previous projects: running quark mass
[Campos et al '18], Ny = 3 coupling [ALPHA17]
o Definition of massless renormalized couplings: use gradient flow GF scheme in
finite volume
zo=T/2,c=V8t/L
Z tr {le t x)le(t x)}éQ 0>

(6@,0)
=1 u=1/L,T=L, M=0

Ger(p) =

o use both T'= L (GF scheme) and T'= 2L (GFT scheme) with projection to
topological charge Q = 0 sector (part of scheme definition)

o 1-parameter families of schemes, parameter ¢ = v/8t/L

@ T = 2L chosen to suppress both cutoff effects linear in a and large mass effects
linear in 1/M from Euclidean time boundaries.



Numerical set-up

Lines of constant physics:

° gGF(/"dec) =3.949 = Udec = 789(15)Mev

Varying L/a = 1/(afidec) between L/a = 12 — 48 defines a sequence of values
B=6/g2 € [4.3,5.2]

o Define range of values 2 = M/pigec € {1.972,4,6,8,10,12} up to O(a?) effects
(non-trivial!) and find corresponding bare mass values.

@ At these values of the bare parameters choose T' = 2L and compute the
couplings in a massive scheme

—(3
géF)T,c (Kdec #)

@ require aM to be small and z = ML = M/pgec > 1

= potentially a difficult multiscale problem; using ;= 1/L alleviates part of it.



O(a) improvement, réle of b,

o Lattice QCD with Wilson quarks is affected by lattice artefacts of O(a), due to
explicit chiral symmetry breaking.

= can be restored by tuning the corresponding counterterms in the action and
composite fields

o Not all counterterms are known non-perturbatively! With mq = mg — mcr(gg),
the O(a) improved bare coupling is

95 = 95 (1 + bg(g3)ama),

and the O(a) improved RGI mass can be written as

- M -
M = Zy(35, ap)mq(1 + bm(g5)amq), Zym = m X Zm (35, ap)

RG running

@ If one wants to vary the quark mass at fixed lattice spacing one needs to fix [73.
This requires bg, given to 1-loop order by,

be(g2) = 0.01200 x Nig2 + O(gd)

= in ALPHA '22 we assumed an uncertainty of bg of the same size as the one-loop
term.



Continuum extrapolations
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Data for z = M/pdec € {1.972,4,6,8,10,12} (here with ¢ = 0.36), extrapolated to
a = 0 using

o individual fits for each z-value (bg-uncertainty not included in error bars):

3%(zi,a) = Ci + pi logg (™))" (apaec)’
o fit form motivated by Symanzik expansion with RG improvement
[Balog et al. '09; Husung et al.'19]

e 2 cuts inA(oLM)2 < 0.16,0.25, fits are carried out for various I' € [—1,1] (lines in
plot for I' = 0.



Continuum extrapolations
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Data for z = M/pdec € {1.972,4,6,8,10,12} (here with ¢ = 0.36), extrapolated to
a = 0 using

o global fits (bands in plot, contain bg-uncertainty);
' ald
§*(zi,0) = Ci + pilogg (™)) (apaec)? + p2logg (@™ (ad)?.
o fit form motivated by Symanzik and large mass expansions.

o 2 cutsin (aM)? < 0.16,0.25, with fixed [' € [-1,1] and [ € [-1/9,1]

@ z = 1.972 seems to be at the edge of large mass regime; precautioniary
measure: cut z > 2 and include z = 1.972 with different slope parameter



Combining with pure gauge theory results | ]

o The continuum values of the massive couplings gg’:).r(udec, M) can now be

matched with the corresponding gg,):).r(udec), up to power corrections 1/M.

@ The step-scaling procedure in pure gauge theory gives us the function go(o) (9)

A(O) (0)
MS - ©)
Hdec A(O) X Par (QGF (Mdec)) .

= requires matching GFT,c with the T'= L, ¢ = 0.3 scheme GF

990 = xe (35000

= define g = xc (gg’%T (s M)) as input to <p( >( )

o Combining all this at y = pgec, solve equation for target p,

A A A
px  Pz/p) =B, p=—>%=M 1001/
N—— Hdec Hdec Hdec

PT + O(ai/TS(m*))

o Corrections O(1/z) from boundaries strongly suppressed due to T" = 2L.



Decoupling limit extrapolation
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Extrapolate continuum results for z — oo:
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Extrapolation at
o fixed ¢ € [0.3,0.42] (here ¢ = 0.36)

o fixed f‘m € [0,1] (here f‘m = 0, variation with f‘m is used as error estimate)



Result from decoupling, ALPHA '22

Our best estimate:

A(Mi)s = 336(10)(6)p, (3)p, MeV = 336(12)MeV =  as(my) = 0.11823(84)

o Total error is of the same size as in ALPHA '17 (341(12)MeV)

contributions to error®

e only 28% common (squared) error with ALPHA '17 = combine:
A% = 339.5(9.6) = as(myz) = 0.1184(7) (statistics dominated!)

@ Clear path to further error reduction:

o Improve determination of A%/Hdec
e Improve physical scale setting from CLS ensembles
e Improve continuum extrapolation of SSF at low energies

o Non-perturbative determination of by

= all these improvements are underway.



Improvement 1: ALPHA 17 SSF for GF coupling

old data: significant cutoff effects, small lattices (L/a = 8) given smaller weight:
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ALPHA 17 SSF for GF coupling

with new data from ALPHA coll. HQET project (courtesy Fritzsch, Kuberski,
Heitger): very nice confirmation & improvement of old continuum extrapolations!
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Nonperturbative result for b,, ALPHA '24
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Improvement 2. The continuum extrapolation of massive couplings
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o This is a systematic! o Completely removes largest

systematic effect in o
o But error in g(u, M) Y s

subdominant (assuming 100
percent error on 1-loop by)



Conclusions

@ Current re-analysis with improvements by the ALPHA collaboration will achieve
a 0.5 percent statistics dominated error on as(mz).

o Low energy scale setting with \/tp shows inconsistencies at the level of quoted
errors, however, these are not relevant for ay!

@ The decoupling result rests on Ny = 0 step-scaling study by Dalla Brida &
Ramos '19.

o Change of perspective: Rather than a test-bed for QCD methods, Ny =0
results can contribute to physics results via decoupling!

= Several new Nf = 0 results, assessed & discussed in FLAG 24 report
(publication imminent)

o Use the precise lattice result for as as input for phenomenological analyses at
colliders!

STAY TUNED!



